JPS5841658A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPS5841658A
JPS5841658A JP13826181A JP13826181A JPS5841658A JP S5841658 A JPS5841658 A JP S5841658A JP 13826181 A JP13826181 A JP 13826181A JP 13826181 A JP13826181 A JP 13826181A JP S5841658 A JPS5841658 A JP S5841658A
Authority
JP
Japan
Prior art keywords
molten metal
horn
mold
continuous casting
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13826181A
Other languages
Japanese (ja)
Other versions
JPS646858B2 (en
Inventor
Akira Yamazaki
明 山崎
Yasushi Watanabe
康 渡辺
Toru Komura
小村 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13826181A priority Critical patent/JPS5841658A/en
Publication of JPS5841658A publication Critical patent/JPS5841658A/en
Publication of JPS646858B2 publication Critical patent/JPS646858B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0602Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a casting wheel and belt, e.g. Properzi-process

Abstract

PURPOSE:To improve the corrosiveness of a horn applied with ultrasonic oscillations and to fine crystal grains in continuous casting of belt wheel type by evacuating the inside of a vessel immersed and inserted into charged molten metal to form a well and inserting said horn therein. CONSTITUTION:In the stage of continuous casting of belt wheel type for Al, etc., an inverted cup-like vessel 9 of sealed type formed of a heat insulating material is immersed and inserted into the upper part of a tundish 4. The inside of the vessel 9 is evacuated by operating an evacuating pump to form an evacuated chamber and to heighten the surface 5' of the molten metal upward to a constant level and to hold the same at said level, thereby forming a well 8. A horn 7 is inserted into the well 8, and ultrasonic oscillations are applied thereto. The metal 5 in the tundish 4 is charged into a mold consisting of a rotary wheel 1 for casting, endless belts 2, 2', and a pressing wheel 3, whereby the molten metal is cooled and solidified to form a cast ingot 6. By such method, the crystal grains of the cast ingot are fined stably for a long time without using any additive.

Description

【発明の詳細な説明】 本発明は周面に凹I′#を設けた鋳造用回転輪とこの回
転輪の周面に走行して接触する金属製無端ベルトとによ
って鋳型を連続して形成し該鋳型内に溶融金属(以下単
に溶湯と称す)を連続的に注入しこれを該鋳型の周面に
適用される冷却水により冷却凝固ぜしめて鋳塊を連続し
て得るベルトホイール型連続鋳造法において、該溶湯を
介し鋳型内の凝固界面に超音波振動を作用せしめて鋳塊
の結晶粒を微細化せしめる方法の改良、具体的に#′i
、該溶湯中に浸漬せしめる超音波伝達ホーンの耐侵食性
を向上せ【2め長時間にわたり安定して超音波を印加す
ることができるようにした連続a造法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention continuously forms a mold using a rotating casting wheel having a concave I'# on its circumferential surface and an endless metal belt that runs on and contacts the circumferential surface of the rotating wheel. A belt-wheel type continuous casting method in which molten metal (hereinafter simply referred to as molten metal) is continuously injected into the mold and is cooled and solidified by cooling water applied to the circumferential surface of the mold to continuously obtain an ingot. In , improvement of the method of applying ultrasonic vibration to the solidification interface in the mold through the molten metal to refine the crystal grains of the ingot, specifically #'i
This invention relates to a continuous a manufacturing method that improves the corrosion resistance of the ultrasonic transmission horn that is immersed in the molten metal, and that allows stable application of ultrasonic waves over a long period of time.

一般にベルトホイール型連続鋳造法によって製造される
鋳塊は圧砥等の加工を受けて製品となるが、鋳塊表面に
存在する欠陥は加工により拡大し製品々質に悪影響を及
ぼすが、この表面欠陥Vi、鋳塊の表面近傍の結晶粒が
大きい程生じ易く、又拡大し易い。
Generally, the ingots produced by the belt-wheel continuous casting method are processed by pressing and other processes to become products, but defects on the surface of the ingots are magnified by processing and have a negative impact on the quality of the products. The defect Vi is more likely to occur and expand as the crystal grains near the surface of the ingot are larger.

そこで鋳塊の表面近傍は微細な結晶粒組織であることが
望ましい。
Therefore, it is desirable that the vicinity of the surface of the ingot has a fine grain structure.

か\る見地から鋳塊組織をコントロールする方法が種々
検討されており、例えば純アルミ中アルミ合金ではTi
B、等の微細化剤を添加する方法が多用されている。
Various methods of controlling the ingot structure have been studied from this point of view. For example, in pure aluminum-medium aluminum alloys, Ti
A method of adding a refining agent such as B is often used.

しかしこの方法の欠点はTiB2が高価でありそのため
製品の製造コストが高くなることである。
However, the disadvantage of this method is that TiB2 is expensive, which increases the manufacturing cost of the product.

又超音波振動を凝固界面に作用せしめて鋳造初期に生成
する凝固、相部即ち鋳塊表面及びその近傍の結晶粒を微
細化せしめる方法も行なわれているが、この方法では凝
固界面に超音波振動を作用せしめるために超yt波伝達
ホーン(以下単にホーンと呼ぶ)が鋳型形成点より手前
のだ湯中に浸漬している。この場合ホーンがアルミ系の
溶湯に対して最も耐食性に優れるチタン又はチタン合金
であっても著しく侵食され、本発明者らの研9Y実験に
よればその浸食速度は毎時]0+a+程度である。
There is also a method in which ultrasonic vibrations are applied to the solidification interface to refine the solidification phase, that is, the crystal grains on the surface of the ingot and its vicinity, which are generated in the initial stage of casting. In order to apply vibrations, an ultra-YT wave transmission horn (hereinafter simply referred to as the horn) is immersed in hot water before the mold forming point. In this case, even if the horn is made of titanium or a titanium alloy, which has the best corrosion resistance against aluminum-based molten metal, it will be severely eroded, and according to the Ken9Y experiment conducted by the present inventors, the erosion rate is about 0+a+ per hour.

従って撮動子の共振周波数に合わせ設計々算しホーンの
形状及び寸法を決足して用いてもホーン長は次第に短か
くなって遂には共振しなくなり、そこで超音波が作用し
なくなって短時間のうちに結晶粒微細化能を失うという
欠点がある。又このことは侵食されたホーン財力;浴湯
中に溶は込み溶湯汚染の原因にもなっていた・ 本発明は上記の超音波振動を凝固界面に作用・シトシめ
る方法における上述の欠点を解消し、i’in、等の微
細化用添加剤を用いずに長時間に[1り安>i″、 t
、て鋳塊組織を微細化せしめることを可能としたもので
あるO 即ち本発明者ら番j、チタン又はチタン合金でjlJ作
したホーンのアルミ系溶湯に対する侵食性をωF9Pシ
た結果、超音波振動が印加された状態で流動する溶湯中
にホーンを浸漬したときにホーンのIシ食が最イ)著し
く通行し、上記のいずれか一方(超tt波振動の印加と
流動する溶湯中への浸漬)が欠rJる条件F′″Cは数
十時間の浸漬でもホーンの浸食については全く問題のな
いことを知見した。
Therefore, even if the design and shape and dimensions of the horn are determined according to the resonant frequency of the sensor, the length of the horn will gradually become shorter and will eventually stop resonating. However, it has the disadvantage of losing its ability to refine grains. This also eroded the horn's financial strength; it also caused the melt to get into the bath water and contaminate the molten metal. and for a long period of time without using micronization additives such as i'in, etc.
, which made it possible to refine the structure of the ingot by using ultrasonic waves. When the horn is immersed in the flowing molten metal while vibrations are applied, the horn is severely corroded, and either of the above (the application of ultra-tt wave vibrations and the penetration into the flowing molten metal) It has been found that under condition F'''C, where no immersion (immersion) is present, there is no problem with horn erosion even after several tens of hours of immersion.

本発明はこのような知見に基いてなされたもので鋳型内
に連続的に注入される溶湯中に」二方より浸漬挿入せし
めた逆カップ状の容器の内部′(r−減圧して該容器内
部に溶湯を上昇保持せしめることにより静止ないしは静
止に近い溶湯の溜り部を構成しこの溶湯の溜り部に超音
波振動の印加されたホーンを装入することKより所期の
目的を達したものである。
The present invention was made based on this knowledge, and the inside of an inverted cup-shaped container is immersed from both sides into the molten metal that is continuously injected into a mold. This achieves the desired purpose by forming a stationary or nearly stationary molten metal pool by holding the molten metal rising inside, and inserting a horn to which ultrasonic vibrations are applied into this molten metal pool. It is.

以下に本発明を図面に示す実施例を用いて詳細に説明す
る。
The present invention will be described in detail below using embodiments shown in the drawings.

第1図において(1)は鋳造用回転輪、C2)及び(2
′)はカッJ型成形前及び形成後の金属製無端ベルト、
(3)は無端ベルト(2)を鋳造用回転輪α)の局面に
押し付けるための理圧車゛τ゛あり、この抑圧車(3)
の直下で鋳造用回転輪(1)及び力](端ベル) (2
’)で鋳型が連続的に形成される。
In Fig. 1, (1) is a rotary wheel for casting, C2) and (2)
') is a metal endless belt before and after forming a J shape,
(3) is a pressure wheel ゛τ゛ for pressing the endless belt (2) against the surface of the rotating casting wheel α), and this pressure wheel (3)
Directly below the casting rotary ring (1) and force] (end bell) (2
') molds are formed continuously.

yこの鋳型の開[1部r(は#了1ソ水平に支持された
タンディツシュ(4)の先XNが装入されている。
When the mold is opened, the tip of the tandish (4), which is supported horizontally, is charged into the first part.

とのJうl設備においてアルミ溶湯(5)は図示してい
ない耐湯保持炉より移送樋を流動しタンディツシュ(4
)K移送され連続して鋳型内に注入され、その周1f1
iに適用される冷却水によって冷却されて凝固し鋳塊(
6)となる。
In this facility, molten aluminum (5) flows through a transfer trough from a molten metal holding furnace (not shown) and is transferred to a tundish (4).
) K is transferred and continuously injected into the mold, and its circumference 1f1
The ingot (
6).

その際振!191子やホーン等から構成される超音波振
yσノ印加装置はタンディツシュ(4)の上方に設置さ
れ、ポーン(7)は溶湯中に挿入される。同図面におい
て振動子は省略しである。
Shake at that time! An ultrasonic vibration yσ applying device consisting of a 191 element, a horn, etc. is installed above the tundish (4), and a pawn (7) is inserted into the molten metal. In the drawing, the vibrator is omitted.

そこで本発明ではこのホーン(7)の周面にホーンの5
− 浸食を防止するための静止ないl−は極低速で流動する
湯溜り(8)を構成せしめたものであるが、その詳細は
次の通りである。
Therefore, in the present invention, the circumferential surface of the horn (7) is
- The stationary l- to prevent erosion consists of a pool (8) that flows at an extremely low speed, the details of which are as follows.

(9)は逆カップ状の断熱保温材で成形されかつ溶湯で
密閉されている容器で内部に減圧室を形成lノCいる。
(9) is a container formed of an insulating heat insulating material in the shape of an inverted cup and sealed with molten metal, forming a decompression chamber inside.

(10)は減圧室(9)内を減圧するための減圧ポンプ
、(11)は減圧室(9)内の圧力を指示しかつ減圧ポ
ンプ(10)を作動せしめるための電気信号を発信する
圧力指示調節器である。
(10) is a pressure reduction pump for reducing the pressure inside the pressure reduction chamber (9), and (11) is a pressure that indicates the pressure inside the pressure reduction chamber (9) and transmits an electric signal to operate the pressure reduction pump (10). It is an indication regulator.

(12)は減圧室(9)と減圧ポンプ(10)及び圧力
指示調節器(11)を連通せしめている連通管である・
これら一連の減圧機構は以下の作動により減圧室(9)
内を減圧し減圧室内の溶湯湯面(5′)を一定の液位に
上昇保持せしめる。
(12) is a communication pipe that communicates the decompression chamber (9) with the decompression pump (10) and pressure indicating regulator (11).
A series of these decompression mechanisms are operated in the decompression chamber (9) by the following operations.
The pressure inside the vacuum chamber is reduced to raise and maintain the molten metal surface (5') at a constant level.

先ず圧力指示調節器(11)に調節即ち制御すべき圧力
を設定するが、この時点においては減圧室内は設定圧力
よりも高い圧力即ち大気圧にあるので、圧力指示調節器
(11)は減圧ポンプ(10)を作動せしめるための電
気信号を発信し減圧ポンプ(10)を稼動せしめると共
に減圧室(9)内の圧力を指示する・そこで減圧6− 室(9)内の圧力が設定圧になると速やかに減圧ポンプ
(10)を停止せしめる電気信号を発信しこれを停止せ
しめる。この作動の繰り返しにより減圧室(9)の内部
は一定圧に保持されると同時にメンディツシュ(4)内
の溶1’lt (5) iJ:減圧室(9)内に吸引さ
れその湯面(5′)はタンディツユ(4)内の湯面よル
高い位置に来て、減圧室(9)内のw力と減JJE室(
9′)内の溶湯ヘッドが大気圧と平衡する位置で一定と
なり維持される・この設定圧力iL減圧室(9)内の湯
面(5′)上に空間(13)が残シfuる1直に設定さ
れ、この空間(13)には絶縁された湯面検知針(14
)が減圧室(9)の壁を貫通して取付Oられ市原装置W
(lfi)、警報器(16)更には導線(17)により
鋳造機本体へ接続され、圧力指示調節器等の故障やその
他側等かの原因により減圧室内湯面が定常より上昇しこ
れが湯面検出針(14)に溶湯(5)が接すると、上記
の一連の回路が閉じ警報を発すると同時に減圧ポンプ(
]0)を停止せしめる・次に本発明の効果を一層明らか
にするため第1図に示す装置を用い700℃±2℃に保
持されたアルミ浴湯について12.5 m/mの鋳造速
度で連続を行い、従来方法と本発明方法の比較実験を行
った。
First, the pressure to be regulated or controlled is set in the pressure indicating regulator (11), but at this point, the pressure inside the decompression chamber is higher than the set pressure, that is, atmospheric pressure, so the pressure indicating regulator (11) is operated by the decompression pump. (10), which activates the decompression pump (10) and also indicates the pressure in the decompression chamber (9). When the pressure in the decompression chamber (9) reaches the set pressure, An electric signal is immediately sent to stop the decompression pump (10). By repeating this operation, the inside of the decompression chamber (9) is maintained at a constant pressure, and at the same time, the molten liquid in the mendices (4) is sucked into the decompression chamber (9) and its surface (5) ') comes to a position higher than the hot water level in the water tank (4), and the w force in the decompression chamber (9) and the decompression JJE chamber (
The molten metal head in the chamber (9') is kept constant at a position where it is in equilibrium with the atmospheric pressure.・This set pressure iL leaves a space (13) above the molten metal surface (5') in the decompression chamber (9). An insulated hot water level detection needle (14) is installed in this space (13).
) is installed through the wall of the decompression chamber (9) and the Ichihara device W
(lfi), an alarm (16), and a lead wire (17) are connected to the casting machine main body, and if the hot water level in the decompressed chamber rises above the normal level due to a malfunction of the pressure indicator regulator or other causes, this will cause the hot water level to rise. When the detection needle (14) comes into contact with the molten metal (5), the above series of circuits closes and an alarm is issued, and at the same time the decompression pump (
]0) Next, in order to further clarify the effects of the present invention, using the apparatus shown in Figure 1, aluminum bath water maintained at 700°C ± 2°C was cast at a casting speed of 12.5 m/m. A comparative experiment was conducted between the conventional method and the method of the present invention.

同車発明方法に用いた装置主要部の寸法や設定圧力等は
次の通りであった。
The dimensions and set pressure of the main parts of the device used in the invented method for the same vehicle were as follows.

減圧室の内側寸法は内径(Do)60wφ、高さくII
o )120閣であり、又超音波振動を溶湯に伝えるホ
ーンの直径(DH)は30■φである。又圧力指示調節
器の設定圧力は0.98Kf/mであり、大気圧(1,
、OKt/cJi)との差圧を0.02Kf/ctJと
した・これにより減圧室内の溶湯の高さく HI□)は
約83■である。
The inner dimensions of the decompression chamber are inner diameter (Do) 60wφ and height II.
o) 120 mm, and the diameter (DH) of the horn that transmits ultrasonic vibrations to the molten metal is 30 mm. The set pressure of the pressure indicator regulator is 0.98 Kf/m, which is atmospheric pressure (1,
, OKt/cJi) was set to 0.02 Kf/ctJ. As a result, the height of the molten metal in the vacuum chamber (HI□) is approximately 83■.

又従来方法及び本発明方法に用いたホーン材はいずれも
チタンであり又印加周波数は17KlizであったO 上記の比較実験の結果を表1に示す・ これより明らかなように本発明法によればホーンは約7
0倍の耐用寿命を有し、又鋳塊の結晶粒の徹I(11化
度合もT iBx等の微細化添加剤を用いたものと#1
ソ同等であった。
The horn material used in both the conventional method and the method of the present invention was titanium, and the applied frequency was 17Kliz. Bahorn is about 7
It has a service life that is 0 times longer, and the crystal grains of the ingot have a #1 (11) concentration compared to those using refining additives such as TiBx.
It was equivalent to the Soviet Union.

上記実施例においてはポーンの溶湯への浸入角度θ′f
:はv90°としたが、これは水平線に対し106以上
であればよい。
In the above embodiment, the penetration angle θ′f of the pawn into the molten metal
: is set to v90°, but this may be 106 or more with respect to the horizontal line.

父ホーン(7)と減圧室(9)とのシールにはセラミッ
クスファイバーを用いたがこれに限られるものではない
C1 上記の如く本発明法によれば従来行われていた高価な微
細化添加剤を用いず長時間安定してしかも低い維持費で
鋳塊の結晶粒の微細化が工業的規模で可能となり、その
工業的効果は極めて大なるものがある。
Ceramic fibers are used for the seal between the main horn (7) and the decompression chamber (9), but the material is not limited to this. It is now possible to refine the crystal grains of ingots on an industrial scale without using a metallurgy, stably for a long time, and at low maintenance costs, and the industrial effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施例装置を示した説明図である
。 1・・・・・・・・・・・・・・・鋳造用回転輪2.2
′・・・・・・・・・金属製無痛ベルト9− 4・・・・・・・・・・・・メンディツシュ6・・・・
・・・・・・・・鋳塊 7・・・・・・・・・・・・ホーン 8・・・・・・・・・・・・湯溜り 9・・・・・・・・・・・・逆カップ状容器(減圧室)
10・・・・・・・・・・・・減圧ポンプ10−
FIG. 1 is an explanatory diagram showing an embodiment of the method of the present invention. 1・・・・・・・・・・・・Rotary wheel for casting 2.2
′・・・・・・Metal painless belt 9− 4・・・・・・・・・Menditshu 6・・・
・・・・・・・・・Ingot 7・・・・・・・・・Horn 8・・・・・・・・・Pump 9・・・・・・・・・・・・・・Inverted cup-shaped container (decompression chamber)
10・・・・・・・・・・・・Reducing pump 10-

Claims (1)

【特許請求の範囲】[Claims] 1、局面に凹溝を設けた鋳造用回転輪と、この回転輪の
周面に走行接触する金属製無端ベルトとによって鋳型を
連続1.て形成し該鋳型内に溶融金属を連続的に注入し
これを該鋳型の周面に適用される冷却水により冷却凝固
せしめて鋳塊を連続して得るベルトホイール型連続鋳造
法において、上記の鋳型内に連続的に注入される溶融金
属中に上方より浸漬挿入せしめた逆カップ状の容器の内
部を減圧して該客器内部に溶融金属を上昇保持せしめる
ことにより静止ないしけ静止に近い溶融金属の溜り部に
超音波振動が印加されるホーンを装入し、該溶融金属を
介して鋳型内の凝固界面に超音波振動を作用せしめるこ
とfvf徴とする連続鋳造法。
1. The mold is continuously formed using a rotating casting wheel with grooves on its curved surface and an endless metal belt that runs in contact with the circumferential surface of the rotating wheel. In the belt-wheel type continuous casting method, a molten metal is continuously injected into the mold and is cooled and solidified by cooling water applied to the circumferential surface of the mold to continuously obtain an ingot. The inside of an inverted cup-shaped container is immersed and inserted from above into the molten metal that is continuously injected into the mold, and the molten metal is kept rising inside the container by reducing the pressure, thereby making the molten metal stand still or nearly stationary. A continuous casting method in which a horn that applies ultrasonic vibrations is inserted into a pool of metal, and the ultrasonic vibrations are applied to the solidification interface in the mold through the molten metal.
JP13826181A 1981-09-02 1981-09-02 Continuous casting method Granted JPS5841658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13826181A JPS5841658A (en) 1981-09-02 1981-09-02 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13826181A JPS5841658A (en) 1981-09-02 1981-09-02 Continuous casting method

Publications (2)

Publication Number Publication Date
JPS5841658A true JPS5841658A (en) 1983-03-10
JPS646858B2 JPS646858B2 (en) 1989-02-06

Family

ID=15217797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13826181A Granted JPS5841658A (en) 1981-09-02 1981-09-02 Continuous casting method

Country Status (1)

Country Link
JP (1) JPS5841658A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584338A (en) * 1994-05-27 1996-12-17 Ishikawajima-Hara Heavy Industries Company Limited Metal strip casting
CN101850362A (en) * 2010-06-17 2010-10-06 中南大学 Ultrasonic external field continuous casting and rolling machine
US9741546B2 (en) 2011-10-05 2017-08-22 Applied Materials, Inc. Symmetric plasma process chamber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361849U (en) * 1989-10-20 1991-06-18

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584338A (en) * 1994-05-27 1996-12-17 Ishikawajima-Hara Heavy Industries Company Limited Metal strip casting
CN101850362A (en) * 2010-06-17 2010-10-06 中南大学 Ultrasonic external field continuous casting and rolling machine
US9741546B2 (en) 2011-10-05 2017-08-22 Applied Materials, Inc. Symmetric plasma process chamber
US10453656B2 (en) 2011-10-05 2019-10-22 Applied Materials, Inc. Symmetric plasma process chamber
US10535502B2 (en) 2011-10-05 2020-01-14 Applied Materials, Inc. Symmetric plasma process chamber
US10546728B2 (en) 2011-10-05 2020-01-28 Applied Materials, Inc. Symmetric plasma process chamber
US10580620B2 (en) 2011-10-05 2020-03-03 Applied Materials, Inc. Symmetric plasma process chamber
US10615006B2 (en) 2011-10-05 2020-04-07 Applied Materials, Inc. Symmetric plasma process chamber
US11315760B2 (en) 2011-10-05 2022-04-26 Applied Materials, Inc. Symmetric plasma process chamber

Also Published As

Publication number Publication date
JPS646858B2 (en) 1989-02-06

Similar Documents

Publication Publication Date Title
US10022786B2 (en) Ultrasonic grain refining
JP2011045909A (en) Al-Si BASED ALLOY HAVING FINE CRYSTAL STRUCTURE, METHOD FOR MANUFACTURING THE SAME, DEVICE FOR MANUFACTURING THE SAME, AND METHOD FOR MANUFACTURING CASTING OF THE SAME
RU97103986A (en) METHOD AND DEVICE FOR DIRECTED MELT HARDENING
JP7178353B2 (en) System for Metal Casting Including Ultrasonic Grain Refining and Degassing Procedures and Enhanced Vibration Coupling
JPS5841658A (en) Continuous casting method
US2503819A (en) Continuous casting
US3891024A (en) Method for the continuous casting of metal ingots or strips
US20220250140A1 (en) Grain refining with direct vibrational coupling
US3865643A (en) Deep drawing sheet steel
JPS6146368A (en) Ultrasonic oscillator for molten metal
JPH06246425A (en) Method for casting large sealed steel ingot
JP2002018565A (en) Vacuum die casting method and its apparatus
US2920362A (en) Method of refining metal
JPS646857B2 (en)
GB2029741A (en) Feed Head for Continuous Casting
SU343765A1 (en) INSTALLATION FOR FILLING METAL
JP2017060975A (en) Manufacturing method for aluminum-based hypoeutectic alloy ingot
JPH1058119A (en) Method for casting aluminum alloy-made impeller
SU623634A1 (en) Method of casting ingots of metals and alloys
US1841173A (en) Production of sound ingots
JPS5952684B2 (en) Secondary refining method of molten steel
JPS58224045A (en) Continuous casting method of molten steel at low temperature
JPS63132765A (en) Slag removing device
CN114381647A (en) Production method for preventing high-strength steel slab from being broken
JPS58103943A (en) Method and device for continuous casting