JPS5840976Y2 - Hot isostatic press equipment - Google Patents

Hot isostatic press equipment

Info

Publication number
JPS5840976Y2
JPS5840976Y2 JP1979084463U JP8446379U JPS5840976Y2 JP S5840976 Y2 JPS5840976 Y2 JP S5840976Y2 JP 1979084463 U JP1979084463 U JP 1979084463U JP 8446379 U JP8446379 U JP 8446379U JP S5840976 Y2 JPS5840976 Y2 JP S5840976Y2
Authority
JP
Japan
Prior art keywords
gas
pressure
pressure medium
medium gas
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979084463U
Other languages
Japanese (ja)
Other versions
JPS561732U (en
Inventor
順一 宮永
正人 守時
隆男 藤川
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to JP1979084463U priority Critical patent/JPS5840976Y2/en
Publication of JPS561732U publication Critical patent/JPS561732U/ja
Application granted granted Critical
Publication of JPS5840976Y2 publication Critical patent/JPS5840976Y2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Press Drives And Press Lines (AREA)
  • Powder Metallurgy (AREA)

Description

【考案の詳細な説明】 本考案は熱間静水圧プレス法(HIP)を用いて鋳造品
、焼結体あるいはクリープによる粒間キャビティを有す
る各種機械部品等の被処理体内部に存在する空孔を除去
し、被処理体の機械的特性及び信頼性を向上させるため
の装置、特に圧媒ガス中の不純物成分によって被処理体
表面層が汚染されるのを防止するため、被処理体が収納
される高圧容器に極めて純度の高い圧媒ガスを供給する
ための圧媒ガス浄化装置を備えた熱間静水圧プレス装置
に関するものである。
[Detailed description of the invention] This invention uses the hot isostatic pressing method (HIP) to create pores that exist inside objects to be processed, such as cast products, sintered bodies, or various mechanical parts that have intergranular cavities due to creep. This equipment is used to improve the mechanical properties and reliability of objects to be processed, especially in order to prevent the surface layer of the objects from being contaminated by impurity components in the pressure gas. The present invention relates to a hot isostatic press apparatus equipped with a pressure medium gas purification device for supplying extremely high-purity pressure medium gas to a high-pressure vessel.

近年、高圧高温ガス雰囲気下で種々の材料の処理を行な
うHIP法が注目を集めている。
In recent years, the HIP method, which processes various materials in a high-pressure, high-temperature gas atmosphere, has been attracting attention.

この方法には種々の応用が提唱されているが、その一つ
として、被処理体の内部に存在する種々の空孔を除去し
、材料を無欠陥化する応用分野が最近特に脚光を浴びて
いる。
Various applications have been proposed for this method, one of which is the field of application that removes various pores existing inside the object to be processed and makes the material defect-free, which has recently been in the spotlight. There is.

このような被処理体内部の欠陥としては、例えば鋳造品
中の巣、高温高応力下で長時間使用したとき発生するク
リープによる粒間キャビティ、あるいは通常の焼結法に
よって製造された焼結体中の気孔等がある。
Such internal defects include, for example, cavities in cast products, intergranular cavities due to creep that occurs when used for long periods of time under high temperature and high stress, or sintered products manufactured by normal sintering methods. There are pores inside.

これらの内部欠陥を有する被処理体はHIP処理すると
、高圧と高温との相乗効果によって、内部欠陥が押し潰
され、かつ拡散接合が進んで当初存在した内部欠陥が完
全に姿を消し、その痕跡も残らず、被処理体が健全化さ
れる。
When a workpiece with these internal defects is subjected to HIP treatment, the internal defects are crushed due to the synergistic effect of high pressure and high temperature, and diffusion bonding progresses, causing the originally existing internal defects to completely disappear, leaving no trace of them. No residue remains, and the object to be processed is made healthy.

そして、この結果、具体的には下記の如き利点が得られ
る。
As a result, specifically, the following advantages are obtained.

即ち鋳造品の場合には、 (1) マクロな欠陥も消滅するので不良品のサルベ
ージができ、歩留りが大幅に向上する。
That is, in the case of cast products: (1) Since macroscopic defects are also eliminated, defective products can be salvaged, and yields are significantly improved.

(2)伸び絞りが大幅に向上する延性が増す。(2) Increased ductility which significantly improves elongation drawing.

(3)疲労強度が大幅に向上する。(3) Fatigue strength is significantly improved.

(4)クリープ特性が大幅に向上する。(4) Creep characteristics are significantly improved.

(5)特性値がバラツキが減少し、信頼性が飛躍的に向
上する。
(5) Dispersion in characteristic values is reduced and reliability is dramatically improved.

(6)溶接性が向上する。(6) Weldability is improved.

(7)電気化学的加工性が向上する。(7) Electrochemical processability is improved.

等であり、一方、クリープによる粒間キャビティの場合
には、例えばガスタービンブレードのように、高温高応
力下で長時間使用されクリープによる粒間キャビティが
発生した材料に、HIP処理を施すことにより、新品並
みの性能までその特性を回復することが可能であること
である。
On the other hand, in the case of intergranular cavities due to creep, HIP treatment can be applied to materials that have been used for long periods of time under high temperature and stress, such as gas turbine blades, and have intergranular cavities due to creep. , it is possible to restore its characteristics to the same level of performance as new.

そしてこのことは省資源的な立場から極めて重大な意義
を持っている。
This has extremely important significance from the standpoint of resource conservation.

このように、これら内部欠陥を有する材料に対するHI
Pの効果には画期的なものが数多く存在する。
Thus, HI for materials with these internal defects
There are many innovative effects of P.

しかしながら、一方、この技術を実際に工業的に利用す
る場合、最大の技術的課題は、圧媒ガス中の不純物成分
による被処理体表面層の汚染であると云われている。
However, when this technology is actually used industrially, it is said that the biggest technical problem is the contamination of the surface layer of the object to be processed by impurity components in the pressure gas.

しかもこの問題は、特にNi基合金、Ti合金等の処理
を行なう場合顕著となる。
Moreover, this problem becomes particularly noticeable when processing Ni-based alloys, Ti alloys, and the like.

何故ならば、まず第一にHIPでは高圧ガスを使用する
ために、ガス中の不純物の影響が大きいということがあ
る。
First of all, since high pressure gas is used in HIP, the influence of impurities in the gas is large.

例えば全不純物量200ppmのArガスを使用したと
すると、1000気圧の高圧下では、単純に考えると、
その不純物絶対量は200ppIIl=200X10’
、従って200X10−6XIO3(気圧)0.2=2
0%となり、20%の不純物を含む常圧Arガス中で処
理することに匹敵する。
For example, if Ar gas with a total impurity content of 200 ppm is used, under a high pressure of 1000 atm, simply thinking:
The absolute amount of impurities is 200ppIIl=200X10'
, therefore 200X10-6XIO3 (atmospheric pressure) 0.2=2
0%, which is comparable to processing in normal pressure Ar gas containing 20% impurities.

但し実際には温度の効果があるので不純物量はこの1/
3即ち6%程度である。
However, in reality, since there is a temperature effect, the amount of impurities is 1/1/2 of this.
3, or about 6%.

このような前提条件の下で、HIPでは通常、900−
1200℃程度の温度が加えられる。
Under these assumptions, HIP typically uses 900-
A temperature of about 1200°C is applied.

ところが、かかる温度下では、被処理体中の各成分元素
は非常に活性化されており、容易に圧媒ガス中の不純物
と反応して酸化物、窒化物、炭化物等を形成する。
However, at such temperatures, each component element in the object to be processed is highly activated and easily reacts with impurities in the pressure medium gas to form oxides, nitrides, carbides, and the like.

殊に不純物としての酸素は一番の問題であり、数千mの
酸素が存在しても被処理体表面には数十μの酸化汚染層
が形成されその被処理体の特性は著しく低下し、著しい
場合には全く使用に耐えないことになる。
In particular, oxygen as an impurity is the biggest problem, and even if several thousand meters of oxygen exists, an oxidized contamination layer of several tens of micrometers will be formed on the surface of the object to be processed, and the characteristics of the object will be significantly deteriorated. , in severe cases, it becomes completely unusable.

従って工業的に利用する場合、圧媒ガスをリサイクルし
て使用するため、何らかのガス浄化が必要となる。
Therefore, when used industrially, some kind of gas purification is required in order to recycle and use the pressure medium gas.

この解決法として被処理体外面をカプセルで完全に被覆
する方法も考えられるが、この方法ではHIP処理後、
カプセルと被処理体との分離に多大な手数がかかること
、及び被処理体が複雑な形状をしている場合、かかる形
状にカプセルを成形し、かつその内部に被処理体を封入
することが極めて困難なこと等の問題があり、実用化に
は至っていない。
One possible solution to this problem is to completely cover the outer surface of the object with a capsule, but in this method, after HIP treatment,
Separating the capsule from the object to be processed takes a lot of effort, and if the object to be processed has a complicated shape, it is difficult to mold the capsule into such a shape and encapsulate the object to be processed inside it. There are problems such as extreme difficulty, and it has not been put into practical use.

しかも、ターピア部材の如く高応力下で長時間使用され
、結唱粒に歪が生じてクリープによる粒間キャビティが
発生し、機械的強度が劣化した部材に対し、これをHI
P処理することにより元の状態に回復させる方法も検討
されているが、このような部品には汚染層の形成は許さ
れないから、より一層汚染対策が必要とされる。
In addition, HI can be used for members such as Tarpier members, which have been used for long periods of time under high stress, causing distortion in the crystal grains, creating intergranular cavities due to creep, and deteriorating mechanical strength.
A method of restoring the parts to their original state by P treatment is also being considered, but since the formation of a contamination layer is not allowed on such parts, further contamination countermeasures are required.

本考案はかかる問題点を解消し、HIP法による前記改
質技術の実用化を目指すものであり、その特徴とすると
ころは、ガスホルダーから高圧容器へ圧媒ガスを供給す
る供給ラインに圧縮機を配置すると共に、酸素親和性の
強い金属を充填し加熱装置を備えた反応器を前記圧縮機
と直列に配置した点にある。
The present invention aims to solve these problems and put the reforming technology into practical use using the HIP method.The present invention is characterized by the fact that a compressor is installed in the supply line that supplies pressurized gas from the gas holder to the high-pressure vessel. In addition, a reactor filled with a metal having a strong affinity for oxygen and equipped with a heating device is arranged in series with the compressor.

以下、添付図面に示す実施例により本考案装置を更に詳
述する。
Hereinafter, the device of the present invention will be explained in further detail with reference to embodiments shown in the accompanying drawings.

第1図は本考案装置のフローシートを示すもので、図中
、1は高圧容器、2は圧媒ガスホルダーで、ガスホルダ
ー2より高圧容器1に至る間は圧媒ガス供給ライン7を
形成し、一方、高圧容器1よりガスホルダー2に至る間
はガス回収ライン8を形成している。
FIG. 1 shows a flow sheet of the device of the present invention. In the figure, 1 is a high pressure vessel, 2 is a pressure medium gas holder, and a pressure medium gas supply line 7 is formed between the gas holder 2 and the high pressure vessel 1. On the other hand, a gas recovery line 8 is formed between the high pressure container 1 and the gas holder 2.

又、3,4は前記ガス供給ライン7に配設された低圧及
び高圧の各圧縮機、5゜5′は圧縮機に直列に配列され
夫々切替可能に構成された反応器で、該反応器には加熱
のため加熱装置6,6′が設けられている。
Further, 3 and 4 are low-pressure and high-pressure compressors arranged in the gas supply line 7, and 5.5' is a reactor arranged in series with the compressor and configured to be switchable between the two. are provided with heating devices 6, 6' for heating.

反応器5,5′はその内部に酸素親和性の高い金属、例
えばAl。
The reactors 5 and 5' contain a metal having a high affinity for oxygen, such as Al.

T t z S t z Mg p Nb t V t
Z r等の単体若しくはこれらの合金、あるいはこれ
らの鉄合金が粉末、粒体又は削粉あるいはそれらの混合
形態で充填されており、高圧容器1に供給される圧媒ガ
ス中に含まれている酸素と反応し、ガス中から酸素を除
去する。
T t z S t z Mg p Nb t V t
A single element such as Zr, an alloy thereof, or an iron alloy thereof is filled in the form of powder, granules, ground powder, or a mixture thereof, and is contained in the pressure medium gas supplied to the high-pressure vessel 1. Reacts with oxygen and removes oxygen from the gas.

なお、この酸素親和性の強い金属はそれのみで使用し、
充填する外、これらの金属の焼結を妨止するためセラミ
ックス粉末を混合し増量して使用することが工業的であ
る。
In addition, this metal with a strong oxygen affinity is used only by itself,
In addition to filling, it is industrially possible to mix and increase the amount of ceramic powder to prevent sintering of these metals.

又、反応器5,5′は図示では2基設置されているが、
作用上はl基でもよく、しかし、劣化金属の取替え処理
中も連続運転できるよう操作性の面からは複数基設置し
、切替作動させることが望ましいことは勿論である。
In addition, although two reactors 5 and 5' are installed in the illustration,
In terms of operation, one number of units may be sufficient, but from the viewpoint of operability, it is of course desirable to install a plurality of units and operate them selectively so that continuous operation can be performed even during the process of replacing deteriorated metal.

また反応器5,5′の位置は、図示の如く高圧圧縮機4
の吐出側に配置すれば高圧下で反応が進行するため、反
応速度は速くなり、反応器は小型化できるメリットがあ
るが、耐圧性を要求されることになるので、ガス流速、
圧力等を考慮して内圧縮機3,4の間、若しくは低圧圧
縮機3の入口側等、適所を選定することができることは
云う迄もない。
In addition, the positions of the reactors 5 and 5' are as shown in the figure.
If it is placed on the discharge side of the gas flow rate, the reaction will proceed under high pressure, so the reaction rate will be faster and the reactor can be made smaller, but pressure resistance will be required, so the gas flow rate,
It goes without saying that an appropriate location, such as between the internal compressors 3 and 4 or on the inlet side of the low-pressure compressor 3, can be selected in consideration of pressure and the like.

なお、■1〜■9はガス供給・回収ラインに配設された
弁であり、特に■6は減圧弁である。
Note that 1 to 9 are valves disposed in the gas supply/recovery line, and 6 in particular is a pressure reducing valve.

そし7て本考案装置においては前記供給・回収ラインの
外、回収ライン8側の減圧弁■6後部よりガス供給ライ
ン7の低圧圧縮機3の前部に至り、低圧圧縮機3を経て
ガスホルダー2の入口側に還流する強制回収ライン9,
9′が設けられており、ガスホルダー2への圧媒ガス回
収を効率ならしめている。
7. In the device of the present invention, outside the supply/recovery line, from the rear of the pressure reducing valve 6 on the recovery line 8 side, the gas supply line 7 reaches the front of the low pressure compressor 3, and passes through the low pressure compressor 3 to the gas holder. A forced recovery line 9 that returns to the inlet side of 2,
9' is provided to make recovery of the pressure medium gas to the gas holder 2 efficient.

以上のように構成された本考案装置について次にその作
用態様を説明すれば、先ず被処理体を高圧容器1内に装
入すると、弁■1.■2.■3.■4又はv4′を開き
、圧媒ガスホルダー2の約150atmの圧媒ガスを、
低圧圧縮機3及び高圧圧縮機4にて容器1内圧力が所定
の圧力(例えば約1000 atm)になるまで充填昇
圧する。
Next, the working mode of the device of the present invention constructed as described above will be explained. First, when the object to be processed is charged into the high-pressure container 1, the valve ①1. ■2. ■3. ■Open 4 or v4' and supply the pressure medium gas of about 150 atm from pressure gas holder 2.
The container 1 is filled and pressurized using a low pressure compressor 3 and a high pressure compressor 4 until the internal pressure of the container 1 reaches a predetermined pressure (for example, about 1000 atm).

この間において、圧媒ガスが加熱装置6,6′により高
温に保持されている2基の反応器5,5′の何れか一方
を通る間に、圧媒ガス中の酸素は該反応器内に充填され
た金属と反応して除去され、圧媒ガスは浄化されて高圧
容器1内に供給されることになる。
During this time, while the pressure gas passes through either of the two reactors 5, 5' which are maintained at a high temperature by the heating devices 6, 6', oxygen in the pressure gas flows into the reactor. The pressurized gas is removed by reacting with the filled metal, and the pressurized gas is purified and supplied into the high-pressure vessel 1.

なお、前記反応器5,5′内に充填する金属としてAl
、Ti、Nb、V等の窒素親和性の強い金属を使用すれ
ば圧媒ガス中の不純物窒素も同時に除去されるが、窒化
硅素の如く窒化物のHIP処理に際しては圧媒ガスとし
て窒素ガスが使用されるので、このような場合には不純
物酸素のみを選択的に除去するSi、Mg等の金属を用
い、何れにしでも反応器5,5′にて圧媒ガスは浄化さ
れて高圧容器1内に昇圧供給される。
Note that Al is used as the metal filled in the reactors 5 and 5'.
If a metal with a strong nitrogen affinity such as , Ti, Nb, or V is used, the impurity nitrogen in the pressure medium gas will be removed at the same time. In such a case, a metal such as Si or Mg that selectively removes impurity oxygen is used, and in any case, the pressure medium gas is purified in the reactors 5 and 5' and sent to the high pressure vessel 1. It is boosted and supplied within.

昇圧後、弁■1 ) V2 t Va 、V4 p V
4’を閉じ常法に従って被処理体のHIP処理を行ない
、HIP処理が完了すると先ず弁■5.■6.■7を開
き回収ライン8を通じて圧媒ガスの回収を行なつ0 高圧容器1内は高圧下に保持されているため当初は高圧
容器1内と容器外の差圧によって圧媒ガスを自然回収す
ることができ高圧の圧媒ガスを減圧弁V6で150気圧
位いに減圧して回収ライン8を通すが、高圧容器1とガ
スホルダー2との内圧が均衡すると自然回収が不可能と
なり、回収ライン8への圧媒ガスの流れが止まるので弁
■7を閉じ、弁■8.■、を開放して強flffllA
収ライン9゜9′を通じ、低圧圧縮機3で圧力を高めて
強制回収を行ない高圧容器1内の圧力が数気圧〜10気
圧程度まで下がれば弁■、〜■、を閉じ圧媒ガス回収を
終了する。
After boosting the pressure, valve ■1) V2 t Va , V4 p V
4' is closed and the object to be processed is subjected to HIP processing according to the usual method. When the HIP processing is completed, first, valve 5. ■6. 7 is opened and the pressure medium gas is recovered through the recovery line 8 0 Since the inside of the high pressure vessel 1 is maintained under high pressure, the pressure medium gas is initially recovered naturally due to the differential pressure between the inside and outside of the high pressure vessel 1. However, if the internal pressures of the high-pressure container 1 and the gas holder 2 are balanced, natural recovery becomes impossible, and the pressure gas is reduced to about 150 atmospheres using the pressure reducing valve V6 and passed through the recovery line 8. Since the flow of pressure medium gas to 8 is stopped, valve 7 is closed, and valve 8 is closed. ■, release and force flffllA
Through the collection line 9゜9', the pressure is increased by the low pressure compressor 3 and forced recovery is performed, and when the pressure inside the high pressure container 1 drops to about several atmospheres to 10 atmospheres, valves ■, ~■, are closed to recover the pressure medium gas. finish.

この間における高圧容器1の開閉に伴なう空気(窒素、
酸素)の混入及び被処理体に付着した油分の分解により
発生するCO2H2等により容器内圧媒ガスは汚染され
るため、反応器5,5′で浄化されて高圧容器1に供給
された圧媒ガスは不純ガスとなってガスホルダー2に回
収されることになる。
Air (nitrogen,
Since the pressure medium gas inside the container is contaminated by CO2H2, etc. generated by the mixing of oxygen) and the decomposition of oil adhering to the object to be treated, the pressure medium gas purified in the reactors 5 and 5' and supplied to the high pressure container 1. becomes an impure gas and is collected in the gas holder 2.

最初に高圧容器に供給される圧媒ガスが精浄なものであ
れば、上記HI濾過程で混入発生する不純物量は被処理
体の汚染が問題となる程の量ではないが、この汚染され
た圧媒ガスをくり返し使用すると圧媒ガス中に不純物が
蓄積され、被処理体の汚染が問題となるのである。
If the pressure medium gas initially supplied to the high-pressure container is purified, the amount of impurities mixed in during the above HI filtration process will not be large enough to cause a problem of contamination of the object to be processed, but this contamination will If the pressurized gas is repeatedly used, impurities will accumulate in the pressurized gas, causing a problem of contamination of the object to be treated.

本考案では反応器5,5′をガス供給ラインに設けるこ
とにより、常に浄化された圧媒ガスが高圧容器に供給さ
れるようになっているので、かかる不純物の蓄積、ひい
ては被処理体の汚染の問題はない。
In the present invention, by providing the reactors 5 and 5' in the gas supply line, purified pressure medium gas is constantly supplied to the high-pressure container, which prevents the accumulation of impurities and contamination of the object to be treated. There is no problem.

又、反応器5,5′は前述の如く、酸素親和性の強い金
属の充填体であり、酸素と反応して酸化物となるので定
期的に切り替えて使容することが必要である。
Further, as mentioned above, the reactors 5 and 5' are filled with metal having a strong affinity for oxygen, and because they react with oxygen to form oxides, it is necessary to change and use them periodically.

なお、酸素を除く他の不純物、例えば水素、窒素等はA
rとの沸点の差を利用し、適宜、除去することができる
し、又、反応器として酸素除去用の反応器の外、水素、
窒素などを除去する機器、例えば吸着器を併用すること
もできる。
Note that other impurities other than oxygen, such as hydrogen and nitrogen, are
Hydrogen can be removed as appropriate by utilizing the difference in boiling point with r.
A device that removes nitrogen or the like, such as an adsorber, can also be used in combination.

なお、本考案に類似する装置として、本出願人は先に前
記反応器をガス回収ライン8に配置した装置を提案した
が、この装置では種々の問題点を有することが判明した
ので、本考案の装置と先の装置とを対比させつつ両者の
相違点を以下に述べる。
Incidentally, as a device similar to the present invention, the present applicant previously proposed a device in which the above-mentioned reactor was placed in the gas recovery line 8, but it was found that this device had various problems, so the present invention was proposed. The differences between the two devices will be described below by comparing them with the previous device.

(1)HIP装置が大型化するとガス回収に時間がかか
り、HIPサイクルが長時間化する傾向にある。
(1) As the HIP device becomes larger, it takes time to recover the gas, and the HIP cycle tends to become longer.

そこでHIPサイクル短縮化のためガス回収速度を犬に
する必要があるが、これを大にすると反応器をガス回収
ラインに設けた場合、反応器内での所定のガス滞留時間
を確保するために反応器が大型化する必要が生じる。
Therefore, in order to shorten the HIP cycle, it is necessary to increase the gas recovery speed, but if this is increased, when the reactor is installed in the gas recovery line, it is necessary to ensure the specified gas residence time in the reactor. It becomes necessary to increase the size of the reactor.

しかしながら、この大型化には加熱装置6,6′の熱効
率の関係もあり、自ら限界があるので、反応器をガス回
収ラインに設けることはガス回収速度を上げてHIPサ
イクルを短わくすることの阻害要因として作用する。
However, this increase in size is related to the thermal efficiency of the heating devices 6, 6', and has its own limits, so installing a reactor in the gas recovery line is an effective way to increase the gas recovery rate and shorten the HIP cycle. Acts as an inhibiting factor.

これに対し、ガス供給ラインのガス速度は圧縮機容量で
必然的に定まるものであるから、圧縮機容量に対応させ
て本考案の反応器容量は一義的に定められる。
On the other hand, since the gas velocity in the gas supply line is necessarily determined by the compressor capacity, the reactor capacity of the present invention is uniquely determined in correspondence to the compressor capacity.

(2)ガス回収速度は時間と共に変化するため、ガス回
収ラインに反応器を設ける場合には、そのガス滞留時間
が異なり、回収初期の最高速度で反応器を設計すると反
応器は大型化し、またそれ以下の条件で設計すると、回
収初期には不純物は殆んど除去されず、この不純物が次
第に蓄積される恐れがある。
(2) Since the gas recovery rate changes with time, when a reactor is installed in the gas recovery line, the gas residence time will differ, and if the reactor is designed for the maximum speed at the initial stage of recovery, the reactor will become larger and If the design is performed under conditions lower than this, there is a risk that almost no impurities will be removed at the initial stage of recovery, and these impurities will gradually accumulate.

本考案ではガス速度は略略一定であるためこのような問
題はない。
In the present invention, the gas velocity is substantially constant, so there is no such problem.

(3)ガス回収ラインでガス浄化を行なう場合には高圧
容器内には精製された圧媒ガスを供給せねばならず、従
って初期圧媒ガスは高価な高純度ガスを大量に用意しな
ければならない。
(3) When performing gas purification in the gas recovery line, purified pressure medium gas must be supplied into the high-pressure vessel, and therefore a large amount of expensive high-purity gas must be prepared as the initial pressure medium gas. It won't happen.

しかし、ガス供給ラインでガス浄化を行なう本考案にお
いては安価な低純度ガスを用いることができるため、圧
媒ガスの定期補給等を考慮すると、HIPコストの大部
分を占める圧媒ガス費用を大幅に低下させることができ
る。
However, in this invention, which performs gas purification in the gas supply line, it is possible to use inexpensive low-purity gas, so taking into account the regular replenishment of pressure gas, the cost of pressure gas, which accounts for the majority of HIP costs, can be significantly reduced. can be lowered to

以上のように高圧容器1への被処理体装入・取り出しの
ための不可避的操作に伴なう高圧容器への空気の侵入及
び被処理体に付着した油分のHIP処理時における熱分
解によって生じる不純物ガス等により圧媒ガスが汚染さ
れているが、本考案装置によれば汚染された圧媒ガスを
そのまま回収し、これを供給時に精製して高圧容器ヘリ
サイクルするようにしているから、圧媒ガス中に不純物
ガスが蓄積されることがなく、従って、被処理体を不純
物によって汚染することなくHIP処理することが可能
となり、超合金等の高級合金の封孔を完全に行なうこと
ができると共に、高価な高純度圧媒ガスの替わりに安価
な低純度ガスを用いることができるため、HIPコスト
の大部分を占める圧媒ガス費用を大幅に低下させること
が可能である。
As mentioned above, air intrusion into the high-pressure container accompanying the unavoidable operations for loading and unloading objects to be processed into the high-pressure container 1 and thermal decomposition of oil adhering to objects to be processed during the HIP process occur. Pressure medium gas is contaminated by impurity gases, etc., but with the device of the present invention, the contaminated pressure medium gas is recovered as it is, purified at the time of supply, and recycled to the high pressure vessel. There is no accumulation of impurity gas in the medium gas, so HIP processing can be performed without contaminating the object to be processed with impurities, and high-grade alloys such as superalloys can be completely sealed. At the same time, since an inexpensive low-purity gas can be used instead of an expensive high-purity pressure gas, it is possible to significantly reduce the cost of the pressure gas, which accounts for most of the HIP cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案装置の概要を示すフローシートである。 1・・・・・・高圧容器、2・・・・・・圧媒ガスホル
ダー、3・・・・・・低圧圧縮機、4・・・・・・高圧
圧縮機、5,5′・・・・・・反応器、6,6′・・・
・・・加熱装置、7・・・・・・ガス供給ライン、8・
・・・・・ガス回収ライン、9,9・・・・・・バイパ
スライン、■1〜■、・・・・・・弁。
The figure is a flow sheet showing an overview of the device of the present invention. 1... High pressure container, 2... Pressure medium gas holder, 3... Low pressure compressor, 4... High pressure compressor, 5, 5'... ...Reactor, 6,6'...
... Heating device, 7... Gas supply line, 8.
...Gas recovery line, 9,9...Bypass line, ■1~■, ...Valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 1.被処理体を装入した高圧容器1内に、圧媒ガスホル
ダー2の圧媒ガスを圧縮機を介して圧入し、該容器内に
おいて高温高圧ガス雰囲気下で前記被処理体に熱間静水
圧プレス処理を施し、しかる後該容器中の圧媒ガスを前
記圧媒ガスホルダー2に回収する熱間静水圧プレス装置
において、前記圧媒ガスホルダー2から高圧容器1内へ
圧媒ガスを供給するガス供給ライン7と、高圧容器1か
ら圧媒ガスホルダー2に圧媒ガスを回収するガス回収ラ
イン8とを設けると共に、前記ガス供給ライン7に圧縮
機3,4と、酸素親和性の強い金属を充填し、かつ加熱
装置6゜6′を備えた反応器5,5′とを直列に配設し
てなることを特徴とする熱間静水圧プレス装置。 2、酸素親和性の強い金属がAl、Ti、Si、Mg。 Nb、V、Zrの単体若しくはこれらの合金あるいはこ
れらの鉄合金の粉末、粒体若しくは切削粉からなる群か
ら選ばれた1以上の金属である実用新案登録請求の範囲
第1項記載の熱間静水圧プレス装置。 3、反応器内に酸素親和性の強い金属とセラミックス粉
とが混合充填されている実用新案登録請求の範囲第1項
又は第2項記載の熱間静水圧プレス装置〇
1. A pressure medium gas from a pressure medium gas holder 2 is pressurized into a high-pressure container 1 containing an object to be processed through a compressor, and hot isostatic pressure is applied to the object to be processed in a high-temperature, high-pressure gas atmosphere within the container. In a hot isostatic press device that performs a press treatment and then recovers the pressure medium gas in the container into the pressure medium gas holder 2, the pressure medium gas is supplied from the pressure medium gas holder 2 into the high pressure container 1. A gas supply line 7 and a gas recovery line 8 for recovering pressure medium gas from the high pressure vessel 1 to the pressure medium gas holder 2 are provided, and the gas supply line 7 is equipped with compressors 3 and 4 and a metal having a strong oxygen affinity. 1. A hot isostatic press apparatus characterized in that reactors 5 and 5' are arranged in series, filled with reactors 5 and 5' and equipped with a heating device 6°6'. 2. Metals with strong oxygen affinity are Al, Ti, Si, and Mg. The hot metal according to claim 1, which is one or more metals selected from the group consisting of Nb, V, Zr alone, alloys thereof, or powders, granules, or cutting powder of iron alloys thereof. Hydrostatic press equipment. 3. Hot isostatic press apparatus according to claim 1 or 2 of the utility model registration claim, in which a metal with strong oxygen affinity and ceramic powder are mixed and filled in the reactor.
JP1979084463U 1979-06-19 1979-06-19 Hot isostatic press equipment Expired JPS5840976Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979084463U JPS5840976Y2 (en) 1979-06-19 1979-06-19 Hot isostatic press equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979084463U JPS5840976Y2 (en) 1979-06-19 1979-06-19 Hot isostatic press equipment

Publications (2)

Publication Number Publication Date
JPS561732U JPS561732U (en) 1981-01-09
JPS5840976Y2 true JPS5840976Y2 (en) 1983-09-16

Family

ID=29317663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979084463U Expired JPS5840976Y2 (en) 1979-06-19 1979-06-19 Hot isostatic press equipment

Country Status (1)

Country Link
JP (1) JPS5840976Y2 (en)

Also Published As

Publication number Publication date
JPS561732U (en) 1981-01-09

Similar Documents

Publication Publication Date Title
AU2003251511B8 (en) Method for preparing metallic alloy articles without melting
US7655182B2 (en) Method for fabricating a metallic article without any melting
US20070020135A1 (en) Powder metal rotating components for turbine engines and process therefor
EP0545644A1 (en) Method for heat treating metallic materials and apparatus therefor
US5009704A (en) Processing nickel-base superalloy powders for improved thermomechanical working
CN103131859B (en) Comprehensive recycling method for metals in superalloy scrap
JPS5840976Y2 (en) Hot isostatic press equipment
CN105821272B (en) A kind of wear-resistant molybdenum alloy material cut and preparation method thereof
JPS5840975Y2 (en) Hot isostatic press equipment
US3070468A (en) Method of producing dispersion hardened titanium alloys
EP1819637B1 (en) Synthesis of diamond
US5792271A (en) System for supplying high-pressure medium gas
JPS592473Y2 (en) Hot isostatic press equipment
Rishel et al. Spalling types and mechanisms in the erosion corrosion of metals at high temperature
CN218741065U (en) Recovery system for silicon powder-containing emptying gas in cold hydrogenation of polycrystalline silicon
US3798742A (en) Method for hot working
US2793106A (en) Method for refining titanium, zirconium, cerium, hafnium and thorium
JPS5850237Y2 (en) Hot isostatic pressure treatment equipment
Belleau et al. Materials review for improved automotive gas turbine engine
CN117340254A (en) Powder superalloy turbine disk for aero-engine and preparation method thereof
JPH0221191A (en) Hot hydrostatic pressurizing device
CN113120873A (en) Device and method for recycling and preparing ultra-pure argon from vented tail gas of monocrystalline silicon and polycrystalline silicon furnaces
Slavens Vapor-phase reactions to prepare titanium nitride powder
Qazi Thermohydrogen processing (THP) of titanium alloy and titanium-aluminum alloys
Thompson et al. HYD R ()(, EN EFFECTS IN MATERIALS