JPS5850237Y2 - Hot isostatic pressure treatment equipment - Google Patents

Hot isostatic pressure treatment equipment

Info

Publication number
JPS5850237Y2
JPS5850237Y2 JP1979093028U JP9302879U JPS5850237Y2 JP S5850237 Y2 JPS5850237 Y2 JP S5850237Y2 JP 1979093028 U JP1979093028 U JP 1979093028U JP 9302879 U JP9302879 U JP 9302879U JP S5850237 Y2 JPS5850237 Y2 JP S5850237Y2
Authority
JP
Japan
Prior art keywords
pressure
compressor
container
gas
hip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979093028U
Other languages
Japanese (ja)
Other versions
JPS5610290U (en
Inventor
正人 守時
隆男 藤川
順一 宮永
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to JP1979093028U priority Critical patent/JPS5850237Y2/en
Publication of JPS5610290U publication Critical patent/JPS5610290U/ja
Application granted granted Critical
Publication of JPS5850237Y2 publication Critical patent/JPS5850237Y2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Powder Metallurgy (AREA)

Description

【考案の詳細な説明】 本考案は、高圧容器に装入した被処理物を高温高圧ガス
雰囲気下で熱間静水圧処理(以下HIPと略称する)し
て焼結等の加工を行なう処理装置に係り、特に窒化硅素
等の耐火材料のHIP処理装置として好適で、かつ高温
HIP処理におけるHIPサイクルの昇圧時間を短縮す
ると共に昇圧のために用いる圧縮機の利用効率を高めて
運転経済性を向上し得る新規なHIP装置に関するもの
である。
[Detailed description of the invention] The present invention is a processing device that performs processing such as sintering by performing hot isostatic pressure treatment (hereinafter abbreviated as HIP) on a workpiece placed in a high-pressure container in a high-temperature, high-pressure gas atmosphere. It is especially suitable as a HIP treatment equipment for refractory materials such as silicon nitride, and it shortens the pressure increase time of the HIP cycle in high temperature HIP treatment and improves the operating economy by increasing the utilization efficiency of the compressor used for pressure increase. The present invention relates to a new HIP device that can be used.

HIP法は、高い静水圧圧力と高温との相乗効果を利用
して、粉末材料を焼結したり、鋳造品や粉末焼結晶に残
存するキャビィティ等の欠陥を除去して高密度化したり
、或いは種々の材料を拡散接合する極めて効果的な方法
として知られており、近時、特にセラミックス材の焼結
技術として注目を集めている。
The HIP method uses the synergistic effect of high hydrostatic pressure and high temperature to sinter powder materials, remove defects such as cavities remaining in cast products and powder sintered crystals, and densify them. It is known as an extremely effective method for diffusion bonding various materials, and has recently attracted attention as a sintering technique for ceramic materials in particular.

従来の粉末冶金用HIP装置においては、そのHIP温
度が1000℃程度までが一般的であるが耐熱セラミッ
クスのHIPにおいては2000℃程度のHIP温度が
要求されることが屡々ある。
In conventional HIP apparatuses for powder metallurgy, the HIP temperature is generally up to about 1000°C, but in HIPing heat-resistant ceramics, a HIP temperature of about 2000°C is often required.

この様な高温になると、圧力に及ぼす温度の影響が大と
なり、圧媒ガス供給用の圧縮機も従来の低圧圧縮機と高
圧圧縮機とからなる2段圧縮機から低圧圧縮機だけで同
程度のHIP圧力が得られるという利点はあるが、HI
P法は周知の通り高圧容器内に形成した高温高圧ガス雰
囲気下で被処理物を処理するという宿命から、バッチ処
理にならざるを得す、しかもHIPサイクルタイムのう
ち圧媒ガスの高圧容器への供給とその回収に相当の時間
を要するため、HIPサイクルタイムが必然的に長くな
り、従って生産性が低くなって、前記高圧圧縮機が不要
であることあるいは緻密な焼結体が得られるというHI
Pの利点があるにも拘らず、これがセラミックス粉末H
IP処理実用化の大きな障害の1つとなっている。
At such high temperatures, the influence of temperature on pressure increases, and the compressor for supplying pressurized gas has changed from a conventional two-stage compressor consisting of a low-pressure compressor and a high-pressure compressor to a low-pressure compressor alone. Although it has the advantage of being able to obtain a HIP pressure of
As is well known, in the P method, the object to be processed is processed in a high-temperature, high-pressure gas atmosphere formed in a high-pressure container, so it has to be a batch process, and moreover, during the HIP cycle time, the pressure medium gas is transferred to the high-pressure container. Since it takes a considerable amount of time to supply and recover the HIP, the HIP cycle time is inevitably long, and therefore the productivity is low. HI
Despite the advantages of P, this ceramic powder H
This is one of the major obstacles to putting IP processing into practical use.

通常HIP処理はHIPサイクルタイムを短縮する上で
、特に影響および効果が大なるものとして始めの昇圧に
要する時間を短縮することが挙げられる。
Normally, HIP processing has a particularly large influence and effect on shortening the HIP cycle time, and one of the most important effects is shortening the time required for the initial pressure increase.

此の場合、HIP方法を実施するための装置において圧
媒として用いるガスは一般に圧縮性が大であるためにこ
れを短時間で昇圧するには、極めて大容量の圧縮機が必
要であす、シかも1す・イクル中で圧縮機の運転時間が
占める割合は極めて小さいことから装置コストならびに
ランニングコストの増大は避けられず、従って圧縮機を
高容量化する手段は決して得策と云い難い。
In this case, the gas used as the pressure medium in the HIP method is generally highly compressible, so to increase the pressure in a short time, an extremely large capacity compressor is required. Since the proportion of operating time of the compressor in one cycle is extremely small, an increase in equipment cost and running cost is unavoidable, and therefore increasing the capacity of the compressor is by no means a good idea.

一方、前記と対照的に小容量の圧縮機を多数並設する方
法もあるが、使用台数が尤大なものとなって装置が複雑
化するばかりでなく、協調のとれた運転を行うのが可成
り面倒であるなど問題が多かった。
On the other hand, in contrast to the above method, there is a method of installing many small-capacity compressors in parallel, but this not only increases the number of compressors used and complicates the equipment, but also makes it difficult to operate them in a coordinated manner. There were many problems, such as being quite troublesome.

即ちいづれの方式においても、圧縮機の運転期間は、圧
媒ガスの供給時と回収時の一部に限られており、■サイ
クルのうち、半分以上の時間を占めるHIP処理期間中
は停止しているので、その稼動率は極めて低かったのが
実状である。
In other words, in either method, the compressor operation period is limited to part of the supply and recovery of pressurized gas, and the compressor is stopped during the HIP process, which takes up more than half of the cycle. In reality, the operating rate was extremely low.

本考案はこの圧縮機の稼動率に着目し、これを上げるこ
とによりHIP装置の効率化を計ることを目的とするも
ので、特に従来の圧縮機停止期間であるHIP処理工程
にも圧縮機を作動させると共に回収工程での作動期間を
長くすることにより、その効率化を計るものであって、
その特徴とするところは要素機器として、圧媒ガス供給
源としてのガスホルダー及びHIP処理を行なう圧力容
器並びに圧縮機の他に、圧媒ガスを中間的に貯蔵する中
間容器を設け、HIP処理期間中にガスホルダーの圧媒
ガスを圧縮機で昇圧してこれを中間容器に貯蔵し、ガス
供給時には中間容器から昇圧された圧媒ガスを直接高圧
容器に供給し、またガス回収時には高圧容器内のガスを
圧縮機を用いて回収すると同時にこれを中間容器に貯蔵
するように各要素機器を連結した点にある。
The purpose of this invention is to focus on the operating rate of the compressor and improve the efficiency of the HIP equipment by increasing it.In particular, the compressor is also used in the HIP process, which is the period when the conventional compressor is stopped. The purpose is to improve efficiency by operating and prolonging the operating period in the recovery process,
The feature is that in addition to the gas holder as a pressure medium gas supply source, the pressure vessel and compressor that performs HIP processing, an intermediate container is provided to intermediately store pressure medium gas, and during the HIP process period. Pressurized gas in the gas holder is pressurized by a compressor and stored in an intermediate container.When gas is supplied, the pressurized gas is directly supplied from the intermediate container to the high-pressure container, and when gas is recovered, it is stored in the high-pressure container. The main point is that each component device is connected in such a way that the gas is recovered using a compressor and at the same time stored in an intermediate container.

なお、本考案にいう圧媒ガスとは通常の焼結の如く、被
処理体に対して不活性なガスの他室化硅素の反応焼結に
おける窒素ガスの如く、反応ガスをも含めた意味でのガ
スを云う。
Note that the term "pressure gas" as used in the present invention includes a reaction gas such as nitrogen gas in reaction sintering of silicon, which is inert to the object to be processed, such as in normal sintering. I'm talking about gas.

以下添付図面に示す実施例により本考案装置について詳
細に説明する。
The apparatus of the present invention will be described in detail below with reference to embodiments shown in the accompanying drawings.

第1図において、1は高圧容器、2は圧媒ガスの供給源
となる力゛スホルダー、3は圧縮機、4は耐圧性を有す
る中間容器であり、■1〜V9は夫々のラインに設けら
れた開閉弁であり、また5、6は圧縮機3と高圧容器1
及び圧縮機と中間容器4とを夫々結ぶラインより圧縮機
入口側に連結されたバイパスラインである。
In Figure 1, 1 is a high-pressure container, 2 is a force holder that is a source of pressure medium gas, 3 is a compressor, 4 is a pressure-resistant intermediate container, and 1 to V9 are connected to each line. 5 and 6 are the on-off valves provided, and 5 and 6 are the compressor 3 and the high pressure vessel 1.
and a bypass line connected to the compressor inlet side from the lines connecting the compressor and the intermediate container 4, respectively.

そして以上の構成からなる本考案装置におけるHIPサ
イクルを各工程順に説明するに、先ず基本的なHIP工
程は、第2図に示す通りS1〜S8の8工程から威り、
各工程は次の通りである。
The HIP cycle in the device of the present invention having the above configuration will be explained in order of each step. First, the basic HIP process starts from eight steps S1 to S8 as shown in FIG.
Each step is as follows.

Sl:弁■6〜V9を開き、中間容器4内の加圧された
圧媒ガス、例えば圧縮機3の最高吐出圧程度の圧力に保
持して貯蔵されている圧媒ガスを被処理物の装入されて
いる高圧容器1内に差内を利用して自然供給する初期充
填工程。
SL: Open the valves 6 to V9 to transfer the pressurized pressure medium gas in the intermediate container 4, for example, the pressure medium gas stored at a pressure approximately equal to the maximum discharge pressure of the compressor 3, to the object to be treated. An initial filling process in which the charged high-pressure container 1 is naturally fed using the difference.

S2:中間容器4と高圧容器1の両内圧が略々均衡した
時点において、弁■7を閉じ、弁V4.v2.■5を開
き、中間容器4内の圧媒ガスをバイパスライン6及び圧
縮機3を経て高圧容器1に加圧供給する加圧充填工程。
S2: At the time when the internal pressures of the intermediate container 4 and the high pressure container 1 are approximately balanced, valve 7 is closed, and valve V4. v2. (2) A pressurized filling step in which the pressure medium gas in the intermediate container 4 is supplied under pressure to the high-pressure container 1 through the bypass line 6 and the compressor 3.

Ss:中間容器4の内圧が所定圧例えばガスホルダー2
の内圧にまで低下した段階で、弁■4.■8を閉じ、弁
■1を開いてガスホルダー2の圧媒ガスを、圧縮機3を
介して高圧容器1に加圧供給する加工充填工程。
Ss: The internal pressure of the intermediate container 4 is a predetermined pressure, for example, the gas holder 2
At the stage when the internal pressure has decreased to , valve ■4. (1) Processing and filling step in which valve (1) is closed, valve (1) is opened, and the pressure medium gas in the gas holder (2) is pressurized and supplied to the high-pressure container (1) via the compressor (3).

S4:高圧容器1の内圧が所定圧に達すると、弁V6.
V9を閉して高圧容器1への圧媒ガス供給を停止し、該
高圧容器1内を所定時間、高温高圧下に保持して被処理
物のHIP処理を行うと共に、弁■7.■8を開いてこ
の間にガスホルダー2の圧媒ガスを圧縮機3を経て中間
容器4に供給し貯蔵を行わせる中間容器貯蔵工程。
S4: When the internal pressure of the high pressure container 1 reaches a predetermined pressure, the valve V6.
V9 is closed to stop the supply of pressure medium gas to the high-pressure vessel 1, and the interior of the high-pressure vessel 1 is maintained at high temperature and high pressure for a predetermined period of time to carry out the HIP treatment of the object to be treated. (2) An intermediate container storage step in which 8 is opened and during this time the pressure medium gas in the gas holder 2 is supplied to the intermediate container 4 via the compressor 3 and stored therein.

なお中間容器4の内圧が所定の圧力に達すると、圧縮機
1を停止し、全ての弁を閉に戻しておく。
Note that when the internal pressure of the intermediate container 4 reaches a predetermined pressure, the compressor 1 is stopped and all valves are returned to closed positions.

S5:高圧容器1内での被処理物のHIP処理が完了す
ると、弁■6〜v9を開き高圧容器1内の圧媒ガスを中
間容器4に差圧を利用して回収する自然回収工程。
S5: When the HIP treatment of the object to be processed in the high-pressure container 1 is completed, valves 6 to v9 are opened and the pressure medium gas in the high-pressure container 1 is recovered to the intermediate container 4 using the differential pressure.A natural recovery step.

S6:中間容器4と高圧容器1の圧力がほぼ均衡してく
ると、弁v6を閉じ、弁v3.■5を開いて、バイパス
ライン5及び圧縮機3を経て高圧容器内の圧媒ガスを中
間容器4に強制回収する工程。
S6: When the pressures in the intermediate container 4 and the high pressure container 1 are almost balanced, valve v6 is closed, and valve v3. (2) A step of opening 5 and forcibly recovering the pressure medium gas in the high-pressure container to the intermediate container 4 via the bypass line 5 and the compressor 3.

S7:中間容器4の圧力が所定の貯蔵圧に達すると、弁
Vs、 V7. V8を閉じ、弁■1.■2を開イテ、
高圧容器1内の圧媒ガスを差圧を利用してガスホルダー
2に自然回収する工程。
S7: When the pressure in the intermediate container 4 reaches the predetermined storage pressure, the valves Vs, V7. Close V8 and open valve ■1. ■Open 2,
A process of naturally recovering the pressure medium gas in the high-pressure container 1 to the gas holder 2 using differential pressure.

S8:ガスホルダー2と高圧容器1との圧力がほぼ均衡
すると、弁■2を閉じ、弁V3.V4.V5.V7を開
いて、残ガスをガスホルダー2に、バイパスライン5、
圧縮機3及びバイパスライン6を経て強制回収する工程
S8: When the pressures in the gas holder 2 and the high-pressure container 1 are almost balanced, valve V3 is closed and valve V3. V4. V5. Open V7 and transfer the remaining gas to gas holder 2, bypass line 5,
A process of forced recovery via the compressor 3 and bypass line 6.

以上の工程S1〜S8における弁操作及び圧縮機動作を
第1表に示す。
Table 1 shows the valve operations and compressor operations in the above steps S1 to S8.

○印は作動・開弁を、無印は停止・閉弁を示す。○ mark indicates operation/opening, no mark indicates stop/closed valve.

以上のようにしてHIPサイクルが終了すると、高圧容
器内より被処理体を取り出し、次の被処理体を装入して
再度前記工程を繰り返すことになる。
When the HIP cycle is completed as described above, the object to be processed is removed from the high-pressure container, the next object to be processed is loaded, and the process is repeated again.

なお、前記工程S6において、高圧容器1内の残圧がガ
スホルダー2の圧力近傍まで同工程での強制回収を行な
う場合には工程S7は省略され、直接S8の工程による
強制回収が行なわれる。
In step S6, if forced recovery is performed until the residual pressure in the high-pressure vessel 1 approaches the pressure of the gas holder 2, step S7 is omitted and forced recovery is directly performed in step S8.

ここで昇圧時間と回収時間とは略々間等であることが望
ましいので、圧力保持時間との兼ね合いで沖間容器5の
容量を決定する必要がある。
Here, it is desirable that the pressure increase time and the recovery time are approximately equal to each other, so it is necessary to determine the capacity of the offshore vessel 5 in consideration of the pressure holding time.

以上のように本考案装置によれば、従来圧縮機が停止し
ているHIP処理工程S4においても圧縮機を作動させ
て、ガスホルダー2内の圧媒ガスを中間容器4に加圧貯
蔵し、またガス回収時においても圧縮機3を作動させて
中間容器に強制回収するようにしているので、従来に比
して直接・間接に高圧容器1への圧媒ガスの充填・回収
に関与する圧縮機3の稼動率は高くなり、ガス充填・回
収時間は大巾に短縮される。
As described above, according to the device of the present invention, the compressor is operated even in the HIP processing step S4 when the compressor is stopped conventionally, and the pressure medium gas in the gas holder 2 is pressurized and stored in the intermediate container 4. In addition, even during gas recovery, the compressor 3 is operated to forcefully recover the gas into the intermediate container, so compared to the conventional method, the compression that is involved in the filling and recovery of pressure medium gas into the high-pressure container 1 is performed directly and indirectly. The operating rate of machine 3 will be increased, and the gas filling and recovery time will be significantly shortened.

即ち初期充填工程S1では、従来のガスホルダー2から
差圧を利用して高圧容器1に充填するのに比べ、高い圧
力に保持された中間容器4から充填するため、より短時
間に、より高い圧力に初期充填され、また回収工程にお
いては、従来のガスホルダー2にのみ回収する場合に比
べ、中間容器4とガスホルダー2の両方に圧縮機3を利
用して回収できるため、回収工程も大巾に短縮されるこ
とになり、従ってHIPサイクルタイムは大巾に短縮さ
れ、これと共に、HIP装置の稼動率も大巾に向上する
That is, in the initial filling step S1, compared to filling the high-pressure container 1 from the conventional gas holder 2 using the differential pressure, filling is performed from the intermediate container 4 maintained at a high pressure, so that the high-pressure container 1 is filled in a shorter time and at higher pressure. In the recovery process, the compressor 3 can be used to collect both the intermediate container 4 and the gas holder 2, compared to the conventional case where only the gas holder 2 is recovered. Therefore, the HIP cycle time is greatly shortened, and at the same time, the operating rate of the HIP device is also greatly improved.

因みに計算によれば、用P装置を24時間連続運転する
場合、従来の中間容器を用いない装置では6〜8サイク
ルの稼動率であったが、本考案装置によれば16〜20
サイクルの運転が可能となす、HIP処理の適用範囲拡
大に大きく貢献することが期待される。
Incidentally, according to calculations, when operating a commercial P device continuously for 24 hours, the operating rate was 6 to 8 cycles with a conventional device that does not use an intermediate container, but with the device of the present invention, the operating rate is 16 to 20 cycles.
It is expected that this will greatly contribute to expanding the scope of application of HIP treatment, which will enable cycle operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案装置の回路図、第2図は高圧容器、中間
容器及びガスホルダーのHIPサイクル各工程における
圧力変化状況を示す線図である。 1・・・・・・高圧容器、2・・・・・・ガスホルダー
、3・・・・・・圧縮機、4・・・・・・中間容器。
FIG. 1 is a circuit diagram of the device of the present invention, and FIG. 2 is a diagram showing pressure changes in each step of the HIP cycle of a high-pressure container, an intermediate container, and a gas holder. 1... High pressure container, 2... Gas holder, 3... Compressor, 4... Intermediate container.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 要素機器として圧媒ガス供給源としてのガスホルダー2
と、被処理体を収容して熱間静水圧処理を施す高圧容器
1と圧縮機3とを備えた熱間静水圧処理装置において、
前記要素機器の他に更に圧媒ガスを中間的に貯蔵する中
間容器4を設け、ガスホルダー2と圧縮機3とを直列に
、またこれに対して中間容器4と高圧容器1とを並列に
連結するラインを設けると共に、前記圧縮機3と高圧容
器1並びに圧縮機3と中間容器4とを連結する各ライン
より夫々圧縮機吸込側に連結するバイパスライン5,6
を設けたことを特徴とする熱間静水圧処理装置。
Gas holder 2 as a pressure medium gas supply source as an element equipment
and a hot isostatic pressure treatment apparatus comprising a high pressure container 1 and a compressor 3 for accommodating an object to be treated and subjecting it to hot isostatic pressure treatment,
In addition to the above-mentioned elemental equipment, an intermediate container 4 for intermediately storing pressure medium gas is provided, and the gas holder 2 and compressor 3 are connected in series, and the intermediate container 4 and high-pressure container 1 are connected in parallel to this. In addition to providing connecting lines, bypass lines 5 and 6 are connected to the compressor suction side from each line connecting the compressor 3 and the high-pressure container 1 and the compressor 3 and the intermediate container 4, respectively.
A hot isostatic pressure treatment device characterized by being provided with.
JP1979093028U 1979-07-04 1979-07-04 Hot isostatic pressure treatment equipment Expired JPS5850237Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979093028U JPS5850237Y2 (en) 1979-07-04 1979-07-04 Hot isostatic pressure treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979093028U JPS5850237Y2 (en) 1979-07-04 1979-07-04 Hot isostatic pressure treatment equipment

Publications (2)

Publication Number Publication Date
JPS5610290U JPS5610290U (en) 1981-01-28
JPS5850237Y2 true JPS5850237Y2 (en) 1983-11-15

Family

ID=29325970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979093028U Expired JPS5850237Y2 (en) 1979-07-04 1979-07-04 Hot isostatic pressure treatment equipment

Country Status (1)

Country Link
JP (1) JPS5850237Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649557B2 (en) * 2011-11-30 2015-01-07 株式会社神戸製鋼所 Isotropic pressure pressurizing device and pressurizing method of isotropic pressure pressurizing device

Also Published As

Publication number Publication date
JPS5610290U (en) 1981-01-28

Similar Documents

Publication Publication Date Title
JPS60116702A (en) Method and device for hot hydrostatic pressure molding with high efficiency
ATE76631T1 (en) RE-SINTERED BORONIZED POLYCRYSTALLINE CUBIC BORONIC NITRIDE AND METHOD OF PRODUCTION THEREOF.
JP2005508822A5 (en)
US7018583B2 (en) Method for producing a component by means of powdery starting material and extractor suitable therefore
JPS5850237Y2 (en) Hot isostatic pressure treatment equipment
US4431605A (en) Metallurgical process
JP4124838B2 (en) Pressure gas supply device
JPS623673Y2 (en)
US1230531A (en) Storing of gases under pressure.
JP3798735B2 (en) Hot isostatic pressing method and apparatus
JPS5811481B2 (en) Hot isostatic pressing method and its equipment
JPS5840975Y2 (en) Hot isostatic press equipment
JP2667528B2 (en) Gas recovery method and device used therefor
JPS623672Y2 (en)
EP0294784A1 (en) Method for manufacturing a sintered body with high density
JPS6277401A (en) Sintering device
JPH01245805A (en) Component extraction from solid by supercritical gas
JPH0129513Y2 (en)
JPH0221193A (en) Hot hydrostatic pressurizing device
JPH0313506A (en) Apparatus and method for working under hot isostatic pressure
JP3774016B2 (en) Gas collecting device and gas filling and recovery method of isotropic pressure pressurizing device
US20170182522A1 (en) Treatment method and device using a supercritical fluid and a discharge storage volume
JPS5840976Y2 (en) Hot isostatic press equipment
JPS6329185A (en) Auxiliary station in hot isotropic pressure press facility
JPH02192470A (en) Production of molded product by hydrostatic pressure molding method