JPH0313506A - Apparatus and method for working under hot isostatic pressure - Google Patents

Apparatus and method for working under hot isostatic pressure

Info

Publication number
JPH0313506A
JPH0313506A JP1147673A JP14767389A JPH0313506A JP H0313506 A JPH0313506 A JP H0313506A JP 1147673 A JP1147673 A JP 1147673A JP 14767389 A JP14767389 A JP 14767389A JP H0313506 A JPH0313506 A JP H0313506A
Authority
JP
Japan
Prior art keywords
pressure
chamber
hot isostatic
processing
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1147673A
Other languages
Japanese (ja)
Other versions
JP2535408B2 (en
Inventor
Takeshi Kanda
剛 神田
Tomiharu Matsushita
富春 松下
Hiroshi Takigawa
滝川 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1147673A priority Critical patent/JP2535408B2/en
Publication of JPH0313506A publication Critical patent/JPH0313506A/en
Application granted granted Critical
Publication of JP2535408B2 publication Critical patent/JP2535408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Abstract

PURPOSE:To enable work to difficult-to-working material by arranging a pressurizing member projecting to a piston fitted in a high pressure vessel, shifting the pressurizing member to the axial direction of the vessel and forge-working the material to be worked in a treating chamber under hot isostatic pressure. CONSTITUTION:The material 27 to be worked is laid on a lower die 26 and charged into the treating chamber 12 from lower part of the high pressure vessel 1, and by driving a vacuum pump 43, air in a high pressure chamber 8 and pressurizing chamber 16 is evacuated. Successively, after feeding inert gas, etc., into the high pressure chamber 8 and a pressure accumulator 49 from gas collecting device 33 by driving a compresser 34, electric power is supplied to heating element 11 to heat the treating chamber 12 to the prescribed temp., and the pressure in the high pressure chamber 8 and treating chamber 12 is raised. Successively, the piston 14 is made unclamping state, and pressure medium gas is fed into the pressurizing chamber 16 from the pressure accumulator 49, and the piston 14 is shifted to the pressurizing direction while taking pressure balance between the pressurizing chamber 16 and the high pressure chamber 8, and the forming work under hot isostatic pressing is executed to the material 27 to be worked between an upper die 24 and the lower die 26 in the pressurizing member 22. By this method, while restraining the development of void, the difficult-to- working material is worked under high temp. isostatic pressure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱間静水圧下での加工装置および加工方法に
関し、耐熱性金属材料、セラミックス等の難加工性の材
料を高温静水圧下で加工するのに利用される。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a processing device and a processing method under hot isostatic pressure, and relates to a processing apparatus and a processing method for processing difficult-to-process materials such as heat-resistant metal materials and ceramics under high-temperature isostatic pressure. It is used for processing.

(従来の技術) Ni基合金など耐熱性金属材料については、一般的に加
工性に乏しく、従って、鍛造不可能な高強度系材料につ
いては、従来、粉末冶金法で得られる微細結晶粒超塑性
を利用して加工することが行われている。
(Prior art) Heat-resistant metal materials such as Ni-based alloys generally have poor workability, and therefore, for high-strength materials that cannot be forged, conventionally, fine grain superplasticity obtained by powder metallurgy has been used. It is being processed using

また、セラミックスについては、Ni基合金以上に延性
に乏しく加工困難であるが、これについても近年、超塑
性現象の利用により加工が行われるようになってきてい
る。
Furthermore, ceramics have poorer ductility than Ni-based alloys and are difficult to process, but in recent years, this has also been processed by utilizing the superplastic phenomenon.

(発明が解決しようとする課題) しかしながら、超塑性加工においては、ボイドの発生に
伴う加工限界が大きな問題である。
(Problems to be Solved by the Invention) However, in superplastic working, the working limit due to the generation of voids is a big problem.

また、低ひずみ速度での加工を必要とすることから、生
産性に劣ることも問題のひとつである。
Another problem is that it requires processing at a low strain rate, resulting in poor productivity.

更に、これまでの超塑性加工装置は、機械プレスを流用
して構成されていたため、被加工品(被加工物)の雰囲
気制御、すなわち、不活性雰囲気の確保が困難であり、
又、加熱の均質性の確保が面倒であった。
Furthermore, since conventional superplastic processing equipment was constructed using a mechanical press, it was difficult to control the atmosphere of the workpiece (workpiece), that is, to ensure an inert atmosphere.
Furthermore, it was troublesome to ensure uniformity of heating.

本発明は、被加工品の加工を、高温静水圧下で行うこと
により、ボイドの発生を抑制して加工限界を引きあげ得
る熱間静水圧下加工装置および加工方法を提供すること
が第1の目的である。
The first object of the present invention is to provide a hot isostatic pressure processing apparatus and a processing method that can suppress the generation of voids and raise the processing limit by processing a workpiece under high temperature isostatic pressure. It is a purpose.

更に、本発明は、加工速度を早め得ることで生産性を向
上し、しかも、雰囲気制御が容易であるとともに均質加
熱を可能で、大形化に耐え得る熱間静水圧下加工装置お
よび加工方法を提供することが第2の目的である。
Furthermore, the present invention provides a hot isostatic pressure processing apparatus and processing method that can increase productivity by increasing the processing speed, can easily control the atmosphere, can perform homogeneous heating, and can withstand upsizing. The second purpose is to provide the following.

また、本発明は、高温静水圧環境を利用しての新たな加
工技術を提供することを第3の目的とする。
Furthermore, a third object of the present invention is to provide a new processing technology that utilizes a high-temperature hydrostatic pressure environment.

(課題を解決するための手段) 本発明は、容器軸方向の少なくとも一端に開口部1A)
(1B、IBを存する高圧容器1と前記開口部1A)(
1B、 1Bを開閉自在に閉塞する蓋部材2とで内部に
高圧室8が画成され、該高圧室8に、倒立コツプ形状の
断熱110と該断熱層10の内側に配設されている加熱
要素11とからなる加熱装置9が内蔵され、該加熱装置
9の内側で被加工物27を熱間静水圧下で加工する処理
室12を備えた熱間静水圧加工装置において、前述の目
的を達成するために、次の技術的手段を講じている。
(Means for Solving the Problems) The present invention provides an opening 1A at at least one end in the axial direction of the container.
(1B, high pressure vessel 1 containing IB and the opening 1A) (
A high-pressure chamber 8 is defined inside by 1B and a lid member 2 that can open and close 1B, and the high-pressure chamber 8 includes an inverted cup-shaped heat insulator 110 and a heating layer disposed inside the heat insulating layer 10. A hot isostatic pressure processing apparatus is provided with a processing chamber 12 in which a heating device 9 consisting of an element 11 is built in, and a processing chamber 12 for processing a workpiece 27 under hot isostatic pressure inside the heating device 9. To achieve this, we have taken the following technical measures:

すなわち、本発明は、前記高圧容器1に、容器軸方向に
移動可能なピストン14が嵌合されており、該ピストン
14に、処理室12に突出する加圧部材22を設けて、
該加圧部材22の容器軸方向の移動で処理室12内にて
被加工物27を熱間静水圧下で鍛造し得るように構成さ
れていることを特徴とするものである。
That is, in the present invention, a piston 14 movable in the axial direction of the container is fitted into the high-pressure container 1, and the piston 14 is provided with a pressurizing member 22 that projects into the processing chamber 12.
It is characterized in that it is configured such that a workpiece 27 can be forged in the processing chamber 12 under hot isostatic pressure by moving the pressure member 22 in the axial direction of the container.

更に、本発明は、゛熱間静水圧加圧装置を用いて被加工
物27を処理室12で熱間静水圧下で加工する方法であ
って、 前記処理室12に突出されていて容器軸方向に移動する
加圧部材22により、被加工物27を熱間静水圧下で鍛
造加工することを特徴とするものである。
Furthermore, the present invention provides a method for processing a workpiece 27 under hot isostatic pressure in a processing chamber 12 using a hot isostatic pressurizing device, the method comprising: a container shaft extending into the processing chamber 12; This is characterized in that the workpiece 27 is forged under hot isostatic pressure by a pressure member 22 that moves in the direction.

また、本発明は、被加工物27を処理室12にて焼結及
び/又は熱間静水圧下での緻密化処理を行ない、引続い
て該処理室12で被加工物27を熱間静水圧下で鍛造加
工することを特徴とするものである。
Further, the present invention performs sintering and/or densification treatment under hot isostatic pressure on the workpiece 27 in the processing chamber 12, and subsequently densifies the workpiece 27 in the processing chamber 12 under hot isostatic pressure. It is characterized by forging under water pressure.

更に、本発明は、被加工物27を処理室12内で熱間静
水圧下で鍛造加工し、その後、該処理室12内で熱間静
水圧下での緻密化処理を少なくとも行なうことを特徴と
するものである。
Furthermore, the present invention is characterized in that the workpiece 27 is forged in the processing chamber 12 under hot isostatic pressure, and then at least densification treatment is performed in the processing chamber 12 under hot isostatic pressure. That is.

(実施例と作用) 第1図から第5図において、1は高圧容器であり、円筒
形状に形成されていて容器軸方向の両端が上・下開口部
1A)(1B、IBとされている。2は蓋部材であり、
前記上開口部1A)(1Bに挿脱自在に嵌合されてシー
ル材3で気密化されている上蓋4と、前記下開口部IB
に挿脱自在に嵌合されてシール材5で気密化されている
下蓋6からなり、該下蓋6はリング形状の上下蓋6Aと
核上上蓋6Aに挿脱自在に嵌合されてシール材7で気密
化されている上下蓋6Bからなる。
(Example and operation) In Figs. 1 to 5, 1 is a high-pressure container, which is formed in a cylindrical shape, and has upper and lower openings 1A) (1B, IB) at both ends in the axial direction of the container. .2 is a lid member;
The upper opening 1A) (the upper lid 4 which is removably fitted into the upper opening 1B and is made airtight with a sealing material 3, and the lower opening IB)
The lower lid 6 is removably fitted into the ring-shaped upper and lower lids 6A and the upper nuclear lid 6A to form a seal. It consists of upper and lower lids 6B that are made airtight with material 7.

なお、上蓋4および下蓋6には図外の方形枠とされたプ
レスフレームが係脱自在とされて加圧処理中に容器軸方
向に作用する軸力を担持するようになっている。
Note that a press frame (not shown) in the form of a rectangular frame is detachably connected to the upper lid 4 and the lower lid 6 so as to bear an axial force acting in the axial direction of the container during the pressurization process.

8は高圧室であり、高圧容器1とこれの開口部LA、 
IBに嵌合されている上・下蓋4.6とで形成されてい
る。なお、高圧容器1は一端のみに開口部を有する有底
筒形であってもよい。
8 is a high pressure chamber, which includes the high pressure container 1 and its opening LA;
It is formed by upper and lower lids 4.6 that are fitted into the IB. Note that the high-pressure container 1 may have a bottomed cylindrical shape having an opening at only one end.

9は加熱装置(加熱炉)であり、倒立コツプ形状の断熱
層10と該断熱層10の内側に配置されている加熱要素
11とからなり、高圧室8に内蔵されていてその内部で
被加工物27を熱間静水圧下で加工する処理室12を備
えていて、加熱要素11およびその電力供給部材13は
上下蓋6Aに備えられている。
9 is a heating device (heating furnace), which consists of an inverted cup-shaped heat insulating layer 10 and a heating element 11 placed inside the heat insulating layer 10; It is equipped with a processing chamber 12 in which an object 27 is processed under hot isostatic pressure, and a heating element 11 and its power supply member 13 are provided in the upper and lower lids 6A.

断熱層10はガス不透性の内外金属筒10A、 108
間に、繊維状の断熱材10Gを充填して構成されている
The heat insulating layer 10 includes gas-impermeable inner and outer metal cylinders 10A, 108.
A fibrous heat insulating material 10G is filled in between.

14はピストンであり、高圧容器1の上蓋4側にシール
材5を介して気密化されてかつ容器軸方向に移動自在と
して嵌合されていて、この実施例ではピストン14に前
記断熱層10が懸垂状に取付けられている。
Reference numeral 14 denotes a piston, which is fitted to the upper lid 4 side of the high-pressure container 1 via a sealing material 5 so as to be airtight and movable in the axial direction of the container. In this embodiment, the piston 14 is provided with the heat insulating layer 10 It is installed in a suspended manner.

16は加圧室であり、ピストン14を高圧容器1に嵌合
することで分画されており、この加圧室16に、上蓋4
に形成している通路17からガス圧媒を供給することで
、前記ピストン14に容器軸方向の加圧力を付与可能と
している。
16 is a pressurized chamber, which is divided by fitting the piston 14 into the high-pressure container 1;
By supplying a gas pressure medium from a passage 17 formed in the piston 14, it is possible to apply pressure in the axial direction of the container to the piston 14.

1gはクランプ部材であり、上蓋4に縦軸心回りに回動
自在として備えられていて、その下端のフック19がピ
ストン14に形成した引掛は部20に係脱自在とされて
おり、21はクランブロック装置を示している。
Reference numeral 1g designates a clamp member, which is provided on the upper lid 4 so as to be freely rotatable around the vertical axis, and a hook 19 at the lower end of the clamp member formed on the piston 14 can be freely engaged with and detached from a portion 20; The crank block device is shown.

従って、クランプ部材18のフック部工9を引掛は部2
0にロックした状態でピストン14は保持されており、
アンロックすることで、ピストン14は容器軸方向に移
動可能な体勢となる。
Therefore, the hook part 9 of the clamp member 18 is hooked on the part 2.
The piston 14 is held in a locked state at 0,
By unlocking, the piston 14 becomes movable in the axial direction of the container.

22は加圧部材であり、円柱状の断熱材料よりなる連結
具23と上金型24とからなり、両者はピストン14に
ボルト等で共線めされており、ピストン14の中央、す
なわち、容器軸心上に配置されて処理室12に突出され
ている。なお、断熱層10と連結具23はガス密に接合
されている。
Reference numeral 22 denotes a pressure member, which is composed of a cylindrical connector 23 made of a heat insulating material and an upper mold 24, both of which are collinear with the piston 14 with bolts etc. It is arranged on the axis and protrudes into the processing chamber 12 . Note that the heat insulating layer 10 and the connector 23 are joined in a gas-tight manner.

25は断熱材よりなる炉床で、上下蓋6Bに載置されて
おり、この炉床25上に下金型26を有して上・下金型
24.26間で被加工物(被加工品)27が配置されて
おり、従って、この実施例では被加工物27は処理室1
2に対して下方から装入、取出される。
Reference numeral 25 denotes a hearth made of a heat insulating material, which is placed on the upper and lower lids 6B.A lower mold 26 is placed on the hearth 25, and the workpiece (workpiece) is placed between the upper and lower molds 24 and 26. Therefore, in this embodiment, the workpiece 27 is located in the processing chamber 1.
2 is loaded and unloaded from below.

28はストロークセンサであり、断熱層10の下端位置
を検出すべく容器1の底部側に備えられていて、その検
出信号は制御器29に送られる。
A stroke sensor 28 is provided on the bottom side of the container 1 to detect the lower end position of the heat insulating layer 10, and its detection signal is sent to the controller 29.

なお、ストロークセンサ28はピストン14の動きを検
出してもよいが、容器1の底部側の方が上部側より低温
であることから有利となる。
Note that the stroke sensor 28 may detect the movement of the piston 14, but this is advantageous because the bottom side of the container 1 is cooler than the top side.

30は圧媒給排装置であり、本実施例では上下蓋6Aに
形成された通路31に、管路32を介してガス集合装置
33が接続されており、管路32にはコンプレフサ34
、開閉弁35.36および圧力計37と安全弁38を備
えており、開閉弁35.36間には回収管路39を有し
、該回収管路39には開閉弁40と絞り弁41を有して
いる。
30 is a pressure medium supply/discharge device; in this embodiment, a gas collecting device 33 is connected to a passage 31 formed in the upper and lower lids 6A via a conduit 32;
, is equipped with on-off valves 35 and 36, a pressure gauge 37 and a safety valve 38, and has a recovery pipe 39 between the on-off valves 35 and 36, and the recovery pipe 39 has an on-off valve 40 and a throttle valve 41. are doing.

更に、開閉弁36と安全弁38との間には真空引管路4
2が接続されていて、真空ポンプ43を備えており、4
4.45はその開閉弁を示している。なお、46は大気
解放用の開閉弁を示している。
Furthermore, a vacuum line 4 is provided between the on-off valve 36 and the safety valve 38.
2 is connected and equipped with a vacuum pump 43, and 4
4.45 indicates its on-off valve. Note that 46 indicates an opening/closing valve for opening to the atmosphere.

47ぽ加圧ピストン駆動装置であり、上M4の通路7に
管路48を介して蓋圧器49が接続されており、該管路
48には圧力計50、安全弁51および開閉弁52゜5
3が直列に備えられているとともに、絞り弁54と開閉
弁55とを有するバイパス回路56を備え、圧媒給排装
置30のコンプレッサ34を共用すべくそれぞれ開閉弁
57.58を有する連絡管路59.60を備えていると
ともに、制御器29からのフィードバック信号を絞り弁
54に送信して加圧スピードを制御可能としている。
It is a 47-port pressurizing piston drive device, and a lid pressure device 49 is connected to the passage 7 of the upper M4 via a pipe 48, and the pipe 48 is equipped with a pressure gauge 50, a safety valve 51, and an on-off valve 52°5.
3 in series, and a bypass circuit 56 having a throttle valve 54 and an on-off valve 55, and each having on-off valves 57 and 58 to share the compressor 34 of the pressure medium supply and discharge device 30. 59 and 60, and transmits a feedback signal from the controller 29 to the throttle valve 54 to control the pressurization speed.

なお、例えば処理温度が1000℃〜1100℃程度で
あるNi基超超合金被加工品27とした場合には、断熱
層10としてはインコネル、ステンレス鋼などが用いら
れ、加熱要素11としてはFe −Cr −Af等が用
いられ、又、上・下金型24 、26としてはTZMの
ような特殊合金が用いられ、更に、連結具23及び炉床
25としてはセラミックス系断熱材料例えば、’h03
+ Zr01或いはそれらの複合材料を用いることが好
適である。
For example, in the case of the Ni-based super-superalloy workpiece 27 whose processing temperature is about 1000° C. to 1100° C., the heat insulating layer 10 is made of Inconel, stainless steel, etc., and the heating element 11 is made of Fe − A special alloy such as TZM is used for the upper and lower molds 24 and 26, and a ceramic heat insulating material such as 'h03 is used for the connector 23 and the hearth 25.
+ It is preferable to use Zr01 or a composite material thereof.

次に、前述した第1実施例の作用を第1〜5図を参照し
て概略説明する。
Next, the operation of the first embodiment described above will be briefly explained with reference to FIGS. 1 to 5.

被加工品27は炉床25、下金型26を介して上下蓋6
Bに載置されていて、高圧容器1の下方から処理室12
に装入される。
The workpiece 27 is passed through the hearth 25 and the lower mold 26 to the upper and lower lids 6.
B is placed in the processing chamber 12 from below the high pressure vessel 1.
is loaded into the

この場合、加圧ピストン14はそのクランプ部材18に
よって後退(上昇)位置に保持されている。
In this case, the pressure piston 14 is held in the retracted (raised) position by its clamp member 18.

次に、脱気工程に移行する。なお、第2図から第5図に
おいて、各開閉弁35,36.40,44.45.46
.52゜53.54,55.57.58は、図において
黒色は閉状態を示し、白色は開状態を示している。
Next, proceed to the degassing step. In addition, in FIG. 2 to FIG. 5, each on-off valve 35, 36.40, 44.45.46
.. 52°53.54, 55.57.58, in the figure, black indicates the closed state and white indicates the open state.

第2図の脱気工程にあっては、開閉弁57を開にした状
態で真空ポンプ43を駆動すると、高圧室8は通路32
、管路32,42を介して脱気され、一方加圧室16は
通路17、管路4B、 49.42を介して脱気される
In the deaeration step shown in FIG. 2, when the vacuum pump 43 is driven with the on-off valve 57 open, the high pressure chamber 8 is
, lines 32, 42, while the pressurized chamber 16 is evacuated via channel 17, lines 4B, 49, 42.

脱気完了後は、第3図に示す弁状態にしてコンプレフサ
34を駆動すると、ガス集合装置33から管路32、通
路31を経て高圧室8に不活性ガス等の圧媒ガスが送気
されるとともに、連絡管路60を介して畜圧器49に送
気充填される。
After the deaeration is completed, when the compressor 34 is driven in the valve state shown in FIG. 3, a pressure medium gas such as an inert gas is sent from the gas collecting device 33 to the high pressure chamber 8 via the pipe line 32 and the passage 31. At the same time, the pressure accumulator 49 is filled with air via the connecting pipe 60.

高圧室8への所定圧の送気が完了すると、開閉弁35を
閉とし、畜圧器49への送気充填が完了すると開閉弁3
6.58.53を閉とする(第3図参照)。
When the supply of air at a predetermined pressure to the high pressure chamber 8 is completed, the on-off valve 35 is closed, and when the air supply to the accumulator 49 is completed, the on-off valve 35 is closed.
6.58.53 is closed (see Figure 3).

次いで、加熱要素11に電力供給して処理室12の温度
を所定温度に到達させる。この際、温度上昇に伴なって
高圧室8および処理室12の圧力が上昇する。
Next, power is supplied to the heating element 11 to bring the temperature of the processing chamber 12 to a predetermined temperature. At this time, the pressures in the high pressure chamber 8 and the processing chamber 12 rise as the temperature rises.

所定の温度圧力に到達すると、ピストン14を保持して
いたクランプ部材18をアンタランプにしてピストン1
4を容器軸方向に移動可能な体勢とし、第4図に示す如
く開閉弁55を開にして畜圧器49からの圧媒ガスを加
圧室16に送気し、加圧室16と高圧室8との圧力均衡
を図りつつピストン14を加圧方向(鍛造方向)に移動
させる。これによって、加圧部材22の上金型24と下
金型26との間で被加工物27は熱間静水圧下の鍛造加
工すなわち、超塑性加工を得ることになる。
When a predetermined temperature and pressure is reached, the clamp member 18 that was holding the piston 14 is untarramped to release the piston 1.
4 in a position capable of moving in the axial direction of the container, open the on-off valve 55 as shown in FIG. The piston 14 is moved in the pressurizing direction (forging direction) while maintaining pressure balance with the piston 8. As a result, the workpiece 27 undergoes forging under hot isostatic pressure, that is, superplastic working, between the upper die 24 and the lower die 26 of the pressure member 22.

この場合、ピストン14の容器軸方向の移動ストローク
がこの実施例では断熱層10の下端をストロークセンサ
28で検出し、この検出信号を制御器29に送信し、該
制御器29の信号を絞り弁54に送信して該絞り弁54
の開度を調整し、加圧室16の圧力を高圧室8の圧力を
高としてピストン14の速度制御がなされる(第4図参
照)。
In this case, the movement stroke of the piston 14 in the axial direction of the container in this embodiment detects the lower end of the heat insulating layer 10 with the stroke sensor 28, transmits this detection signal to the controller 29, and transmits the signal of the controller 29 to the throttle valve. 54 to the throttle valve 54
The speed of the piston 14 is controlled by increasing the pressure in the pressurizing chamber 16 and the pressure in the high pressure chamber 8 by adjusting the opening degree of the piston 14 (see FIG. 4).

所定の加工操作が完了すると、加熱要素11への電力供
給を遮断し、第5図に示す如く開閉弁52゜58.40
を開にして絞り弁41を介して加圧室16内のガスが通
路17、管路48,60および回収管路39を通してガ
ス集合装置33に回収すると、これにともなってピスト
ン14は上昇するので、該上昇位置にてクランプ部材1
8で保持する(第5図参照)。
When the predetermined processing operation is completed, the power supply to the heating element 11 is cut off, and the on-off valve 52°58.40 is closed as shown in FIG.
When the throttle valve 41 is opened and the gas in the pressurizing chamber 16 is recovered to the gas collecting device 33 through the passage 17, the pipes 48 and 60, and the recovery pipe 39, the piston 14 rises. , the clamp member 1 in the raised position
Hold at 8 (see Figure 5).

次いで、高圧室8および処理室12の温度降下後に、開
閉弁35.40を開にして絞り弁41を介して通路31
、管路32,39を通してガス集合装置33に回収し、
最終的には開閉弁46を開にして大気圧まで減圧してか
ら上下蓋6Bを降下させて所定の加工がなされた被加工
物27を取出す。
Next, after the temperature of the high pressure chamber 8 and the processing chamber 12 has decreased, the on-off valves 35 and 40 are opened to open the passage 31 through the throttle valve 41.
, recovered to the gas collection device 33 through the pipes 32 and 39,
Finally, the on-off valve 46 is opened to reduce the pressure to atmospheric pressure, and then the upper and lower lids 6B are lowered to take out the workpiece 27 that has been subjected to a predetermined process.

第6図は本発明装置の第2実施例を示しており、前述し
た第1実施例と共通する部分は共通符号で示し、以下、
相違点について説明する。
FIG. 6 shows a second embodiment of the device of the present invention, and parts common to the first embodiment described above are indicated by common symbols, and hereinafter,
Explain the differences.

この第2実施例では、ピストン14の加圧動作が絞り弁
41による開度調整に基づく減圧制御によってなされる
ようにされており、このために、制御器29からのフィ
ードバック信号は絞り弁41に送信されて該絞り弁41
の開度調整を行なうようにしている。
In this second embodiment, the pressurizing operation of the piston 14 is performed by pressure reduction control based on the opening degree adjustment by the throttle valve 41, and for this purpose, the feedback signal from the controller 29 is applied to the throttle valve 41. Sent to the throttle valve 41
The opening degree of the valve is adjusted.

第7図は本発明装置の第3実施例であり、ピストン14
は高圧容器1の下部側に嵌合されていて、このピストン
14に炉床25および下金型26が取付けられて加圧部
材22とされており、断熱層10は連結具23を介して
上蓋4に懸垂固定されているとともに、加熱要素IIは
通電部材13を介して上蓋4に支持されている。
FIG. 7 shows a third embodiment of the device of the present invention, in which the piston 14
is fitted into the lower part of the high pressure vessel 1, and a hearth 25 and a lower mold 26 are attached to this piston 14 to form a pressurizing member 22, and the heat insulating layer 10 is connected to the upper lid via a connector 23. The heating element II is suspended and fixed to the upper lid 4, and is supported by the upper lid 4 via a current-carrying member 13.

また、クランプ部材18およびそのロック装置21は下
蓋6に備えられているとともに、ストロークセンサ28
はピストン14の動きを検出するようにされている。
Further, the clamp member 18 and its lock device 21 are provided on the lower lid 6, and a stroke sensor 28
is adapted to detect the movement of the piston 14.

この7第3実施例によると、高圧室8の温度勾配が高圧
容器1の下部側が通常、上部側よりも低いことから、ピ
ストン14のシール部材15の耐久性およびピストン1
4の加工速度制御性等の点で、第1・2実施例よりは有
利となる。
According to the seventh embodiment, since the temperature gradient in the high pressure chamber 8 is normally lower at the lower side of the high pressure vessel 1 than at the upper side, the durability of the sealing member 15 of the piston 14 and the piston 1
This embodiment is more advantageous than the first and second embodiments in terms of processing speed controllability and the like.

なお、第3実施例にあっては図示省略しているけれども
、圧媒給排装置、ピストン駆動装置については第1及び
第2実施例で説明したものが利用できる。また、この第
3実施例では被加工物27の装入、取出は高圧容器1の
上開口部1A)(1Bを通じて行なわれる。
Although not shown in the third embodiment, the pressure medium supply and discharge device and the piston drive device described in the first and second embodiments can be used. Further, in this third embodiment, the workpiece 27 is loaded and unloaded through the upper opening 1A) (1B) of the high-pressure container 1.

また、上述した各実施例にあっては、ピストン14のた
めの加圧力発生は、処理室12への圧媒ガスを共用して
いるけれども、該加圧力発生のためのガスは、圧媒給排
装置30とは独立した個別の駆動装置47に従うことが
できる。ただ、各実施例で示したように、ガスを共用す
る方が、装置構成の簡略化および清浄性の確保の点から
は有利となる。
Furthermore, in each of the embodiments described above, the pressurizing force for the piston 14 is generated by using the pressurized gas to the processing chamber 12; however, the gas for generating the pressurizing force is A separate drive 47 independent of the evacuation device 30 can be followed. However, as shown in each embodiment, sharing the gas is advantageous in terms of simplifying the device configuration and ensuring cleanliness.

更に、前述した本発明に係る装置構成(以下、装置と略
称する)にあっては、前述したような加工以外に、以下
のような形態の加工方法を採用できる。
Furthermore, in the device configuration (hereinafter abbreviated as the device) according to the present invention described above, the following types of processing methods can be employed in addition to the processing described above.

■;ジルコニアなど超塑性現象を示すセラミックスを、
装置内で焼結し、引続いて熱間静水圧下での超塑性加工
(鍛造加工)を装置内で行なう。
■; Ceramics that exhibit superplastic phenomena such as zirconia,
The material is sintered in the device, and then superplastic working (forging) under hot isostatic pressure is performed in the device.

■;装置内で熱間静水圧下で被加工物を緻密化したのち
、引続いて熱間静水圧下での超塑性加工(鍛造加工)を
装置内で行なう。
(2): After the workpiece is densified under hot isostatic pressure in the apparatus, superplastic working (forging) under hot isostatic pressure is subsequently performed in the apparatus.

特に、■の加工方法によれば、鍛造加工前のHrp処理
によって被加工物の組織的欠陥を排除し、しかも、鍛造
加工中も静水圧の作用に基づいてボイドの発生を伴うこ
となく、大変形加工あるいは高ひずみ速度下での加工を
行なうことができる。
In particular, according to the processing method (2), structural defects in the workpiece are eliminated by HRP treatment before forging, and even during forging, voids are not generated due to the action of hydrostatic pressure, resulting in large Deformation processing or processing under high strain rates can be performed.

また、鍛造加工終了後に、再度HIP処理を行なうこと
によって、加工中に生成したボイドを消滅し、より一層
の強度向上を期待できる。
Moreover, by performing the HIP process again after the forging process is completed, voids generated during the process can be eliminated, and further improvement in strength can be expected.

(実施例の1) サブミクロン粒径(7)3s II 9’6 YzOs
 −TZR/’ 20wt%Al2O3焼結体(140
0℃、空気中1.5 hr焼結、密度5.32、φ80
鶴Xt30m+)を、装置内で、外径100酊、キャビ
ティ径6011.テーバ角45″、深さ20Bの形状に
以下に述べる各種条件で加工し、金型テーパ一部近傍か
らJ I S R1601準拠の曲げ試験片を切り出し
、室温曲げ試験に供した結果、下記の通りであった。
(Example 1) Submicron particle size (7) 3s II 9'6 YzOs
-TZR/' 20wt% Al2O3 sintered body (140
Sintered at 0℃ in air for 1.5 hours, density 5.32, φ80
Tsuru Processed into a shape with a taper angle of 45" and a depth of 20B under the various conditions described below, a bending test piece compliant with JIS R1601 was cut out from near a part of the mold taper and subjected to a room temperature bending test. As a result, the following was obtained. Met.

(次    葉) ■;超塑性加工現象を示すNi基合金粉末などをカプセ
ル封入して、まず熱間静水圧下に緻密化し、引き続いて
熱間静水圧下での超塑性加工を行なう。
(Next page) ① Ni-based alloy powder, etc. that exhibits superplastic working phenomenon is encapsulated and first densified under hot isostatic pressure, followed by superplastic working under hot isostatic pressure.

前段の緻密化(HI P処理)で超塑性を示す微細結晶
粒組織を得て、さらに、熱間静水圧の作用にもとづきボ
イドの発生を伴うことなく、大変形加工或いは高ひずみ
速度下の加工を行なうことができ、又、熱的作用の連続
性という点で経済的な面でも優れた処理法となる。
A fine grain structure exhibiting superplasticity is obtained through the previous densification (HIP treatment), and furthermore, based on the action of hot isostatic pressure, it is possible to process large deformations or process at high strain rates without generating voids. It is also an economical treatment method in terms of continuity of thermal action.

(実施例の2) 粉末の直径が50μm以下のNi基合金(12,5Cr
−17,9Co −3,3Mo−4,89Al−4,2
9Ti −0,6V −残部Ni  但しwt%)を、
直径120鶴、高さ90鶴のステンレス製カプセルに真
空中で充填し封入した。
(Example 2) Ni-based alloy (12,5Cr
-17,9Co -3,3Mo-4,89Al-4,2
9Ti -0,6V -Remaining Ni (wt%),
A stainless steel capsule with a diameter of 120 mm and a height of 90 mm was filled and sealed in a vacuum.

この粉末充填カプセルを、1050℃、1700kgf
/col、1.5 hrの条件で熱間静水圧加工して、
100%密度のNi基合金ビレットを得た。引き続いて
直ちにピストンを作動して熱間静水圧下(1000kg
f/c+J)で超塑性加工(鍛造加工)を行なった。な
お、このときの条件は1050℃、歪速度2X10−’
 S相とした。
This powder-filled capsule was heated to 1050℃ and 1700kgf.
/col, hot isostatic processing under the conditions of 1.5 hr,
A Ni-based alloy billet with a density of 100% was obtained. Subsequently, the piston is immediately actuated under hot isostatic pressure (1000 kg
f/c+J) superplastic working (forging) was performed. The conditions at this time were 1050℃, strain rate 2X10-'
It was set as S phase.

その結果、鍛造加工は6 winで完了し、大幅な時間
の短縮が可能となり、また、被加工物の組織はボイドな
ど全く認められず極めて均一で良好な鍛造組織であるこ
とが判明した。
As a result, the forging process was completed in 6 wins, making it possible to significantly shorten the time, and the structure of the workpiece was found to be an extremely uniform and good forged structure with no voids observed at all.

■;前述■のカプセルに封入された被成形品を2種以上
の材質として例えば、予め板材と板材とを熱間静水圧下
に接合した後、鍛造加工に供しうる他、粉末材料と板材
との組合せで加工の後、静水圧下に保持して接合を行な
い、−挙に複合材の製造を行なう。また、この際、板材
自体をカプセルの一部もしくは全部として、変形、拡散
接合により複合材の製造を行なうこともできる。
■; The molded product encapsulated in the capsule described in (■) above can be made of two or more materials, for example, it can be subjected to forging after joining plate materials under hot isostatic pressure in advance, or it can be made of powder material and plate material. After processing, the materials are held under hydrostatic pressure and bonded, thereby producing a composite material. Further, at this time, the composite material can also be manufactured by deforming and diffusion bonding the plate material itself as part or all of the capsule.

(実施例) Ni基合金のHIPビレット(下記TMP−3参照)に
て、外径80鶴、内径6011.高さ60鰭、底部5鶴
の容器と、内径部に嵌合する厚さ5fiの基部とを製作
し、内部に別材質のNi基合金粉末(下記AF115参
照)のHIPビレットを気密封入した後、1075℃、
1700kgf/cd、 1.5 hr保持での熱間静
水圧処理を行なった後、1100℃、100100O/
aJ、歪速度、2XIQ−’ S−1で前述同様の鍛造
加工を行なった。
(Example) A Ni-based alloy HIP billet (see TMP-3 below) has an outer diameter of 80mm and an inner diameter of 6011mm. After making a container with a height of 60 fins and a bottom of 5 fins, and a base with a thickness of 5 fi that fits into the inner diameter part, a HIP billet of Ni-based alloy powder (see AF115 below) made of a different material is hermetically sealed inside. , 1075℃,
After hot isostatic pressure treatment at 1700 kgf/cd and 1.5 hr holding, 1100°C, 100100O/
The same forging process as described above was performed with aJ, strain rate, and 2XIQ-' S-1.

その結果、中心部と周辺部とで材質が異なる接合ディス
クがボイドの形成をみることなく鍛造可能であることが
判明した。
As a result, it was found that a bonded disk with different materials in the center and periphery could be forged without forming voids.

(wt翅 l7ntCCr  Co  Mo  HAI  TI 
 V  B  Zr Hf  Nb NiT?F−30
,f7710.86.93.13.43.92.8−0
.010.05−3.9 朧AF1150.0510.
914.92.85.93.73.8−0.020.0
50.81.9 M上記■〜■から本発明は熱間静水圧
加工装置内において、処理室12に突出されていて容器
軸方向に移動する加圧部材22によって被加工物27を
熱間静水圧下で鍛造加工する方法をも提供しているので
ある。
(wt wing l7ntCCr Co Mo HAI TI
V B Zr Hf Nb NiT? F-30
, f7710.86.93.13.43.92.8-0
.. 010.05-3.9 Oboro AF1150.0510.
914.92.85.93.73.8-0.020.0
50.81.9 M According to the above items 1 to 2, the present invention provides hot isostatic processing of a workpiece 27 in a hot isostatic processing apparatus using a pressure member 22 that protrudes into the processing chamber 12 and moves in the axial direction of the container. It also provides a method for forging under water pressure.

また、次のような加工方法をも提供している。We also offer the following processing methods:

■;被加工品の焼結及び/又は熱間静水圧下の緻密化処
理を行い、引き続いて熱間静水圧下の鍛造加工を行う方
法。
(2) A method in which the workpiece is sintered and/or densified under hot isostatic pressure, and then forged under hot isostatic pressure.

これは、焼結後の熱間静水圧下での鍛造加工によってセ
ラミックスの加工に適する。
This is suitable for processing ceramics by forging under hot isostatic pressure after sintering.

また、予備焼結後にHIP処理してから鍛造加工するこ
とによって焼結晶の欠陥除去後の鍛造加工ができてセラ
ミックスの加工法に適する。
Furthermore, by performing HIP treatment after preliminary sintering and then forging, it is possible to perform forging after removing defects in the sintered crystal, making it suitable for processing ceramics.

■;被加工品をカプセル封入して熱間静水圧下の鍛造加
工を行う方法。
■; A method in which the workpiece is encapsulated and forged under hot isostatic pressure.

これは、緻密化後の鍛造加工であることから、カプセル
封入Ni基粉末合金の加工法に適する。
Since this is a forging process after densification, it is suitable for processing encapsulated Ni-based powder alloys.

この場合、被加工品が2種以上の材質であってもよ(、
被加工品自体がカプセルの一部又は全部であってもよい
In this case, the workpiece may be made of two or more materials (
The workpiece itself may be part or all of the capsule.

■;熱間静水圧下の鍛造加工後に、熱間静水圧下の緻密
化処理工程(HI P処理)を行なう加工方法。
■: Processing method in which a hot isostatic pressure densification process (HIP process) is performed after forging under hot isostatic pressure.

これは、鍛造加工後のHIP処理によって欠陥除去でき
てセラミックスに適用でき、また、カプセル封入複合材
にあっては、鍛造加工後に接合できることになる。
This can be applied to ceramics since defects can be removed by HIP treatment after forging, and in the case of encapsulated composite materials, it can be joined after forging.

前述した本発明方法は第1図から第7図で示した装置で
行なうこともできるが、第8図に示した装置においても
できる。
The method of the present invention described above can be carried out with the apparatus shown in FIGS. 1 to 7, but can also be carried out with the apparatus shown in FIG.

第8図は加圧ピストン14を蓋部材2、回倒では上蓋4
に嵌合し、該ピストン14の先端を蓋部材2より突出さ
せて、加圧部材22を介して熱間静水圧下で鍛造可能に
したものであり、加圧ピストン14は、ポンプ61、リ
リーフ弁62、切換弁63およびパイロットチエツク弁
64.65を有するガス又は油等の流体による駆動装置
66で加圧されるとともに、後退可能とされており、加
工速度はリリーフ弁62に制御器29からのフィードバ
ック信号を送信して速度制御可能である。
Fig. 8 shows the pressurizing piston 14 in the cover member 2, and in the case of rotation, the upper cover 4.
The tip of the piston 14 is made to protrude from the lid member 2 so that it can be forged under hot isostatic pressure via the pressure member 22. It is pressurized by a drive device 66 using fluid such as gas or oil, which has a valve 62, a switching valve 63, and a pilot check valve 64, 65, and is capable of retracting.The machining speed is controlled by a relief valve 62 from a controller 29. The speed can be controlled by sending a feedback signal.

その他、基本構成は第1〜5図と共通するので共通符号
で示している。
Other basic configurations are the same as those in FIGS. 1 to 5, so they are indicated by common symbols.

なお、第8図の装置において、加圧ピストン14は下蓋
6に設けたものであってもよい。
In the apparatus shown in FIG. 8, the pressurizing piston 14 may be provided in the lower lid 6.

また、本発明装置にあっては、金型をダイス形状にして
おくことにより、熱間静水圧下での押出加工にも利用で
きる。
Further, the apparatus of the present invention can also be used for extrusion processing under hot isostatic pressure by making the mold into a die shape.

(発明の効果) 本発明は以上の通りであり、本発明によれば次の利点が
ある。
(Effects of the Invention) The present invention is as described above, and the present invention has the following advantages.

■ 熱間静水圧下での加工を可能として、静水圧の作用
による延性増大に基づき難加工性材料の塑性加工範囲を
拡大する・のみならず、Ni基合金、セラミックスなど
超塑性現象を発現する材料に対して、ボイドの発生を抑
制してその加工限界を大幅に改善し、或いは、加工速度
を早め生産性を向上できる。
■ Enables processing under hot isostatic pressure, expanding the range of plastic processing of difficult-to-work materials based on the increase in ductility due to the action of hydrostatic pressure, as well as developing superplastic phenomena such as Ni-based alloys and ceramics. It is possible to suppress the generation of voids in the material and significantly improve the processing limit of the material, or to increase the processing speed and improve productivity.

■ その際、鍛造加工に要する軸力は、熱間静水圧環境
を発生するのに利用する圧媒圧力を利用しているから、
構成が簡単となり、経済性確保の点から有利となり、更
に、装置の大型化に対しても有利となるばかりでなく、
大型化にともなう温度の均質性確保の点でも問題はない
■ At that time, the axial force required for forging process uses the pressure of the pressure medium used to generate the hot isostatic pressure environment.
The configuration is simple, which is advantageous from the point of view of ensuring economic efficiency, and it is also advantageous when it comes to increasing the size of the device.
There is no problem in ensuring temperature uniformity as the size increases.

■ 更に、本発明は、同時に被加工品の欠陥除去、緻密
化、接合にも適用できるのは勿論のこと、それらの加工
と加圧部材による鍛造加工との複合化により、すでに述
べた加工限界のより一層の改善を図り、或いは従来にな
い形の複合材料の製造を可能とする。
Furthermore, the present invention can of course be applied to defect removal, densification, and joining of workpieces at the same time, and by combining these processes with forging using a pressurized member, the process limits already mentioned can be overcome. or make it possible to manufacture composite materials of unprecedented shapes.

従って、本発明は、今後増々増大する傾向にある難加工
性を有する先端材料分野の加工に対して極めて有益な技
術を提供できる。
Therefore, the present invention can provide an extremely useful technique for processing in the field of advanced materials that are difficult to process, and which will continue to increase in the future.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の各実施例を示しており、第1図から第5
図は本発明装置の第1実施例による操作工程を順をおっ
て示す各立面断面図、第6図は本発明装置の第2実施例
を示す立面断面図、第7図は本発明装置の第3実施例を
示す一部省略の立面断面図、第8図は本発明方法に適用
できる他の装置を示す立面断面図である。 ■・・・高圧容器、1A)(1B、 IB・・・開口部
、2・・・蓋部材、8・・・高圧室、9・・・加熱装置
、10・・・断熱層、11・・・加熱要素、12・・・
処理室、14・・・ピストン、22・・・加圧部材。 特 許 出 願 人  株式会社神戸製鋼所4
The drawings show each embodiment of the present invention, and FIGS.
The figures are elevational cross-sectional views showing the operating steps according to the first embodiment of the present invention device, FIG. 6 is an elevational cross-sectional view showing the second embodiment of the present invention device, and FIG. 7 is the present invention A partially omitted elevational sectional view showing a third embodiment of the apparatus, and FIG. 8 is an elevational sectional view showing another apparatus applicable to the method of the present invention. ■... High pressure container, 1A) (1B, IB... Opening, 2... Lid member, 8... High pressure chamber, 9... Heating device, 10... Heat insulation layer, 11...・Heating element, 12...
Processing chamber, 14... Piston, 22... Pressurizing member. Patent applicant: Kobe Steel, Ltd. 4

Claims (4)

【特許請求の範囲】[Claims] (1)容器軸方向の少なくとも一端に開口部(1A)(
1B)を有する高圧容器(1)と前記開口部(1A)(
1B)を開閉自在に閉塞する蓋部材(2)とで内部に高
圧室(8)が画成され、該高圧室(8)に、倒立コップ
形状の断熱層(10)と該断熱層(10)の内側に配設
されている加熱要素(11)とからなる加熱装置(9)
が内蔵され、該加熱装置(9)の内側で被加工物(27
)を熱間静水圧下で加工する処理室(12)を備えた熱
間静水圧加工装置において、前記高圧容器(1)に、容
器軸方向に移動可能なピストン(14)が嵌合されてお
り、該ピストン(14)に、処理室(12)に突出する
加圧部材(22)を設けて、該加圧部材(22)の容器
軸方向の移動で処理室(12)内にて被加工物(27)
を熱間静水圧下で鍛造し得るように構成されていること
を特徴とする熱間静水圧下加工装置。
(1) An opening (1A) (
1B) and the opening (1A) (
A high pressure chamber (8) is defined inside by the lid member (2) that can be opened and closed freely, and the high pressure chamber (8) includes an inverted cup-shaped heat insulating layer (10) and the heat insulating layer (10). ) A heating device (9) consisting of a heating element (11) arranged inside the
is built in, and the workpiece (27) is heated inside the heating device (9).
) in a hot isostatic processing apparatus equipped with a processing chamber (12) for processing under hot isostatic pressure, a piston (14) movable in the axial direction of the container is fitted into the high pressure container (1). The piston (14) is provided with a pressurizing member (22) that protrudes into the processing chamber (12), and the movement of the pressurizing member (22) in the axial direction of the container causes the air to be heated inside the processing chamber (12). Processed product (27)
A hot isostatic pressing apparatus characterized in that it is configured to be able to forge under hot isostatic pressure.
(2)容器軸方向の少なくとも一端に開口部(1A)(
1B)を有する高圧容器(1)と前記開口部(1A)(
1B)を開閉自在に閉塞する蓋部材(2)とで内部に高
圧室(8)が画成され、該高圧室(8)に、倒立コップ
形状の断熱層(10)と該断熱層(10)の内側に配設
されている加熱要素(11)とからなる加熱装置(9)
が内蔵され、該加熱装置(9)の内側で被加工物(27
)を熱間静水圧下で加工する処理室(12)を備えた熱
間静水圧加工装置を用いて被加工物(27)を処理室(
12)で熱間静水圧下で加工する方法であって、 前記処理室(12)に突出されていて容器軸方向に移動
する加圧部材(22)により、被加工物(27)を熱間
静水圧下で鍛造加工することを特徴とする加工方法。
(2) An opening (1A) (
1B) and the opening (1A) (
A high pressure chamber (8) is defined inside by the lid member (2) that can be opened and closed freely, and the high pressure chamber (8) includes an inverted cup-shaped heat insulating layer (10) and the heat insulating layer (10). ) A heating device (9) consisting of a heating element (11) arranged inside the
is built in, and the workpiece (27) is heated inside the heating device (9).
) is processed in the processing chamber (
12) is a method of processing under hot isostatic pressure, the workpiece (27) being hot-processed by a pressure member (22) protruding into the processing chamber (12) and moving in the axial direction of the container. A processing method characterized by forging under hydrostatic pressure.
(3)被加工物(27)を処理室(12)にて焼結及び
/又は熱間静水圧下での緻密化処理を行ない、引続いて
該処理室(12)で被加工物(27)を熱間静水圧下で
鍛造加工することを特徴とする請求項(2)記載の加工
方法。
(3) The workpiece (27) is sintered and/or densified under hot isostatic pressure in the processing chamber (12), and then the workpiece (27) is sintered in the processing chamber (12). ) is forged under hot isostatic pressure.
(4)被加工物(27)を処理室(12)内で熱間静水
圧下で鍛造加工し、その後、該処理室(12)内で熱間
静水圧下での緻密化処理を少なくとも行なうことを特徴
とする請求項(2)記載の加工方法。
(4) Forging the workpiece (27) under hot isostatic pressure in the processing chamber (12), and then performing at least densification treatment under hot isostatic pressure in the processing chamber (12). The processing method according to claim (2), characterized in that:
JP1147673A 1989-06-08 1989-06-08 Hot isostatic pressing apparatus and processing method Expired - Lifetime JP2535408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1147673A JP2535408B2 (en) 1989-06-08 1989-06-08 Hot isostatic pressing apparatus and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1147673A JP2535408B2 (en) 1989-06-08 1989-06-08 Hot isostatic pressing apparatus and processing method

Publications (2)

Publication Number Publication Date
JPH0313506A true JPH0313506A (en) 1991-01-22
JP2535408B2 JP2535408B2 (en) 1996-09-18

Family

ID=15435692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1147673A Expired - Lifetime JP2535408B2 (en) 1989-06-08 1989-06-08 Hot isostatic pressing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP2535408B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150482A3 (en) * 2007-05-31 2009-01-29 Applied Materials Inc Diffusion bonded fluid flow apparatus useful in semiconductor manufacturing
WO2011010671A1 (en) * 2009-07-21 2011-01-27 本田技研工業株式会社 Process for production of metal-bonded grinding stone, and sintering furnace for production of metal-bonded grinding stone
JP2011021267A (en) * 2009-07-21 2011-02-03 Honda Motor Co Ltd Sintering furnace for producing metal-bonded grinding wheel
WO2014206447A1 (en) * 2013-06-25 2014-12-31 Avure Technologies, Inc. Movable pressure intensifier for a pressing arrangement
WO2018219445A1 (en) * 2017-05-31 2018-12-06 Quintus Technologies Ab Pressing arrangement
CN113020599A (en) * 2019-12-24 2021-06-25 机械科学研究总院集团有限公司 Preparation method of high-pressure-bearing pump body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150482A3 (en) * 2007-05-31 2009-01-29 Applied Materials Inc Diffusion bonded fluid flow apparatus useful in semiconductor manufacturing
US7798388B2 (en) 2007-05-31 2010-09-21 Applied Materials, Inc. Method of diffusion bonding a fluid flow apparatus
WO2011010671A1 (en) * 2009-07-21 2011-01-27 本田技研工業株式会社 Process for production of metal-bonded grinding stone, and sintering furnace for production of metal-bonded grinding stone
JP2011021267A (en) * 2009-07-21 2011-02-03 Honda Motor Co Ltd Sintering furnace for producing metal-bonded grinding wheel
WO2014206447A1 (en) * 2013-06-25 2014-12-31 Avure Technologies, Inc. Movable pressure intensifier for a pressing arrangement
WO2018219445A1 (en) * 2017-05-31 2018-12-06 Quintus Technologies Ab Pressing arrangement
US11780192B2 (en) 2017-05-31 2023-10-10 Quintus Technologies Ab Pressing arrangement
CN113020599A (en) * 2019-12-24 2021-06-25 机械科学研究总院集团有限公司 Preparation method of high-pressure-bearing pump body

Also Published As

Publication number Publication date
JP2535408B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
Loh et al. An overview of hot isostatic pressing
US3996019A (en) Fabrication method and fabricated article
US5134260A (en) Method and apparatus for inductively heating powders or powder compacts for consolidation
US4982893A (en) Diffusion bonding of titanium alloys with hydrogen-assisted phase transformation
US4368074A (en) Method of producing a high temperature metal powder component
US5816090A (en) Method for pneumatic isostatic processing of a workpiece
US11219949B2 (en) Method for promoting densification of metal body by utilizing metal expansion induced by hydrogen absorption
US5110542A (en) Rapid densification of materials
JPH0313506A (en) Apparatus and method for working under hot isostatic pressure
KR20180056387A (en) Method for repairing defects on hot parts of turbomachines through hybrid hot isostatic pressing (hip) process
US20050142023A1 (en) Apparatus and a method of manufacturing an article by consolidating powder material
CN106475567A (en) The manufacture method of chrome molybdenum target blankss
JP2535409B2 (en) Hot isostatic pressing machine
US4904538A (en) One step HIP canning of powder metallurgy composites
US3861839A (en) Diffusion molding apparatus
JP2583607B2 (en) Hot isostatic pressing apparatus and processing method
CN111687530B (en) Method for compounding hydrogen absorption expansion substance and other materials
Morgan et al. Isostatic compaction of metal powders
CN111215623B (en) Powder metallurgy densification pressureless sintering method of Ti-Al alloy
JPH10232290A (en) Manufacture of ceramics bellows
JP2001279303A (en) METHOD OF MANUFACTURING Ti-Al INTERMETALLIC COMPOUND MEMBER
KR102605561B1 (en) Canning free hot isostatic pressure powder metallurgy method
JPS6239055B2 (en)
US8392016B2 (en) Adaptive method for manufacturing of complicated shape parts by hot isostatic pressing of powder materials with using irreversibly deformable capsules and inserts
RU2208063C2 (en) Method for obtaining semi-finished products from metals and alloys by pseudopowder metallurgy process