JPS5840462B2 - How to culture microalgae - Google Patents

How to culture microalgae

Info

Publication number
JPS5840462B2
JPS5840462B2 JP15693680A JP15693680A JPS5840462B2 JP S5840462 B2 JPS5840462 B2 JP S5840462B2 JP 15693680 A JP15693680 A JP 15693680A JP 15693680 A JP15693680 A JP 15693680A JP S5840462 B2 JPS5840462 B2 JP S5840462B2
Authority
JP
Japan
Prior art keywords
culture
culture solution
medium
amount
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15693680A
Other languages
Japanese (ja)
Other versions
JPS5783279A (en
Inventor
隆夫 藤井
純信 倉橋
良勝 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP15693680A priority Critical patent/JPS5840462B2/en
Publication of JPS5783279A publication Critical patent/JPS5783279A/en
Publication of JPS5840462B2 publication Critical patent/JPS5840462B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Cultivation Of Seaweed (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 本発明はクロレラ、セネデスムス、コエラストルムなど
の微細緑藻類の光合成色素含有量を高める培養法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a culture method for increasing the photosynthetic pigment content of microgreen algae such as Chlorella, Scenedesmus, and Coelastorum.

クロレラその他の緑藻類は増殖速度が一般の緑色植物に
比較して速いため、生産が容易である上、これらの緑藻
類は、蛋白質、炭水化物、ビタミン、色素、特殊生理活
性物質などを含有することから多数の研究がなされ、又
企業化されている。
Chlorella and other green algae are easy to produce because their growth rate is faster than that of general green plants.They also contain proteins, carbohydrates, vitamins, pigments, special physiologically active substances, etc., and are therefore used in large quantities. Research has been carried out and it has also been commercialized.

その培養形式は独立栄養、混合栄養、従属栄養に分けら
れる。
The culture format can be divided into autotrophic, mixotrophic, and heterotrophic.

従来より屋外の開放培養池で、炭酸ガスと日光照射によ
る独立栄養培養、又は酢酸を炭素源として日光照射によ
る混合栄養培養により生産されている。
Traditionally, it has been produced in outdoor open culture ponds by autotrophic culture using carbon dioxide gas and sunlight irradiation, or by mixotrophic culture using acetic acid as a carbon source and sunlight irradiation.

然るにこの方法は太陽光線を多量に必要とするため、生
産には広大な土地が必要となり、又日照量の天候、季節
による変動、更には開放的設備であるため、微生物その
他の汚染を受は品質の安定した製品が得られないという
欠点をもっていた。
However, this method requires a large amount of sunlight, so a vast amount of land is required for production, and the amount of sunlight varies depending on the weather and season, and because it is an open facility, it is not susceptible to microbial and other contamination. This method had the disadvantage that a product of stable quality could not be obtained.

問題点解決のため、近年いわゆるタンク培養が行われて
いる。
In order to solve this problem, so-called tank culture has been carried out in recent years.

しかし、有機物を炭素源およびエネルギー源とする従属
栄養では光合成器官であるクロロプラストが充分発達せ
ず、クロロフィルなどの光合成色素の含有が低くなる事
から、特別な装置を用いて、天然或は人工の光を与える
混合栄養培養が考案されている。
However, in heterotrophy that uses organic matter as a carbon and energy source, the chloroplast, which is a photosynthetic organ, does not fully develop and the content of photosynthetic pigments such as chlorophyll becomes low. A mixotrophic culture has been devised that provides light.

しかしこの場合も、大量の光エネルギーを照射する必要
上、複雑な構造の装置の設置をよぎなくされ、又複雑な
操作を要するため実用的ではない。
However, in this case as well, it is not practical because it is necessary to irradiate a large amount of light energy, which necessitates the installation of a device with a complicated structure, and also requires complicated operations.

本発明者らは生産性が高く、かつ汚染の機会が少ないタ
ンク培養法で、光の照射なしで、有機物を炭素源、エネ
ルギー源とする従属栄養培養において、クロロプラスト
が充分発達してクロロフィル等の光合成色素の含有量の
高い緑藻類を得る方法につき検討の結果、本発明に到達
した。
The present inventors developed a heterotrophic culture using organic matter as a carbon and energy source without light irradiation, using a tank culture method that has high productivity and has little chance of contamination. As a result of research into a method for obtaining green algae with a high content of photosynthetic pigments, the present invention was arrived at.

即ち、本発明は微細緑藻類を、有機物を炭素源およびエ
ネルギー源として従属栄養的に培養するに際し、培養液
中の溶存酸素濃度を0.5ppmから6ppmの範囲で
調節し、且つ培養液のPHを5.5から7.5の範囲に
調節することによる培養法であるが、更に培地中に蛋白
質の加水分解物或いはアミノ酸を0.1■/培地1以上
の微量を添加することにより、且つ連続培養液のグルコ
ースノ量を10〜40■/培地lに調整することにより
、クロロプラストが発達し、光合成色素の含有量の高い
微細藻類の培養法に係る。
That is, when culturing microgreen algae heterotrophically using organic matter as a carbon source and energy source, the present invention adjusts the dissolved oxygen concentration in the culture solution in the range of 0.5 ppm to 6 ppm, and adjusts the pH of the culture solution. This is a culture method that adjusts the temperature to a range of 5.5 to 7.5, but also by adding a trace amount of protein hydrolyzate or amino acid to the medium of 0.1 μ/1 medium or more, and continuously. The present invention relates to a method for cultivating microalgae that develops chloroplasts and has a high content of photosynthetic pigments by adjusting the amount of glucose in the culture solution to 10 to 40 μ/l of medium.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

微細緑藻類は有機物を資化し従属栄養で増殖可能なもの
で、クロレラ、セネデスムス、クラミドモナス、セレナ
ストルム、コエラストルム等カ代表的なものである。
Microgreen algae are able to utilize organic matter and grow heterotrophically, and representative examples include Chlorella, Scenedesmus, Chlamydomonas, Selenastrum, and Coelastorum.

微細緑藻類の炭素源およびエネルギー源である有機物は
、グルコースが用いられる。
Glucose is used as an organic substance that is a carbon source and an energy source for microgreen algae.

培地中には栄養成分として硝酸塩、尿素、アンモニウム
塩等の窒素源、燐酸塩、カリウム塩、マグネシウム塩等
が、微量要素として鉄、カルシウム、硼素、マンガン、
亜鉛、銅、モリブデン、コバルト、チタン、タングステ
ン、クロム、バナジウム、ニッケル等の金属の塩類が添
加される。
The culture medium contains nitrogen sources such as nitrates, urea, and ammonium salts, phosphates, potassium salts, and magnesium salts as nutritional components, and trace elements such as iron, calcium, boron, manganese,
Salts of metals such as zinc, copper, molybdenum, cobalt, titanium, tungsten, chromium, vanadium, and nickel are added.

又不溶解性の塩類の生成を防止するためにクエン酸、E
DTA等のキレート剤を添加することもある。
Also, to prevent the formation of insoluble salts, citric acid, E
A chelating agent such as DTA may also be added.

本発明に於ては、培養液中の溶存酸素濃度を0.5〜6
ppmの範囲で調節し、且つ培養液のPHを5.5〜7
.5の範囲で調節することが微細緑藻類のクロロプラス
トを発達させ、光合成色素含有量を高める上で必要であ
る。
In the present invention, the dissolved oxygen concentration in the culture solution is set to 0.5 to 6.
Adjust the pH of the culture solution within the range of ppm and 5.5 to 7.
.. Adjustment within the range of 5 is necessary to develop chloroplasts of microgreen algae and increase the photosynthetic pigment content.

更に安定して光合成色素含有量の微細緑藻類を得るため
には、培地中にイーストエキス、カザミノ酸、ペプトン
、トリプトン、肉エキス、コーンステイープリカー等の
蛋白質の加水分解で得られるアミノ酸等の混合物および
バリン、ロイシン、インロイシン、フェニルアラニン、
トリプトファン、グリシン、セリン、スレオニン、チロ
シン、アスパラギン、グルタミン、グルタミン酸、アス
パラギン酸、リジン、アルギニン、ヒスチン等の単独ア
ミノ酸の内のいずれか単独若しくは混合したものを0.
1■/培地1以上の微量を添加することが好ましい。
In order to obtain microgreen algae with a more stable photosynthetic pigment content, a mixture of amino acids obtained by hydrolysis of proteins such as yeast extract, casamino acids, peptone, tryptone, meat extract, and cornstarch liquor is added to the medium. and valine, leucine, inleucine, phenylalanine,
Tryptophan, glycine, serine, threonine, tyrosine, asparagine, glutamine, glutamic acid, aspartic acid, lysine, arginine, histine, or any other amino acid alone or in combination at 0.
It is preferable to add a trace amount of 1 ml/medium or more.

添加量はo、1mq/lで充分であるが、更に安定した
結果を得るためには0.5P/、g程度が添加される。
It is sufficient to add the amount of 0.1 mq/l, but in order to obtain more stable results, approximately 0.5 P/g is added.

又培養条件によっては経済的に許される範囲内で更に多
量を添加しても良い。
Further, depending on the culture conditions, a larger amount may be added within an economically acceptable range.

又添加法は培養液中に一時的に添加しても或は連続的に
添加しても良い。
Further, the addition method may be by adding temporarily or continuously into the culture solution.

さらに連続培養液のグルコースの量は10〜40■/培
地lに調整される。
Further, the amount of glucose in the continuous culture solution is adjusted to 10 to 40 μ/l of medium.

実施例 1 容量2.51のミニ、ジャーファメンターにPH電極、
溶存酸素電極を装置し下記の組成の培地1.81を加え
、Scenedesmus acutusを植菌し、
PH6、温度33℃で通気・攪拌しながら純粋培養を行
った。
Example 1 A mini jar fermenter with a capacity of 2.51, a PH electrode,
A dissolved oxygen electrode was installed, medium 1.81 with the following composition was added, and Scenedesmus acutus was inoculated.
Pure culture was carried out at pH 6 and temperature of 33° C. with aeration and stirring.

尚、PHは自動的にアンモニア水で調節し、溶存酸素濃
度は1〜2.5ppm K調整した。
Note that the pH was automatically adjusted with aqueous ammonia, and the dissolved oxygen concentration was adjusted to 1 to 2.5 ppm K.

連続培養の途中で、一時的に、ファーメンタ−中に以下
に記す添加物を加え、藻体中のクロロフィル量、蛋白質
量及び培養液中のグルコース、アンモニア態窒素、燐酸
の含量を測定し、培養経過を観察した。
During continuous cultivation, the following additives were temporarily added to the fermentor, and the amount of chlorophyll and protein in the algae and the content of glucose, ammonia nitrogen, and phosphoric acid in the culture solution were measured. The progress of the culture was observed.

結果を表−1に示す。培地組成 グルコース 硫酸アンモン 第1リン酸カリ 硫酸マグネシウム・7水塩 硫酸第1鉄・7水塩 微量金属溶液(A、) 蒸留水 r O,825’ 1.251 1.25y m9 m1 99.8ml 参考例 実施例1と同様の装置及び培地を用い、添加物を加える
ことなく温度33℃、培養液のPH5,8、同じく溶存
酸素濃度0.8〜1.5ppmの範囲で、各々調節しな
がら、培養を行った。
The results are shown in Table-1. Medium composition Glucose ammonium monophosphate Potash magnesium sulfate heptahydrate Ferrous sulfate heptahydrate Trace metal solution (A,) Distilled water r O,825' 1.251 1.25y m9 m1 99.8ml Reference Example Using the same apparatus and culture medium as in Example 1, without adding any additives, the temperature was 33°C, the pH of the culture solution was 5.8, and the dissolved oxygen concentration was adjusted within the same range of 0.8 to 1.5 ppm. Culture was performed.

50時間目に得られた藻体中のクロロフィル含量は2.
0%であった。
The chlorophyll content in the algae obtained at 50 hours was 2.
It was 0%.

又PHを6.5、溶存酸素濃度を4.8〜5.5ppm
として50時間の培養後、藻体中のクロロフィル含量は
2.2%であった。
Also, the pH is 6.5 and the dissolved oxygen concentration is 4.8 to 5.5 ppm.
After culturing for 50 hours, the chlorophyll content in the algal bodies was 2.2%.

実施例 2 実施例1と同様の操作を行った。Example 2 The same operation as in Example 1 was performed.

但し、新しく供給する培地中にカゼインの加水分解物1
00my/lを含むものを使用し、通気・攪拌により、
培養液中の溶存酸素量を調節し、溶存酸素調節後60時
間目の藻体中クロロフィル濃度を測定した。
However, casein hydrolyzate 1 is added to the newly supplied medium.
00 my/l, and by aeration and stirring,
The amount of dissolved oxygen in the culture solution was adjusted, and the chlorophyll concentration in the algal bodies was measured 60 hours after adjusting the dissolved oxygen.

結果は表−2に示す。The results are shown in Table-2.

実施例 4 実施例3と同様に操作し、PHを変え、PH設設定変更
後4蒔 定した。
Example 4 The same procedure as in Example 3 was carried out, the pH was changed, and 4 seeds were sown after changing the pH settings.

尚、溶存酸素は1〜2ppmに設定した。Note that dissolved oxygen was set at 1 to 2 ppm.

Claims (1)

【特許請求の範囲】[Claims] 1 有機物を炭素源およびエネルギー源として従属栄養
的に光照射なしに微細藻類をタンク培養するに際し、培
養液中の溶存酸素濃度を0.5から6ppmの範囲で調
節し、培養液をPH5,5から7.5の範囲に調節し、
蛋白質の加水分解物或はアミノ酸を0.1η〜0.5?
/培地lの範囲で添加し、且つ連続培養液のグルコース
の量を10〜40m9/培地lに調整して培養すること
を特徴とする光合成色素含有量を高める微細藻類の培養
法。
1. When culturing microalgae heterotrophically in a tank without light irradiation using organic matter as a carbon source and energy source, the dissolved oxygen concentration in the culture solution is adjusted in the range of 0.5 to 6 ppm, and the culture solution is adjusted to pH 5.5. to 7.5,
Protein hydrolyzate or amino acid from 0.1η to 0.5?
1. A method for cultivating microalgae to increase the content of photosynthetic pigments, which comprises adding glucose in the range of 1/l of medium and adjusting the amount of glucose in the continuous culture solution to 10 to 40 m/l of medium.
JP15693680A 1980-11-10 1980-11-10 How to culture microalgae Expired JPS5840462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15693680A JPS5840462B2 (en) 1980-11-10 1980-11-10 How to culture microalgae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15693680A JPS5840462B2 (en) 1980-11-10 1980-11-10 How to culture microalgae

Publications (2)

Publication Number Publication Date
JPS5783279A JPS5783279A (en) 1982-05-25
JPS5840462B2 true JPS5840462B2 (en) 1983-09-06

Family

ID=15638581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15693680A Expired JPS5840462B2 (en) 1980-11-10 1980-11-10 How to culture microalgae

Country Status (1)

Country Link
JP (1) JPS5840462B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100280A (en) * 1985-10-25 1987-05-09 Nisshin Oil Mills Ltd:The Cultivation of chlorella
JP2620045B2 (en) * 1994-03-22 1997-06-11 レンゴー株式会社 High Chlorophyll-Containing Chlorella Mutants
MD4385C1 (en) * 2014-06-04 2016-06-30 Государственный Университет Молд0 Nutrient medium for cultivation of Nostoc flagelliforme alga
MD4359C1 (en) * 2014-06-04 2016-02-29 Государственный Университет Молд0 Nutrient medium for cultivation of alga Anabaenopsis sp.
CN104823898B (en) * 2015-06-09 2017-06-06 广东海洋大学 The preparation method and its feeding method of a kind of Duo Lin Xi prelarva open-mouthed baits

Also Published As

Publication number Publication date
JPS5783279A (en) 1982-05-25

Similar Documents

Publication Publication Date Title
CN109929897A (en) A kind of promotion HAU-M1 photosynthetic bacteria flora produces culture medium and its application of hydrogen
Lambers Respiration and NADH‐oxidation of the roots of flood‐tolerant and flood‐intolerant Senecio species as affected by anaerobiosis
JPH03505396A (en) Improved fermentation methods for carboxylic acids
SU701545A3 (en) Method of preparing biomass
JPS5840462B2 (en) How to culture microalgae
GB1216868A (en) Fermentation process for the production of amino acids
SU615870A3 (en) Method of obtaining biomass of microorganisms
CN85108913A (en) Microbial plant growth promoter and yield enhancer
GB1444072A (en) Microbiological production of proteinaceous material
CN109970495A (en) A kind of technique preparing organic fertilizer using amino acid fermentation tail washings
JPS583678B2 (en) Continuous fermentation production method for L-tryptophan
Davidonis et al. Biological properties of D-amino acid conjugates of 2, 4-D
JPH08256782A (en) Production of bacterium flocculant by fermentation method
RU93056583A (en) METHOD FOR PRODUCING BIOMASS ENRICHED WITH SELENIUM
CN115627241A (en) Method for culturing anabaena azotoformans
KR20110024622A (en) Manufacturing method of plant utilizing microorganism and nutritional agent obtained by the same
MXPA97005494A (en) Stimulating composition of plan growth
SU1560487A1 (en) Method of biological removal of pesticides from waste water
SU1479513A1 (en) Method of producing formate dehydrogenase
JPS62143690A (en) Production of sulfur-containing l-amino acid by enzymatic process
CN112851412A (en) Novel organic selenium fertilizer and preparation method thereof
JPS6137092A (en) Method of cultivation of euglena cell
SU1685992A1 (en) Method for cultivation of microalgae chlamydomonas reinhardii 449
SU452236A1 (en) The method of growing microorganisms
SU871525A1 (en) Method for prepariing supradependent formiatehydrogenase