JPS5840265A - Both faces polishing device - Google Patents

Both faces polishing device

Info

Publication number
JPS5840265A
JPS5840265A JP56135122A JP13512281A JPS5840265A JP S5840265 A JPS5840265 A JP S5840265A JP 56135122 A JP56135122 A JP 56135122A JP 13512281 A JP13512281 A JP 13512281A JP S5840265 A JPS5840265 A JP S5840265A
Authority
JP
Japan
Prior art keywords
temperature
cooling water
polishing
liquid
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56135122A
Other languages
Japanese (ja)
Other versions
JPH0323304B2 (en
Inventor
Masaharu Kinoshita
正治 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56135122A priority Critical patent/JPS5840265A/en
Publication of JPS5840265A publication Critical patent/JPS5840265A/en
Publication of JPH0323304B2 publication Critical patent/JPH0323304B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/015Temperature control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To maintain the temperature of the polishing liquid constant by controlling the flow of the cooling water for cooling the polishing liquid in relative to the elapsing time of polishing. CONSTITUTION:The polishing cloths 5 are attached on the facing surfaces of the upper and lower surface plates 1, 2 and the polishing liquid 6 is provided between them. The member to be polished or the semiconductive wafer (a) is mounted on the epicyclic gear 8. The cooling water will flow from the cooling water path 12a for the upper surface plate 1 to the cooling water path 12b for the lower surface plate 2 through the cooling water circulation path 15 thus to cool the polishing liquid 6. Here the temperature of the polishing liquid 6 is detected by a temperature detector 11 then coupled to the thermometer 23 to obtain the micro factor of the temperature while the signal is provided to a pulse generator 22 such that said micro factor will reduce in inverse proportion to the polishing time and to control the flow control valve 18 by means of a stop motor 20.

Description

【発明の詳細な説明】 この発明はたとえば半導体ウェハなどのボリシyダを行
なう両面ボリシyグ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a double-sided bolting apparatus for bolting semiconductor wafers, for example.

II@駆−す為上下定盤間にポリシyダ液を保留し、ζ
Oボリシy/iIl中に半導体ウェハを介入してポリシ
ンダを行なうポリシyグ装置は、上下定盤にポリVy/
11Eを冷却するための冷却水路が設けられている。そ
して、ヒO冷却水路に対する冷却水の流入を開閉するこ
とによシポリシノダ液の温度を制御しているが、設定し
た温11に対してオーパシ、−)やハンチングなどが大
きく、制御温度幅を1c以内に抑えることが難しい・ポ
リシング温度を制御する方法として、従来から、ボリシ
ング定盤内に冷却水を流す方法がとられている。この方
法では、何らかO方法でポリシング温度を測定し、それ
が設定した温*Kfiるように■冷却水を0N−OFF
制御するヤシ方、また、■冷却水量をあらかじめ3段階
mtK変化できるようにして、随時水量を切)かえる中
)方などがある。しかしながら仁れらの方法ではポリシ
シグ温度を1℃以内に制御するとと紘難しい、その理由
として、ボリジング温度のオーパシ、ト、ハンチングが
生じるζ、とがあけられる。すなわち、冷却水量は■の
場1合社間欠的に供給されるため、温度変化It大きい
こと、■の場合はあらかじめ設定された3段階の冷却水
量が必ずしも追歯ではない場合が多く、中はシ、水量変
化にともなう温度変化が大きくでてきてしまうことであ
る。この難点を解決してやるためには、冷却水量を上記
のように大きく、離散的に変化させるのではなく温度変
化に対して、小きざみに水量を変化させ一′るや〉方が
、あるいは連続的に滑らかに変化させるやり方を工夫す
る必要がある。一方、シリクンウェハのような半導体材
料のポリシングではメカノケミカル作用をもつポリシン
ダ液を用いるためポリシンダ液の温度変化は加工能力に
影響し、ポリシングの安定性、ポリシングされたウェハ
の寸法形状精度に大きく影響を与える。
II @ For driving, reserve the polisher liquid between the upper and lower surface plates, and
A polishing device that performs polishing by intervening a semiconductor wafer during O-polishing/iIl has poly-Vy/iIl on the upper and lower surface plates.
A cooling water channel is provided for cooling 11E. The temperature of the cooling water is controlled by opening and closing the inflow of cooling water into the cooling water channel, but the temperature range is 1c, and the temperature range is 1c. Difficult to keep the polishing temperature within the conventionally used method of controlling the polishing temperature by flowing cooling water into the polishing surface plate. In this method, the polishing temperature is measured using some O method, and the cooling water is turned 0N-OFF so that it reaches the set temperature*Kfi.
There are two ways to control the amount of water, and one that allows the amount of cooling water to be changed in advance in three steps (mtK) so that the amount of water can be turned off or changed at any time. However, in the method of Jin et al., it is difficult to control the polishing temperature to within 1° C. The reasons for this are the opacity of the bollising temperature, and the occurrence of hunting. In other words, in the case of ■, the amount of cooling water is supplied intermittently, so the temperature change is large. Second, the temperature changes significantly as the amount of water changes. In order to solve this difficulty, it is better to change the amount of cooling water in small increments in response to temperature changes, instead of changing the amount of cooling water large and discretely as described above. It is necessary to devise a way to make the change smoothly. On the other hand, in polishing semiconductor materials such as silicon wafers, a polishinder liquid with mechanochemical action is used, so changes in the temperature of the polishinder liquid affect processing performance, and greatly affect the stability of polishing and the dimensional and shape accuracy of polished wafers. give.

このため、ボリシンダ液の温度を常に一定に保ち、また
、何回ものボリシングでも同じポリシング条件が再現さ
れることが重要である。
For this reason, it is important to always keep the temperature of the Boricinda solution constant and to reproduce the same polishing conditions no matter how many times the polishing is performed.

ボリシンダ液の温度はボリシング中におけるボリシンダ
液の温度を直接測定するのが最も正確であ)、第181
1で示すように、ポリシング定盤上に供給する時のボリ
シンダ液の温度が一定のとき、ポリシング中におけるボ
リシンダ液の温度上昇曲線は上に凸の曲線として単調に
増加する。
It is most accurate to directly measure the temperature of the Boricinda liquid during Borising), No. 181
As shown in 1, when the temperature of the voricinda solution when being supplied onto the polishing surface plate is constant, the temperature rise curve of the voricinda solution during polishing monotonically increases as an upwardly convex curve.

一方、上下定盤に一定温度の冷却水を一定流量で流して
ポリシングしたときのポリシンダ液の温度上昇曲線は第
2図で示すようにな抄、ある勾配で温度上昇したのち一
定のポリシンダ液温度に達する。したがうて、ポリシ/
ダ液温度をある設定温度に制御するときは第2図の性質
を利用して冷却水の流量を滑らかに制御してやればオー
パシ、−F1ハンチングもなく、また速やかに設定温度
に達するような最適なボリシyダ液温度制御を行なうこ
とができる。
On the other hand, when polishing is performed by flowing cooling water at a constant temperature into the upper and lower surface plates at a constant flow rate, the temperature rise curve of the polycinder liquid is as shown in Figure 2. reach. Therefore, policy/
When controlling the liquid temperature to a certain set temperature, it is best to use the properties shown in Figure 2 to smoothly control the flow rate of cooling water, which will eliminate Opacity, -F1 hunting, and quickly reach the set temperature. The temperature of the liquid liquid can be controlled.

この発明は上記事情に着目してなされたもので、その目
的とするとζろは、ポリシング中におけるポリシング液
の温度を検出して冷却水の流量を精密に制御することに
よ)、ポリシン液の温度を一定に保ち、常に一定条件の
ボリシングを行なうことができる両面ボリシング装置を
提供しようとするものである。
This invention was made in view of the above circumstances, and its purpose is to detect the temperature of the polishing liquid during polishing and precisely control the flow rate of the cooling water). It is an object of the present invention to provide a double-sided boring machine that can keep the temperature constant and always perform boring under constant conditions.

以下、この発明を図面に示す一実施例にもとづいて説明
する。第3図中1は上定盤、2は下定盤であり、これら
は円盤状をなしそれぞれ回転軸8.4を介して駆動源(
図示しない、)に連結され互いに逆方向に回転するよう
になりている。この上定盤1および下定盤2の互いに対
向する面に社研摩布54−5が貼着され、これら研摩布
5.5間にはポリシング液6が介在されている。上記研
摩布5,5はポリウレタン含浸ポリエステル不織布によ
って形成され、ボリシング液6はシリカゲル微粉末を含
む−10,4のアルカリ性溶液が用いられている。さら
に、上記上定盤1と下定盤1との間に稼太陽歯車1を中
心として自転しながら公転する遊星歯車8・・・および
インタナルギヤ9からなる歯車機構10が設けられ、上
記遊星歯車8・・・にそれぞれ被ボリシング材としての
半導体ウェハa−・が装着されている。これら半導体ウ
ェハa・・・の公転軌跡上に対向する上記上定盤IKは
第4図で示すように研摩布5を貫通する透孔1aが穿設
され、この透孔1aには温度検出子11がその感知部J
Jaをポリ?/3/ダ116に接触するようにして設け
られている。tた、上定盤1および下意@Xには冷却水
路Jja、1j%が螺旋状に設けられ、ヒれ#?〇一端
は上記回転軸1,4に設けた流′入口口と流出口14と
に連通している・そして、上定盤1の冷却水路1オaと
下定盤1の冷却水路3j%とは冷却水循環路15によう
て直列に連通されている。さらに、この冷却水循環路I
IIの中途部には冷却水の温度を一定に保つ冷却水タン
ク1−、ポンプ11および冷却水の流量制御を行なうニ
ードル弁からなる流量制御弁11が設けられている。こ
の流量制御弁1#はカップリング1#を介してステップ
峰−夕20に連結され、このステップモータ10の回転
をカップリング19を介して流量IIIrU御弁181
を伝動してその開口度を変化するようになっている、さ
らに、上記ステップモータ20はドライバ21、パルス
発生器22を介して温度計23に摘続されている。この
温度計2Jは上記ボリシング液6の温度を検出する温度
検出子11からの出力信号を無線で受信し、検出温度と
設定温度との差に応じた信号をパルス発生器22に与え
るようになっておシ、パルス発生器22からの出力信号
線ドライバ21を介してステップモータ20に入力する
ように表っている。
The present invention will be described below based on an embodiment shown in the drawings. In Fig. 3, 1 is an upper surface plate, and 2 is a lower surface plate, which are disc-shaped and each connected to a drive source (
) (not shown) so that they rotate in opposite directions. Polishing cloths 54-5 are attached to opposing surfaces of the upper surface plate 1 and the lower surface plate 2, and a polishing liquid 6 is interposed between these polishing cloths 5.5. The abrasive cloths 5, 5 are made of polyurethane-impregnated polyester nonwoven fabric, and the broaching liquid 6 is a -10.4 alkaline solution containing fine silica gel powder. Furthermore, a gear mechanism 10 is provided between the upper surface plate 1 and the lower surface plate 1, and includes planetary gears 8 and internal gears 9, which revolve around the operating sun gear 1 while rotating on their own axis. . . . A semiconductor wafer a- . . . is mounted as a material to be borated, respectively. As shown in FIG. 4, the upper surface plate IK, which faces the semiconductor wafers a, on its orbit, is provided with a through hole 1a that penetrates the polishing cloth 5, and a temperature sensor is installed in the through hole 1a. 11 is the sensing part J
Is Ja poly? /3/ da 116 is provided so as to be in contact with it. In addition, a cooling water channel Jja, 1j% is provided in a spiral shape on the upper surface plate 1 and the lower surface plate 1, and the fin #? 〇One end communicates with the flow inlet and outlet 14 provided on the rotating shafts 1 and 4.Then, the cooling water channel 1oa of the upper surface plate 1 and the cooling water channel 3j% of the lower surface plate 1 are connected in series through a cooling water circulation path 15. Furthermore, this cooling water circulation path I
A flow control valve 11 consisting of a cooling water tank 1- for keeping the temperature of the cooling water constant, a pump 11, and a needle valve for controlling the flow rate of the cooling water is provided in the middle of II. This flow rate control valve 1# is connected to a step motor 20 via a coupling 1#, and the rotation of this step motor 10 is controlled via a coupling 19 to a flow rate IIIrU control valve 181.
Furthermore, the step motor 20 is connected to a thermometer 23 via a driver 21 and a pulse generator 22. This thermometer 2J wirelessly receives an output signal from a temperature detector 11 that detects the temperature of the borising liquid 6, and provides a signal to the pulse generator 22 according to the difference between the detected temperature and the set temperature. The output signal from the pulse generator 22 is shown to be input to the step motor 20 via the output signal line driver 21.

つぎに、上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

まず、上定盤1を45 rpm、下定盤2を7Qrpr
n。
First, set the upper surface plate 1 at 45 rpm and the lower surface plate 2 at 7 Qrpr.
n.

太陽歯車1を7 Orpmおよびインタナルギヤ9t−
OrpmK設定するとともにボリシング圧力を3001
7、、m、ボリシング液6の設定温度を30℃にしてボ
リシングを開始し、同時にポンプ11を作動させると、
冷却水は冷却水循環路15を介して上定盤1の冷却水路
Jja峠下定盤2の冷却水路11bの順に流れてボリシ
ング液6を冷却する。このとき、ポリシング中における
ポ゛シレダ1111011度線温度検出子11によりで
検出され、この検出信号は温度計28に入力されること
になる。
Sun gear 1 7 orpm and internal gear 9t-
Set OrpmK and set the bore pressure to 3001.
7.,m, When the set temperature of the borising liquid 6 is set to 30°C and the borising is started, and the pump 11 is operated at the same time,
The cooling water flows through the cooling water circulation path 15 into the cooling water channel Jja of the upper surface plate 1 and the cooling water channel 11b of the lower surface plate 2 in order to cool the bolling liquid 6. At this time, the temperature is detected by the temperature sensor 11 of the point radar 1111011 during polishing, and this detection signal is input to the thermometer 28.

今一、第5図に示すよう1理想的なポリvノダ液温度に
制御する場合−第6図に示すボリシンダ液温度微係数曲
線を利用する。この#g6図は第1図および第2図のポ
リシンダ液温度上昇曲線のそれぞれの微係数をグラフ化
したものであシ、ム1紘水冷しないと自Oもの、ム嘗〜
ム8は水冷し九とIIOものでそれぞれ異なりた冷却水
成量による場合であ、&Φこのグラフ上で、ムlの出発
点とム4のゼ四点を点1のように結ぶ、この曲線ム4の
微係数JII1w点はこの1纏のAツメータの冷却水流
量を流したと龜に到達するポリシンダ液温度一定値に対
応する。したがうて、冷却水O#l量を点1111 K
 e 9Y: 炭化しティく、すナワち第1図の曲−に
示すようにすれば、最適なボ91//ダ液温IILに制
御することができる。
Now, when controlling the temperature of the polyvnoda liquid to an ideal value as shown in FIG. 5, use the polyvinyl liquid temperature differential coefficient curve shown in FIG. This #g6 diagram is a graph of the differential coefficients of the polycinder liquid temperature rise curves in Figures 1 and 2.
M8 is a case where the cooling water content is different for water-cooled models 9 and IIO, and on this graph, this curve connects the starting point of M1 and the 4 points of M4 as point 1. The point JII1w of the differential coefficient of 4 corresponds to the constant value of the temperature of the polycinder fluid that reaches the barrel when the cooling water flow rate of this one set of A-meters is supplied. Therefore, the amount of cooling water O#l is set to 1111 K.
e 9Y: Carbonization Temperature IIL If the temperature is set as shown in Figure 1, the liquid temperature IIL can be controlled to be optimal.

しかして ボリシング中におけるポリシング11!−の
温度を温度検8・、IJKようで検出し。
However, Policing during Policing 11! - The temperature is detected by temperature sensor 8., IJK.

その温度を温度計23でサンプリングし、温度の微係数
を求める。そして、この微係数がボリシング時間ととも
に比例して減少するように温度計23からパルス発生器
22に毎秒一定パルス数発生させる信号を与える。した
がって、ステ、プモータ20によって流量制御弁1tの
開口度は次第に大きくなシ、冷却水の流量は増加する。
The temperature is sampled with a thermometer 23, and the differential coefficient of the temperature is determined. Then, a signal is given from the thermometer 23 to the pulse generator 22 to generate a constant number of pulses per second so that this differential coefficient decreases in proportion to the borizing time. Therefore, the opening degree of the flow rate control valve 1t is gradually increased by the step motor 20, and the flow rate of the cooling water is increased.

つぎに、冷却水の流量が第6図の点線B上で81点を越
えるようになると、微係数の減少は時間に比例しなくな
る。そこで、温度計23からは毎秒一定パルス数を減じ
る信号を出すとパルス発生器22からのパルス数は毎秒
一定パルス数づつ減じるので流量制御弁18の開口度は
次第に小さくなる。そして、サンプリングしている微係
数がゼロになると、温度計23からはパルス増減なしの
信号がパルス発生器22に入力し、流量制御弁18の開
口度は固定され、一定流量の冷却水が流れる。したがっ
て、ポリシング液6の温度は一定に保たれる。
Next, when the flow rate of the cooling water exceeds 81 points on the dotted line B in FIG. 6, the decrease in the differential coefficient is no longer proportional to time. Therefore, when the thermometer 23 outputs a signal to reduce the number of pulses per second, the number of pulses from the pulse generator 22 decreases by the number of pulses per second, and the opening degree of the flow rate control valve 18 gradually becomes smaller. When the sampled differential coefficient becomes zero, a signal with no pulse increase or decrease is input from the thermometer 23 to the pulse generator 22, the opening degree of the flow control valve 18 is fixed, and a constant flow of cooling water flows. . Therefore, the temperature of the polishing liquid 6 is kept constant.

このような条件下で、50回の両面ポリタンクを行なり
たとIHD仕上シウエハの寸法精度のバッツ中を測定し
た。すなわち、ポリク/グ時間は45分間で、ポリシン
ダ前のウェハの厚さは680μmであυ、illのボリ
シングでは4枚づつボリシングしたところ、50E[I
で合計200枚のボリシングの結果、クエへの厚さは6
26μm±3/Amであ〕、ポリyyグ除去速度は1.
2±0.08##/ntlnという非常によい再現性、
安定性を示した。
Under these conditions, the dimensional accuracy of the IHD-finished wafers was measured in the butt after 50 times of double-sided polytanning. That is, the polishing time was 45 minutes, the thickness of the wafer before polishing was 680 μm, and when 4 wafers were bored at a time, 50E[I
As a result of borishing a total of 200 sheets, the thickness of the square is 6
26μm±3/Am], and the polyyyg removal rate was 1.
Very good reproducibility of 2±0.08##/ntln,
It showed stability.

なお、上記一実施例においては、冷却水をタンクに貯水
して一定温度に保つようにしたが、水温が一定であれば
水道と直結してもよく、水温の変化がある場合には温度
針で微係数をモニタした結果にもとづいてパルス発生器
12にパルス数を増減させる信号を与えればよい。
In the above embodiment, the cooling water is stored in a tank and kept at a constant temperature, but if the water temperature is constant, it may be connected directly to the water supply, and if the water temperature changes, the temperature needle Based on the result of monitoring the differential coefficient, a signal may be given to the pulse generator 12 to increase or decrease the number of pulses.

この発明は以上説明したように、ボリシシダ液を冷却す
る冷却水O流量を流量制御弁によって可変するとと−に
、この流量制御弁をボリシンダ液の温度を検出すゐ温度
検出子からの出力信号によって制御し、ポリVノダ液温
度の微係数がポリシング時間とと−に反比例するように
冷動水の流量を変化させるようにしたことを特徴とする
。したがって、ボリタング箪温度を一定に保つことがで
き、再現性、安定性の優れたポリタングがで亀るという
効果を奏する。
As explained above, the present invention uses a flow rate control valve to vary the flow rate of the cooling water O for cooling the borishida liquid, and the flow rate control valve is controlled by an output signal from a temperature sensor that detects the temperature of the borishinda liquid. The present invention is characterized in that the flow rate of the cooling water is changed so that the differential coefficient of the poly-V powder liquid temperature is inversely proportional to the polishing time. Therefore, the temperature of the polytongue can be kept constant, and the polytongue can be produced with excellent reproducibility and stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図紘ボリシンダ液の温度上昇曲線を示
すグラフ図、第3図はこの発明の一実施例を示す両面ポ
リタング装置の断面図、第4図は第3図■部を拡大した
Iff面図、第5図はボリシンダ液の温度上昇曲線を示
すグラフ図、第6図はポリシンダ液温健微係数曲線を示
すグラフ図、第7図は冷却水の流量変化を示すグラフ図
である。 1・・・上定盤、2・・・下定盤、12畠、12b・・
・冷却水路、11・・・温度検出子、1#・・・流量制
御弁・ 出願人代理人 弁理士 鈴 江 武 彦第1図 呻1!1ル〉り″)lIIIJ11 第5図 第7s = R’9’:/>ツー+IIIIIfi(min)第2図 −s:°ルングー14 第6図 」!す゛〉ン71へ^i
Figures 1 and 2 are graphs showing the temperature rise curve of the Hiroborisinda liquid, Figure 3 is a cross-sectional view of a double-sided polytoning device showing an embodiment of the present invention, and Figure 4 is an enlarged view of the section ■ in Figure 3. Fig. 5 is a graph showing the temperature rise curve of the polycinda liquid, Fig. 6 is a graph showing the temperature differential coefficient curve of the polycinda liquid, and Fig. 7 is a graph showing changes in the flow rate of cooling water. . 1... Upper surface plate, 2... Lower surface plate, 12 hatake, 12b...
・Cooling water channel, 11...Temperature detector, 1#...Flow rate control valve・Applicant's representative Patent attorney Takehiko Suzue R'9': //> Two + IIIIIIfi (min) Fig. 2 - s: ° Rungu 14 Fig. 6''! Go to ゛゛〉゛〉71゛i

Claims (1)

【特許請求の範囲】[Claims] 回転駆動する上下定盤間にボリシング液とともに被ボリ
シング材を介在し、この被ポリシン□グ材の両面をボリ
シングするものにおいて、上記上下定盤にボリシンダ液
を冷却する冷却水路を設けこれらの冷却水路を直列に接
続するとともに、この冷却水路に供給する冷却水の流量
を可変する流量制御弁がパルスモータによって駆動され
る機構を有し、この流・1制御弁を上記上下定盤間に介
在するボリシング液の温度を検出する温度検出子から出
力信号によって制御し、ボリシング液温度の微係数がボ
リシング時間とともに反比例するように冷却水の流量を
変化させるようにしたことを特徴とする両面ボリシング
装置。
In a device in which a material to be polished is interposed together with a boring liquid between upper and lower surface plates that are rotatably driven, and both sides of the material to be polished are bored, cooling channels are provided in the upper and lower surface plates to cool the boring fluid. are connected in series, and a flow control valve that varies the flow rate of cooling water supplied to this cooling waterway has a mechanism driven by a pulse motor, and this flow/1 control valve is interposed between the upper and lower surface plates. A double-sided boring machine characterized in that the flow rate of cooling water is controlled by an output signal from a temperature detector that detects the temperature of a boring liquid, and the flow rate of cooling water is changed so that the differential coefficient of the temperature of the boring liquid is inversely proportional to the boring time.
JP56135122A 1981-08-28 1981-08-28 Both faces polishing device Granted JPS5840265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135122A JPS5840265A (en) 1981-08-28 1981-08-28 Both faces polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135122A JPS5840265A (en) 1981-08-28 1981-08-28 Both faces polishing device

Publications (2)

Publication Number Publication Date
JPS5840265A true JPS5840265A (en) 1983-03-09
JPH0323304B2 JPH0323304B2 (en) 1991-03-28

Family

ID=15144331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135122A Granted JPS5840265A (en) 1981-08-28 1981-08-28 Both faces polishing device

Country Status (1)

Country Link
JP (1) JPS5840265A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475860A (en) * 1990-07-15 1992-03-10 Amitec Kk Pad cooling device for belt sander
US5718620A (en) * 1992-02-28 1998-02-17 Shin-Etsu Handotai Polishing machine and method of dissipating heat therefrom
KR100457718B1 (en) * 1995-07-03 2005-04-06 미쓰비시 마테리알 가부시키가이샤 Method and apparatus for manufacturing silicon wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454390A (en) * 1977-10-08 1979-04-28 Shibayama Kikai Kk Cooling water temperature control system for polishing table
JPS5775776A (en) * 1980-10-28 1982-05-12 Supiide Fuamu Kk Temperature detector and controller of polishing machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454390A (en) * 1977-10-08 1979-04-28 Shibayama Kikai Kk Cooling water temperature control system for polishing table
JPS5775776A (en) * 1980-10-28 1982-05-12 Supiide Fuamu Kk Temperature detector and controller of polishing machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475860A (en) * 1990-07-15 1992-03-10 Amitec Kk Pad cooling device for belt sander
US5718620A (en) * 1992-02-28 1998-02-17 Shin-Etsu Handotai Polishing machine and method of dissipating heat therefrom
KR100457718B1 (en) * 1995-07-03 2005-04-06 미쓰비시 마테리알 가부시키가이샤 Method and apparatus for manufacturing silicon wafer

Also Published As

Publication number Publication date
JPH0323304B2 (en) 1991-03-28

Similar Documents

Publication Publication Date Title
JP2505815B2 (en) Device for controlling gas content of discharged hot melt thermoplastic adhesive foam
JP5275364B2 (en) Low power electric thermostatic mixing valve
EP0457486A2 (en) Fluid flow and temperature control apparatus
JPS5840265A (en) Both faces polishing device
Ferdaus et al. Design and fabrication of a simple cost effective spin coater for deposition of thin film
CN108758005A (en) The three-way valve assemblies and control method of new energy vehicle cooling system
CN217966510U (en) Chip layer-removing plane grinder
CN108896119A (en) A kind of intelligence self-adjustable high-precision size water flow amount detecting device
JPH0878369A (en) Polishing end point detecting method and its polishing apparatus
JP2007152499A (en) Work polishing method
US2928376A (en) Apparatus for the speed of regulation of hydraulic motors
CN208012116U (en) A kind of constant temperature system with flow cavitation result
JP2682557B2 (en) Viscosity measuring method and device
JPH04141709A (en) Hot and cold water mixing device
RU2670705C9 (en) Method of measurement of flow of a fluid environment
RU2029284C1 (en) Liquid viscosity determining method
SU1406416A1 (en) Device for regulating small flow rates of liquid
JPH0615638A (en) Automatic kneading device
TW592889B (en) Protection device of preventing overpolish on a chemical mechanical polish machine and method thereof
JPS6049531B2 (en) electrical processing equipment
JPS6069376A (en) Valve controller
KR900000663B1 (en) Flow control device
CN2546706Y (en) Water control valve body apparatus
JPH0219700Y2 (en)
SU734627A1 (en) Device for automatic control of the applying of liquid onto substrate