JPS584004A - Construction of prefabricated prestressed steel beam - Google Patents

Construction of prefabricated prestressed steel beam

Info

Publication number
JPS584004A
JPS584004A JP9830381A JP9830381A JPS584004A JP S584004 A JPS584004 A JP S584004A JP 9830381 A JP9830381 A JP 9830381A JP 9830381 A JP9830381 A JP 9830381A JP S584004 A JPS584004 A JP S584004A
Authority
JP
Japan
Prior art keywords
concrete
steel girder
construction
steel
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9830381A
Other languages
Japanese (ja)
Other versions
JPS5834607B2 (en
Inventor
中川正勝
渡辺滉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWATA KOGYO KK
Original Assignee
KAWATA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWATA KOGYO KK filed Critical KAWATA KOGYO KK
Priority to JP9830381A priority Critical patent/JPS5834607B2/en
Publication of JPS584004A publication Critical patent/JPS584004A/en
Publication of JPS5834607B2 publication Critical patent/JPS5834607B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 レス鋼桁を用いた橋梁の架設に際してのプレストレス鋼
桁の架設法、%にこのプレストレス鋼桁が予め複数本の
プレハブ形式ブロックとして作成され、これらのブロッ
クが架設現場において1本の長尺なプレストレス鋼桁と
して完成されるようなプレストレス鋼桁の架設法に関す
るものである。
[Detailed description of the invention] A method for constructing a prestressed steel girder when constructing a bridge using a steel girder, in which the prestressed steel girder is created in advance as a plurality of prefabricated blocks, and these blocks are erected. This invention relates to a method for constructing a prestressed steel girder that is completed as a single long prestressed steel girder on site.

橋梁用架設術として、鋼桁に予め前たわみ荷重を与えて
おいて、引張側となる下7ランジに該下7ランジを包も
ようなコンクリートを打設し、このコンクリートの硬化
後前たわみ荷重を解除して鋼桁の復元力により下7ラン
ジコンクリートにプレストレス応力を導入するようにし
た通称プレビームと称されるプレストレス鋼桁は既に公
知である(特公昭33−10ダλダ号)。
As a bridge construction method, a forward deflection load is applied to the steel girder in advance, concrete is placed on the lower seven lunges on the tension side so as to enclose the lower seven lunges, and after this concrete hardens, the forward deflection load is applied. A prestressed steel girder, commonly known as a pre-beam, is already known (Special Publication Publication No. 10/1973 λda), in which prestress stress is introduced into the lower 7 lunge concrete by the restoring force of the steel girder. .

このようなプレストレス鋼桁を現場において架設したの
ちゆニブコンクリート及び床版コンクリートの打設を行
って鋼桁を完全にコンクリートにより被覆した桁はプレ
ビーム′合成桁と称されている。このプレビーム合成桁
は下7ランジコンクリートと床版コンクリートが鋼桁と
合成されているために曲は剛度が大きくなり、通常の合
成桁よりも桁高を低くすることができるという点で、桁
高制限を受けるような橋梁の施、工に対しては極めて有
利である。また鋼桁自体が露出していないために塗装等
の維持管理が不要であること、騒音が生じないこと、耐
火性を有することなどの利点を有する。
A girder in which such a prestressed steel girder is erected on-site and then concrete and slab concrete are placed to completely cover the steel girder with concrete is called a pre-beam composite girder. This pre-beam composite girder has lower 7-lunge concrete and deck slab concrete combined with the steel girder, so the bend has greater stiffness, and the girder height can be lower than that of a normal composite girder. This is extremely advantageous for construction and construction of bridges that are subject to restrictions. Additionally, since the steel girder itself is not exposed, it has the advantage of not requiring maintenance such as painting, not generating noise, and being fire resistant.

このような長所をもつプレビーム合成桁を構成するため
のプレストレス鋼桁は、前記の如く所定の長さの鋼桁に
予め曲げ荷重を与えておいて引張側となる下7ランジに
コンクリートを打設し、コンクリート硬化後鋼桁の曲は
荷重を解除することによりコンクリートにプレストレス
を与えるという工程をとる。その際、支間が長いプレス
トレス鋼桁は運搬上の制約から鋼桁を−くつかのピース
に分割して架設現場に搬入し、現地で鋼桁を連結した後
、予曲げ荷重を与えて、プレストレス鋼桁を製作するの
が従来よりの通例であった。したがって、架橋現場に製
作ヤードが必要となり、市街地のような架橋議場、ある
いは現地地形等により、製作ヤードが取れないという問
題が発生する場合もあった。またプレストレス鋼桁を現
地で製作するため、現場工期が長くなり工費の面でも割
高となるとψう問題点があった。
The prestressed steel girder used to construct the pre-beam composite girder with these advantages is made by applying a bending load to a steel girder of a predetermined length in advance, and then concrete is poured into the lower seven lunges on the tensile side. After the concrete has hardened, the steel girder is bent by releasing the load and applying prestress to the concrete. At that time, prestressed steel girders with long spans are transported to the construction site in pieces due to transportation constraints, and after being connected at the site, a pre-bending load is applied. It has traditionally been customary to fabricate prestressed steel girders. Therefore, a fabrication yard is required at the bridge construction site, and there have been cases where a fabrication yard cannot be secured due to the bridge construction site in an urban area or the local topography. In addition, since the prestressed steel girders were manufactured on-site, there were problems in that the on-site construction period was long and the construction costs were relatively high.

本発明はプレビーム合成桁による橋梁架設の上記のよう
な問題点を解消し、現地において長尺のプレストレス鋼
桁の架設が可能となるように、予め工場等においてプレ
キャスト化できるプレストレス鋼桁を製作しておき、分
解されたプレストレス鋼桁ブロックを現地に輸送後天々
のブロックを連結して一本の長尺プレストレス鋼材を製
作架設するようKしたことを目的としたものである。
The present invention solves the above-mentioned problems in constructing bridges using pre-beam composite girders, and makes it possible to construct long prestressed steel girders on-site. The purpose is to fabricate and erect a long prestressed steel girder block by transporting the disassembled prestressed steel girder blocks to the site and then connecting the blocks to form a single long prestressed steel girder.

本発明はこのような長尺なプレビーム合成桁を目的とし
たプレストレス鋼桁を架設するため、工場等において複
数本の鋼桁を連結した状態で曲げ荷重を与えて引張側の
下7ランジに継目部分を残してコンクリートを打設し、
コンクリート硬化後曲は荷重を解除することによ゛リコ
ンクリートにプレストレスを与え、しかるのち鋼桁の継
目部を分解して夫々の鋼桁ブロックを現地に運搬し、現
地において再び各鋼桁ブロックを連結したのち継目部の
下7ランジにコンクリートを打設し、継目部の両複版間
をPC鋼棒等により連結して継目部コンクリートにプレ
ストレスを与えることにより、鋼桁全長にわたる下7ラ
ンジコンクリートにプレストレス応力が導入された長尺
のプレストレス鋼桁の架設が完了するようにしたことを
特徴とするものである。
In order to erect a prestressed steel girder intended for such a long pre-beam composite girder, the present invention applies a bending load to the lower seven lunges on the tensile side while connecting multiple steel girders in a factory or the like. Pour concrete leaving the joints open,
After the concrete hardens, the load is released to apply prestress to the concrete, and then the joints of the steel girders are disassembled and each steel girder block is transported to the site, where each steel girder block is reassembled. After connecting the joints, concrete is poured into the lower 7 lunges of the joint, and by connecting the two plates of the joint with PC steel rods, etc., and applying prestress to the concrete at the joint, the lower 7 flanges are placed over the entire length of the steel girder. This method is characterized by completing the erection of a long prestressed steel girder in which prestress stress is introduced into the lunge concrete.

次に本発明に係る架設法を図示の実施例により詳記すれ
ば、第1図a乃至eは工場等におけるプレストレス鋼桁
の製作工程を示す側面図、第2図f乃至jは架設現場に
おける鋼桁の架設からプレビーム合成桁による橋梁架設
完了までの架設工程を示す側面図である。
Next, the erection method according to the present invention will be described in detail with reference to illustrated embodiments. Figs. 1a to 1e are side views showing the manufacturing process of prestressed steel girders in a factory, etc., and Figs. 2f to 2j are side views showing the construction site. FIG. 3 is a side view showing the construction process from the construction of steel girders to the completion of bridge construction using pre-beam composite girders.

第1図aK示す如く予め設計された鋼桁(1)の全長り
が得られるよう複数本の鋼桁部材(1)、(/l、(/
1゜を夫々継目部G2)に原版用添接板(3)及び上下
7ランジ用添接板(31)を介して一体に連結する。こ
れらの鋼桁部材(1)、(1)2(/13は互に連結°
された状態で所定のキャンバ−が与えられるように形成
されていると共に、夫々継目部の側方には第3図に示す
ように上下の7ランジ(IIl (j)間に複版(6)
と直角な補剛板(7)が溶接固定されている。
As shown in Figure 1 aK, a plurality of steel girder members (1), (/l, (/
1° are integrally connected to the joint portion G2) via the original plate attachment plate (3) and the upper and lower seven lunge attachment plates (31). These steel girder members (1), (1) 2 (/13 are connected to each other
It is formed so that a predetermined camber is given in the state where it is held, and on the side of each joint, there are duplicate plates (6) between the upper and lower 7 lunges (IIl (j)) as shown in Fig. 3.
A stiffening plate (7) perpendicular to is fixed by welding.

次にこのように連結された鋼桁(1)に対し、第1図t
)K示すように前たわみ荷重(プレフレクション) P
fを与え、この前たわみ荷重Pfが与えられた状態で第
1図Cに示す如く引張側となる下7ランジ(j) K継
目部(コ)を残してコンクリート<1)を打設する。こ
のコンクリート(1)は第3図及び第1図に示す如く継
目部(2)を除く下7ランジ(りが被覆されるように形
成される。
Next, for the steel girder (1) connected in this way,
) K As shown, forward deflection load (preflexion) P
f and with a pre-deflection load Pf applied, concrete <1) is poured leaving the lower 7 lunges (j) and K joints (c) on the tensile side as shown in Figure 1C. This concrete (1) is formed so as to cover the lower seven flanges, excluding the joint (2), as shown in FIGS. 3 and 1.

前記下7ランジ(jlのコンクリート(1)が硬化した
のち、第1図aK示す如く鋼桁(1)の全長に与えられ
た前たわみ荷重Pfを解除すると、鋼桁(ハの復元力に
よってコンクリート(、r) Kは夫々プレストレス応
力が与えられること\なる。こめ状態において鋼桁(1
)を夫々の継目部G2)を添接板(J) 、 (31)
を取外すことにより分離し、夫々の鋼′桁ブロック(9
1、(9)2(?)3を架設現場に輸送する。
After the concrete (1) of the lower 7 langes (jl) has hardened, the forward deflection load Pf applied to the entire length of the steel girder (1) is released as shown in Figure 1aK, and the restoring force of the steel girder (c) causes the concrete to harden. (, r) K is given a prestress stress respectively. In the closed state, the steel girder (1
) to each joint G2) to the joint plate (J), (31)
Separate by removing the steel girder blocks (9
Transport 1, (9) 2(?) 3 to the construction site.

第コ図fに示す如く架設現場に運搬された鋼桁ブロック
(?)、(IF)2 (913は、夫々両端を仮支点(
10)Kより支持された状態で再び継目部(コ)を添接
板(31(3/)を介して一体に本締め連結される。次
[9,2図gに示す如く仮支点(lのを撤去して継目部
(2)における下7ランジ(りK該下7ランジ(jlを
包むようにコンクリート好ましくは膨張コンクリート(
11)を打設する。このコンクリート(II)の打設後
筒−図り及び第5図、第を図に示す如く継目部−)の両
側にある補剛板(71(71間にPC鋼棒(lのを連結
させ、継目部コンクIJ −) (II’)が所定強度
に達した後PC鋼41 (//”)を引張して該コンク
リート(r/)Kプレストレス応力を導入し、鋼桁(ハ
の全長にわたる下7ランジ(jlのコンクリ−) Gr
) (II>にプレストレスが与えられた状態とする。
As shown in Fig. f, the steel girder blocks (?), (IF) 2 (913) transported to the erection site have both ends set as temporary supports (
10) With the joint part (C) supported by K, the joint part (C) is again fully tightened and connected as one body through the splicing plate (31 (3/). Remove the lower 7 langes (Jl) at the joint (2) and add concrete, preferably expanded concrete (
11). After pouring this concrete (II), the stiffening plates (71) on both sides of the cylinder (plan and the joint part as shown in Figure 5) After the joint concrete (IJ-) (II') reaches a predetermined strength, prestress stress is introduced into the concrete (r/) by pulling the PC steel 41 (//''), and Lower 7 lunge (JL concrete) Gr
) (II> is in a state where prestress is applied.

しかるのち第一図IK示す如く鋼桁(1)の全長にわた
り上7ランジ(II) K対する床版コンクリートQ2
)、複版(6)に対する被覆コンクリ−) (/J)の
打設を行う。第λ図jでは前記床版コンクリ−) (/
J) Kアスファルト等の後死荷重(/#)及び活荷重
を載荷し、最終的にプレビーム合成桁による橋梁架設が
完成する。
Afterwards, as shown in Figure 1 IK, the upper 7 lunges (II) K are covered with concrete slab Q2 over the entire length of the steel girder (1).
), cover concrete for duplication (6)) (/J) will be poured. In Figure λj, the concrete floor slab) (/
J) The dead load (/#) and live load of K asphalt etc. are loaded, and the bridge construction is finally completed using the pre-beam composite girder.

上記の如く本発明におけるプレストレス鋼桁の架設法に
おいては、複数本の鋼桁部材を連結して一本の鋼桁とし
て予曲げ荷重を与え、この状態にお−て引張側に継目部
(2)を残してコンクリートを打設し、コンクリート硬
化後予曲げ荷重を解除することによりコンクリートにプ
レストレスを与えるため、夫々の鋼桁部材は継目部を分
離した状態としても夫々引張側下フランジにプレストレ
スが与えられた形のプレキャスト状鋼桁ブロックとする
ことができ、架設現場の状況や運搬事情に左右されるこ
となく現場において長尺なプレストレス鋼桁の架設を可
能とすることができる。
As described above, in the prestressed steel girder construction method of the present invention, a plurality of steel girder members are connected together and a pre-bending load is applied as one steel girder, and in this state, the joint ( In order to apply prestress to the concrete by pouring concrete leaving 2) and releasing the pre-bending load after the concrete hardens, each steel girder member is placed at the lower flange on the tension side even if the joint is separated. It can be made into a precast steel girder block that is prestressed, making it possible to erect long prestressed steel girders at the site without being affected by the construction site conditions or transportation circumstances. .

また架設現場における施工は、各鋼桁ブロックを連続す
る作業と、連結継目部の下7ランジに対する短いコンク
リート打設作業と1継目部のプレストレス導入作業とで
足り、鋼桁の主要部に対するコンクリート打設等は行わ
゛なくて済むので、架設現場において必要とする製作の
ための費用等を大幅に節減でき、従来のプレビーム工法
に比較して経済的であると共に1現場での工期が従来の
プレビーム工法に比較して大@に短縮でき、従ってこの
種の鋼桁を用いた橋梁架設技術の利点を一層有効ならし
めるという効果を有するものであるO
In addition, the construction work at the construction site only requires continuous work for each steel girder block, short concrete pouring work for the lower seven lunges of the connection joint, and prestressing work for the first joint, and concrete work for the main part of the steel girder. Since there is no need to perform pouring, the cost of fabrication required at the erection site can be significantly reduced, making it more economical than the conventional pre-beam construction method, and the construction time at one site is shorter than the conventional method. Compared to the pre-beam construction method, it can be shortened to a large extent, and therefore has the effect of making the advantages of this type of bridge construction technology using steel girders even more effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a乃至eは工場等におけるプレストレス鋼桁の製
作工程を説明する側面図、第2図f乃至jは架設現場に
おける架設工程を説明する側面図、第3図は継目部分の
詳細を示す斜視図、第ダ図は第1図eにおけるN−WI
IIKおける断面図、第5図は第コ図hK示す継目部の
連結状態を示す拡大側面図、第4図は第S図の■−■線
における断面図、第7図は第λ図jの■−■線における
断面図である。図において、 (ハ・・・鋼桁N tl)、(71g (1)3・・・
鋼桁部材、−)・・・継目部、(3) (3/)・・・
添接板、(II)・・・上7ランジ、(j)・・・下7
ランジ、(4>・・・複版、(7)・・・補剛板、(f
) <tt)・・・コンクリート、(q)、(り)2(
デ)、・・・鋼桁ブロック、(lO)・・・仮支点、(
ll)・・・PC鋼棒、(/J)・・・床版コンクQ 
−) 、<13> ・・・腹板被覆コンクリ−)、(l
l)・・・後死荷重。 21 特許出願人 川田工業株式会社 ′++         ′++          
           ′+         N−1
−22−
Figures 1 a to e are side views illustrating the manufacturing process of prestressed steel girders in factories, etc. Figures 2 f to j are side views illustrating the erection process at the construction site, and Figure 3 shows details of the joint part. The perspective view shown in Figure D is N-WI in Figure 1e.
FIG. 5 is an enlarged side view showing the connected state of the joint shown in FIG. It is a sectional view taken along the line ■-■. In the figure, (c... steel girder N tl), (71g (1)3...
Steel girder member, -)...Joint part, (3) (3/)...
Attachment plate, (II)...upper 7 lunge, (j)...lower 7
Lunge, (4>... duplication, (7)... stiffening plate, (f
) <tt)...Concrete, (q), (ri)2(
d), ... Steel girder block, (lO) ... Temporary support, (
ll)...PC steel bar, (/J)...floor slab concrete Q
-), <13> ... belly plate covering concrete), (l
l)...Dead load after. 21 Patent applicant Kawada Kogyo Co., Ltd.'++'++
'+ N-1
-22-

Claims (1)

【特許請求の範囲】[Claims] L 複数本の鋼桁を工場内等において互に添接板を介し
て一体に連結した状態で前たわみ荷重を与え、該連結鋼
桁の引張側7ランジに夫々の継目部を残してコンクリー
トを打設し、コンクリート硬化後前たわみ荷重を解除す
ることにより前記コンクリートにプレストレスを与え、
その後継目部を分離して夫々のプレストレス鋼桁ブロッ
クを架設現場に運搬し、現場において各ブロックを仮架
設の状態で再び連結して継目部の下7ランジにコンクリ
ートを打設し、継目部の両腹版間をPC鋼棒等により連
結して前記継目部コンクリートにプレストレスを与える
ようKしたことを特徴とするプレハブ式プレストレス鋼
桁の架設法。
L A forward deflection load is applied to a plurality of steel girders that are connected together via splicing plates in a factory, etc., and concrete is poured into the 7 tension side flanges of the connected steel girders, leaving joints in each. Applying prestress to the concrete by releasing the front deflection load after pouring and hardening the concrete,
The successor joints are separated and each prestressed steel girder block is transported to the construction site. At the site, each block is reconnected in the temporary construction state and concrete is poured into the lower seven rungs of the joint. A method for constructing a prefabricated prestressed steel girder, characterized in that the two sides of the slab are connected by a PC steel rod or the like to apply prestress to the joint concrete.
JP9830381A 1981-06-26 1981-06-26 Erection method of prefabricated prestressed steel girder Expired JPS5834607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9830381A JPS5834607B2 (en) 1981-06-26 1981-06-26 Erection method of prefabricated prestressed steel girder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9830381A JPS5834607B2 (en) 1981-06-26 1981-06-26 Erection method of prefabricated prestressed steel girder

Publications (2)

Publication Number Publication Date
JPS584004A true JPS584004A (en) 1983-01-11
JPS5834607B2 JPS5834607B2 (en) 1983-07-28

Family

ID=14216150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9830381A Expired JPS5834607B2 (en) 1981-06-26 1981-06-26 Erection method of prefabricated prestressed steel girder

Country Status (1)

Country Link
JP (1) JPS5834607B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178810A (en) * 1984-02-23 1985-09-12 Kanebo Ltd Deodorizing cosmetic
JP2005307477A (en) * 2004-04-19 2005-11-04 Kawasaki Heavy Ind Ltd Continuous construction method of highway bridge
JP2009019453A (en) * 2007-07-13 2009-01-29 Mitsui Eng & Shipbuild Co Ltd Girder end structure of steel/concrete composite girder
JP2009024351A (en) * 2007-07-18 2009-02-05 Mitsui Eng & Shipbuild Co Ltd Junction structure of composite steel-concrete girder
JP4728453B1 (en) * 2011-01-25 2011-07-20 朝日エンヂニヤリング株式会社 Main girder continuous structure
JP2017172226A (en) * 2016-03-24 2017-09-28 公益財団法人鉄道総合技術研究所 Joining structure of steel girder and joining method of steel girder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059303U (en) * 1991-07-22 1993-02-09 久代 遠藤 Screw screw type heels
JPH0646905A (en) * 1992-07-28 1994-02-22 Tsugiyoshi Osawa Shoes or the like capable of exchanging lift in high heel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178810A (en) * 1984-02-23 1985-09-12 Kanebo Ltd Deodorizing cosmetic
JP2005307477A (en) * 2004-04-19 2005-11-04 Kawasaki Heavy Ind Ltd Continuous construction method of highway bridge
JP2009019453A (en) * 2007-07-13 2009-01-29 Mitsui Eng & Shipbuild Co Ltd Girder end structure of steel/concrete composite girder
JP2009024351A (en) * 2007-07-18 2009-02-05 Mitsui Eng & Shipbuild Co Ltd Junction structure of composite steel-concrete girder
JP4728453B1 (en) * 2011-01-25 2011-07-20 朝日エンヂニヤリング株式会社 Main girder continuous structure
JP2017172226A (en) * 2016-03-24 2017-09-28 公益財団法人鉄道総合技術研究所 Joining structure of steel girder and joining method of steel girder

Also Published As

Publication number Publication date
JPS5834607B2 (en) 1983-07-28

Similar Documents

Publication Publication Date Title
KR100609304B1 (en) Precast Composition I-Beam with Concrete Panel and Corrugated Steel Web Girder
KR100427405B1 (en) Pssc complex girder
US5299445A (en) Method of post-tensioning steel/concrete truss before installation
US5457839A (en) Bridge deck system
JPH09221717A (en) Steel-concrete composite floor-slab bridge and construction method thereof
JP2003268719A (en) Steel-concrete composite beam and its installation method
JP3701250B2 (en) Cable stayed bridge and its construction method
JP5004880B2 (en) Concrete member joint structure
JPS584004A (en) Construction of prefabricated prestressed steel beam
JP3410368B2 (en) Connection method of corrugated steel web girder
KR102033052B1 (en) Method for constructing truss bridge support with infilled tube using src girder
JP3322637B2 (en) Construction method of cast-in-place concrete slab of bridge
JP3306632B2 (en) Construction method of building
JPS6282147A (en) Novel prestressed synthetic beam and its construction
JP2001049616A (en) Precast pc web for use in concrete bridge and prestressed concrete bridge having the pc web
CN109555232A (en) Zheng Shi precast beam tenon connection connector
JP2004092094A (en) Structure of composite floor slab bridge equipped with double main girder
JP3275017B2 (en) Method of manufacturing caisson using precast member
JPS5891274A (en) Temporary construction of prestressed steel beam for building
JPS584006A (en) Continuous type bridge using prestressed steel beam
KR102712398B1 (en) Reinforced bridge top structure
JPH10183533A (en) Bridge girder, bridge girder component, and work execution method for bridge girder
JPH0416653A (en) Precast reinforced concrete structure
JPS6198870A (en) Construction method of precast reinforced concrete earthquake-proof wall
JP5039616B2 (en) Beam unit