JPS5839373B2 - Exhaust treatment method for semiconductor manufacturing equipment - Google Patents

Exhaust treatment method for semiconductor manufacturing equipment

Info

Publication number
JPS5839373B2
JPS5839373B2 JP7711179A JP7711179A JPS5839373B2 JP S5839373 B2 JPS5839373 B2 JP S5839373B2 JP 7711179 A JP7711179 A JP 7711179A JP 7711179 A JP7711179 A JP 7711179A JP S5839373 B2 JPS5839373 B2 JP S5839373B2
Authority
JP
Japan
Prior art keywords
gas
semiconductor manufacturing
manufacturing equipment
treatment method
exhaust treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7711179A
Other languages
Japanese (ja)
Other versions
JPS561527A (en
Inventor
淳 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7711179A priority Critical patent/JPS5839373B2/en
Publication of JPS561527A publication Critical patent/JPS561527A/en
Publication of JPS5839373B2 publication Critical patent/JPS5839373B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Description

【発明の詳細な説明】 本発明は半導体製造装置、特に減圧気相成長装置の新規
な排気処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel exhaust treatment method for semiconductor manufacturing equipment, particularly for low pressure vapor phase growth equipment.

従来、気相成長法は半導体製造に際しては重要にして欠
くことができない方法で、その気相成長層の物理的性質
を向上させ、不純物や膜厚の制御を容易にするために減
圧気相成長法が常用される様になっている。
Conventionally, the vapor phase growth method has been an important and indispensable method for semiconductor manufacturing.In order to improve the physical properties of the vapor phase grown layer and to easily control impurities and film thickness, low pressure vapor phase growth has been used. The law has come into regular use.

又、この様な減圧気相成長法にはソース・ガスとしてモ
ノシラン(SiH4)やホスフィン(PH3)などが使
用され、これらは酸素の存在によって自然に燃焼する自
然性ガスとして知られている。
Furthermore, monosilane (SiH4), phosphine (PH3), and the like are used as source gases in such a reduced pressure vapor phase growth method, and these are known as natural gases that combust spontaneously in the presence of oxygen.

そのために、これらのガスを使用して、減圧気相成長装
置のブースター・ポンプやロータリーポンプの排気系よ
り直接そのit空気中に排出させると燃焼を起こす危険
があるので、通常はアルゴン(Ar)などの不活性ガス
を主成分とし、SiH4ガスやPH3ガスを1〜2%程
度に1で希釈して使用している。
For this reason, if these gases are used and discharged directly into the air from the booster pump or rotary pump exhaust system of a reduced pressure vapor deposition device, there is a risk of combustion, so argon (Ar) is usually used. The main component is an inert gas such as, and SiH4 gas or PH3 gas is diluted with 1 to about 1 to 2%.

しかしこの様な希釈したソース・ガスを用いると、多量
の排気を必要としブースター・ポンプやロータリー・ポ
ンプの排気系が大型化するばかりでなく、減圧度にも限
度が生ずる。
However, when such a diluted source gas is used, a large amount of exhaust is required, which not only increases the size of the booster pump or rotary pump exhaust system, but also limits the degree of pressure reduction.

又、減圧度は例えば現状の数T orr程度からI T
orr以下程度1で良くすればバラツキが少なくナリ大
量処理にも適するようになる。
In addition, the degree of depressurization can range from the current several Torr, for example, to I T
If it is set to about 1 below orr, there will be less variation and it will be suitable for large-scale processing.

従って不活性ガスによって希釈したソース・ガスを使用
しないで、S i H4ガスやPH,ガスをその1S少
量で使用することが好1しく、現在はその様な方法が検
討されている。
Therefore, it is preferable to use a small amount of S i H4 gas or PH gas without using a source gas diluted with an inert gas, and such a method is currently being considered.

本発明はかような問題点を考慮してなされたもので、1
00多の自然性ガスを使用することを目的とし、排出さ
れる自然性ガスに酸素又は酸素を含む不活性ガスを導入
し反応せしめ、該反応ガスを水封ポンプにより吸気して
、該反応ガス成分を水封ポンプの排気ガスと排水とに分
離し処理することを特徴とする排気処理法を提案するも
のである。
The present invention has been made in consideration of such problems, and has the following features:
The purpose of using 00 natural gases is to introduce oxygen or an inert gas containing oxygen into the discharged natural gas and cause it to react, and the reaction gas is taken in by a water ring pump to produce the reaction gas. This paper proposes an exhaust gas treatment method characterized by separating components into water ring pump exhaust gas and waste water.

以下、図面を参照して実施例により具体的に説明する。Hereinafter, examples will be specifically described with reference to the drawings.

例えば100%のSiH,ガスを使用して、シリコン気
相成長層を形成せしめるとすると、減圧気相成長装置か
ら、余剰のSiH,ガスを主としたガスが排気系装置に
よって吸引され、排出される。
For example, if 100% SiH and gas are used to form a silicon vapor phase growth layer, excess SiH and gas will be sucked in and exhausted from the reduced pressure vapor growth apparatus by the exhaust system. Ru.

第1図において1はこの様な減圧気相成長装置から排出
されるS i H,ガスの流入管で、2はブースター・
ポンプやロータリー・ポンプからなる排気系装置を示し
ているが、こうして吸引し排気系装置2より排気された
S i H,ガスは一般にはステンレス製の反応管部3
に導かれ、一方ブロアー4によりS i H4ガスより
多量の酸素又は酸素を含んだ不活性ガスが同様に反応管
部3に導入される。
In Fig. 1, 1 is an inflow pipe for S i H gas discharged from such a reduced pressure vapor phase growth apparatus, and 2 is a booster/gas inflow pipe.
Although an exhaust system device consisting of a pump or a rotary pump is shown, the S i H gas sucked in and exhausted from the exhaust system device 2 is generally fed into a reaction tube section 3 made of stainless steel.
Meanwhile, a larger amount of oxygen than the S i H4 gas or an inert gas containing oxygen is similarly introduced into the reaction tube section 3 by the blower 4 .

そうすると該反応管部3でSiH4ガスと酸素とが反応
して燃焼し、酸化シリコン(SiO2)と水(H2O)
とを生成する。
Then, SiH4 gas and oxygen react and burn in the reaction tube section 3, producing silicon oxide (SiO2) and water (H2O).
and generate.

充分燃焼しなければ若干の水素(H2)ガスを混入する
場合もある。
If sufficient combustion is not achieved, some hydrogen (H2) gas may be mixed in.

この様にしてできた生成物や生成ガスを水封ポンプ5に
よって吸引し、固体となったSiO2は水封ポンプ5よ
りの排水に含1れて排水口6より排出され、余分の酸素
や不活性ガス又は充分に希釈されたH2ガスは排気ロア
より水によって冷却されて排気される。
The products and gas produced in this way are sucked by the water ring pump 5, and the solid SiO2 is contained in the waste water from the water ring pump 5 and discharged from the drain port 6, and excess oxygen and nitrogen are removed. The active gas or sufficiently diluted H2 gas is cooled by water and exhausted from the exhaust lower.

この様にして処理すると安全であり、第1図に示すよう
に構成した排気処理装置を附設すれば、100%のS
i H,ガスを希釈することなしにその1″>、減圧気
相成長装置に使用することが可能となる。
Treatment in this way is safe, and if an exhaust treatment device configured as shown in Figure 1 is attached, 100% S
i H, it becomes possible to use the gas in a reduced pressure vapor phase growth apparatus without diluting the gas.

上記はSiH,ガスの例であるが、その他の自然ガスも
同様にして心配なく簡単に処理することができる。
Although the above is an example of SiH and gas, other natural gases can be treated easily and without worry in the same way.

又、ジクロールシラン(SiH2cA’2)ガスを使用
する場合には、塩酸(Hcl)ガスが生成されるので、
従来でも排気系装置のポンプの油を劣化させて、その処
置に苦慮していたが、本発明の排気処理装置を用いると
、水封ポンプで吸引するために排気系装置のポンプ内よ
り早くHclガスが排気されて油の寿命が長くなる効果
もあり、本発明は自燃性ガスのみでなく、水に可溶性の
ハロゲン化水素の処理に適用しても有効と考えられる。
Also, when using dichlorosilane (SiH2cA'2) gas, hydrochloric acid (Hcl) gas is generated, so
In the past, the oil in the pump of the exhaust system deteriorated and it was difficult to deal with it, but with the exhaust treatment system of the present invention, HCl is removed faster than in the pump of the exhaust system because it is sucked by a water ring pump. Since the gas is exhausted and the life of the oil is extended, the present invention is considered to be effective when applied not only to self-combustible gases but also to the treatment of water-soluble hydrogen halides.

この様に本発明は自燃性ガスを希釈せずにその1\減圧
気相成長装置に適用できるので、気相成長せしめる半導
体ウェーハを一度に多量処理することができて、しかも
排気系装置を小型化することができるすぐれたものであ
る。
As described above, the present invention can be applied to the reduced pressure vapor phase growth apparatus without diluting the pyrophoric gas, so a large number of semiconductor wafers to be vapor phase grown can be processed at one time, and the exhaust system can be made smaller. It is an excellent thing that can be transformed into

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の排気処理装置の概要原理図で4はガス
を導入するブロワ−15は水封ポンプを示す。
FIG. 1 is a schematic diagram of the principle of the exhaust treatment apparatus of the present invention, and numeral 4 represents a blower for introducing gas, and 15 represents a water ring pump.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体製造装置より排出される自然性ガスに酸素又
は酸素を含む不活性ガスを導入し反応せしめ、該反応ガ
スを水封ポンプにより吸気して、該反応ガス成分を水封
ポンプの排気ガスと排水とに分離し処理することを特徴
とする半導体製造装置の排気処理法。
1. Oxygen or an inert gas containing oxygen is introduced into natural gas discharged from semiconductor manufacturing equipment to cause a reaction, the reaction gas is taken in by a water ring pump, and the reaction gas components are combined with the exhaust gas of the water ring pump. A semiconductor manufacturing equipment exhaust treatment method characterized by separating and treating wastewater.
JP7711179A 1979-06-19 1979-06-19 Exhaust treatment method for semiconductor manufacturing equipment Expired JPS5839373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7711179A JPS5839373B2 (en) 1979-06-19 1979-06-19 Exhaust treatment method for semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7711179A JPS5839373B2 (en) 1979-06-19 1979-06-19 Exhaust treatment method for semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS561527A JPS561527A (en) 1981-01-09
JPS5839373B2 true JPS5839373B2 (en) 1983-08-30

Family

ID=13624667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7711179A Expired JPS5839373B2 (en) 1979-06-19 1979-06-19 Exhaust treatment method for semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS5839373B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222112A (en) * 1984-04-20 1985-11-06 Kanegafuchi Chem Ind Co Ltd Hollow yarn-shaped filter and its manufacture
JPS63101629A (en) * 1986-10-17 1988-05-06 Matsushita Electric Ind Co Ltd Kitchen range
JPS6391063U (en) * 1986-12-01 1988-06-13
JPH01121630A (en) * 1987-11-05 1989-05-15 Sanyo Electric Co Ltd Gas table
JP2581955B2 (en) * 1988-07-11 1997-02-19 富士写真フイルム株式会社 Heat treatment equipment for semiconductor devices

Also Published As

Publication number Publication date
JPS561527A (en) 1981-01-09

Similar Documents

Publication Publication Date Title
JPS5839373B2 (en) Exhaust treatment method for semiconductor manufacturing equipment
JP4802977B2 (en) Operation method of heat treatment apparatus, heat treatment apparatus and storage medium
JPS6235807B2 (en)
JPS6329583B2 (en)
JPS63200820A (en) Treatment of exhaust gas in producing semiconductor
JP2842744B2 (en) Cleaning method for epitaxial growth equipment
JP2987926B2 (en) Vapor growth method
JPS6322173B2 (en)
JPS60227415A (en) Vapor growth apparatus
JPH04252023A (en) Selective growth method for silicon crystal
JPH04290219A (en) Method of forming polycrystalline silicon film
JPH0722127B2 (en) Method for purifying reaction / treatment device and purification of gas phase substance for reaction / treatment, and reaction / treatment device
JPS6262529A (en) Forming method for silicon nitride film
JPH0795547B2 (en) Method for manufacturing semiconductor device
JPS6196728A (en) Hydrogen gas recovering system for cvd furnace
JPH08141359A (en) Method and apparatus for removing harmful material in harmful gas
JPH02268433A (en) Manufacture of semiconductor device
JP2001068419A (en) Selective growth method for solid
JPS6016417A (en) Semiconductor crystal growth method
JPH071753B2 (en) Method for manufacturing semiconductor device
JP2006144085A (en) Method for producing thin film
JPS63147315A (en) Vapor growth method for silicon layer
JPH034523A (en) Boron diffusing agent and manufacture thereof
JPS5858319B2 (en) Vapor phase growth equipment
JPH02102194A (en) Vapor phase growth apparatus