JPS583928A - Manufacture of steel wire rod - Google Patents

Manufacture of steel wire rod

Info

Publication number
JPS583928A
JPS583928A JP10124381A JP10124381A JPS583928A JP S583928 A JPS583928 A JP S583928A JP 10124381 A JP10124381 A JP 10124381A JP 10124381 A JP10124381 A JP 10124381A JP S583928 A JPS583928 A JP S583928A
Authority
JP
Japan
Prior art keywords
steel
steel wire
wire rod
weight
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10124381A
Other languages
Japanese (ja)
Inventor
Kiyoaki Nishikiori
錦織 清明
Tsutomu Miyamoto
宮本 孜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP10124381A priority Critical patent/JPS583928A/en
Publication of JPS583928A publication Critical patent/JPS583928A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires

Abstract

PURPOSE:To prevent the breading of a steel wire rod in a drawing stage when the rod is manufactured by hot drawing, by carrying out spheroidizing after hot drawing and finish drawing at specified temps. CONSTITUTION:A steel contg. 0.4-1.5wt% C, 0.1-0.4wt% Si and 0.1-1.5wt% Mn as basic components or contg. further Cu, Ni, Cr, Mo or other element is heated to 900-1,000 deg.C, hot rolled, finish-drawn at the Ar3 transformation point of the rolled steel-900 deg.C, and spheroidized at 750 deg.C for 6hr. By carrying out heating to such a relatively low temp. and working at such a low temp. as mentioned above, the structure is made fine, the rupture deflection is increased, and the breaking of the resulting steel wire rod during drawing is prevented.

Description

【発明の詳細な説明】 この発明は、伸線時における耐折損性に優れた鋼線材の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a steel wire rod with excellent breakage resistance during wire drawing.

鋼線材には、低炭素鋼線材から中・高炭素鋼線材、さら
には合金鋼線材に至るまで数多くのものがあるが、これ
らの鋼線材は、多くの場合、鋼塊ま友は鋼片を熱間圧延
した後球状化焼なましを行なうことにより製造される。
There are many types of steel wire rods, ranging from low carbon steel wire rods to medium and high carbon steel wire rods, and even alloy steel wire rods, but these steel wire rods are often made from steel ingots or billets. It is manufactured by hot rolling and then spheroidizing annealing.

そして、この鋼線材を線引加工により伸線して鋼線とす
るのが普通である。ところが、上記伸線工程において、
線材の運搬中などにおいて生じた微少な表面疵を起点と
して折損を生ずることがあり、このような折損の発生は
伸線工程での能率を著しく低下させるものとなっていた
。そこで、従来、上記表面疵に対する改善手段として、
表面疵を渦流探傷法などによって検査したり、異面溶剤
や表面皮むきなどによって表面疵を除去したりするなど
の対策が施されることが多いが、微少な表面疵について
は完全に除去することは困難である。また、このような
対策を施した場合には、表面疵を発見した際に伸線作業
を一時的に中断したり、表面溶剤によって歩留りが低下
したりするなど、鋼線製造コストが上昇するという問題
を有していた。そのため、表面疵の程度が同じであって
も伸線時に折損を生じがたい鋼線材の開発も望まれてい
たが、従来よりこの種の問題に対する研究はあまり行な
われておらず、表面疵の存在下で伸線時の折損発生を低
減する方法はあまり提案されていない。
Then, this steel wire rod is usually drawn into a steel wire by a wire drawing process. However, in the above wire drawing process,
Breakage may occur due to minute surface flaws that occur during wire transportation, etc., and the occurrence of such breakage significantly reduces efficiency in the wire drawing process. Therefore, conventionally, as a means of improving the above-mentioned surface flaws,
Countermeasures are often taken such as inspecting for surface flaws using eddy current flaw detection or removing surface flaws using a different solvent or surface peeling, but for minute surface flaws, it is necessary to completely remove them. That is difficult. In addition, if such measures are taken, steel wire manufacturing costs will increase, as wire drawing operations will have to be temporarily suspended when surface flaws are discovered, and yields will decrease due to surface solvents. I had a problem. Therefore, it has been desired to develop a steel wire rod that is less prone to breakage during wire drawing even if the degree of surface flaws is the same, but there has been little research into this type of problem, and Few methods have been proposed to reduce the occurrence of breakage during wire drawing in the presence of wire.

そこで、本発明者らは、鋼線材の靭性を高めることによ
って伸線時の折損発生を低減することに着目して種々の
実験研究を積み重ねた結果、この種の鋼線材の靭性は、
第1図および第2図に示すようなプレスノツチ曲げ試験
による破断たわみを測定することによって評価できるこ
とを確認し、破断たわみのより大きな鋼線材を開発する
ことを目的としてさらに実験を積み重ね、この発明を完
成するに至った。なお、第1図および第2図において、
1は試験片、2は押圧具、6は支え、4は試験片1に形
成した切欠部である。
Therefore, the present inventors focused on reducing the occurrence of breakage during wire drawing by increasing the toughness of the steel wire rod, and as a result of various experimental studies, the toughness of this type of steel wire rod is as follows.
It was confirmed that the evaluation could be made by measuring the fracture deflection by the press notch bending test as shown in Figures 1 and 2, and further experiments were carried out with the aim of developing a steel wire rod with a larger fracture deflection. It was completed. In addition, in Fig. 1 and Fig. 2,
1 is a test piece, 2 is a pressing tool, 6 is a support, and 4 is a notch formed in the test piece 1.

この発明は、上述した従来の問題点に着目してなされた
もので、上記の如く、破断たわみのより大きな鋼線材を
開発し、この鋼線材を伸線して鋼線とする伸線工程での
折損発生を低減できる↓うにすることを目的としている
This invention was made by focusing on the above-mentioned conventional problems, and as described above, a steel wire rod with a larger breaking deflection was developed, and a wire drawing process for drawing this steel wire rod into a steel wire was made. The purpose is to reduce the occurrence of breakage.

この発明は、C:0.4〜1.5重量%、8i:O01
〜0.4重量%、Mn : 0.1〜1.5重量%を基
本組成とし、さらに必要に応じて適宜の合金成分を含む
鋼を用いて熱間圧延により鋼線材を製造するに際し、前
記鋼を900℃以上1000℃以下の比較的低い温度に
加熱した後圧延を開始し、次いで圧延材のAr3変態点
以上900℃以下の比較的低い温度の範囲内にあるとき
に最終ロールを通過するように圧延温度を制御(,7て
仕上圧延を行ない、その後通常の方法で球状死焼なまし
を行なうようにしたことを特徴としている。
In this invention, C: 0.4 to 1.5% by weight, 8i: O01
~0.4% by weight, Mn: 0.1 to 1.5% by weight as a basic composition, and further contains appropriate alloy components as necessary when manufacturing a steel wire rod by hot rolling. Rolling is started after the steel is heated to a relatively low temperature of 900°C or higher and 1000°C or lower, and then passed through the final roll when the rolled material is within a relatively low temperature range of 900°C or higher than the Ar3 transformation point of the rolled material. It is characterized in that the rolling temperature is controlled (7) to perform finish rolling, and then spherical dead annealing is performed in the usual manner.

この発明に係る鋼線材は、C:0.4〜1.5重量%、
Si : 0.1〜0.4重量%、Mn : 0.1〜
1.5重量%を基本組成とし、さらに必要に応じて適宜
の合金元素を添加含有するものであり、たとえば普通炭
素鋼線材(硬鋼線材、ばね鋼線材、冷間圧造用炭素鋼線
材等を含む)や、合金鋼線材(ばね鋼線材、耐熱鋼線材
、鉄クロム電熱線材等を含む)々どがある。
The steel wire according to the present invention includes C: 0.4 to 1.5% by weight,
Si: 0.1~0.4% by weight, Mn: 0.1~
The basic composition is 1.5% by weight, and additionally contains appropriate alloying elements as necessary.For example, ordinary carbon steel wire rod (hard steel wire rod, spring steel wire rod, carbon steel wire rod for cold heading, etc.) ) and alloy steel wire rods (including spring steel wire rods, heat-resistant steel wire rods, iron-chromium heating wire rods, etc.).

上記化学成分のうち、Cけその含有量が帆4重tel)
未満では鋼線としての必要な強度が期待できず、また、
■。5重1%を越えると網状セメンタイトが多く生成し
て靭性を著しく損うため、0.4〜1.5重量%とした
Among the above chemical components, the content of C is 4 layers)
If it is less than that, the necessary strength as a steel wire cannot be expected, and
■. If the content exceeds 1% by weight, a large amount of reticular cementite will be produced and the toughness will be significantly impaired, so the content is set at 0.4 to 1.5% by weight.

また、Slは製鋼作業において脱酸を十分に行なって欠
陥のない鋼を得るためには0.1重量%以上含有させる
ととが必要である。しかし、0.4重量%を越えても脱
酸効果は飽和状態となるので、脱酸を目的とするための
Si含有量は、鋼の基本成分として、0.1〜0.4重
量%とした。
Further, in order to sufficiently deoxidize and obtain defect-free steel in steel manufacturing operations, it is necessary to contain 0.1% by weight or more of Sl. However, even if it exceeds 0.4% by weight, the deoxidizing effect reaches a saturated state, so the Si content for the purpose of deoxidizing is 0.1 to 0.4% by weight as a basic component of steel. did.

廁は鋼の焼入性を向上させ、強度ならびに靭性を向上さ
せるのに有効な元素であるが、0.1重量%未満ではそ
の効果が得られない。また、1.5重量%を越えると造
塊時の偏析によって強度にむらを生ずるおそれがあるの
で、鋼の基本成分として0.1〜1.5重量%とした。
Limium is an element effective in improving the hardenability of steel and improving its strength and toughness, but if it is less than 0.1% by weight, the effect cannot be obtained. Moreover, if it exceeds 1.5% by weight, there is a risk of uneven strength due to segregation during agglomeration, so the basic component of the steel is set at 0.1 to 1.5% by weight.

上記基本成分のほか、必要に応じて、S’1CuINi
 、 Or 、 Mo 、 W 、 CO、kl 、 
V 、 Nb 、 Ti 。
In addition to the above basic components, if necessary, S'1CuINi
, Or, Mo, W, CO, kl,
V, Nb, Ti.

Zr 、 B等の1種または2種以上を含有させること
もできる。
One or more types of Zr, B, etc. can also be contained.

これらのうち、Siは鋼の焼もどし軟化抵抗性および耐
へたり性を増加させるために有効な元素であり、とくに
ばね鋼線材の場合には脱酸に必要な量を越えて含有させ
ることが望ましい。しかし、含有量が多すぎると著しく
脆くなるので、その上限を3重量%とするのが良い。
Among these, Si is an effective element for increasing the tempering softening resistance and settling resistance of steel, and in particular, in the case of spring steel wire rods, Si cannot be contained in an amount exceeding the amount required for deoxidation. desirable. However, if the content is too large, it becomes extremely brittle, so it is preferable to set the upper limit to 3% by weight.

Cuは適量含有されている場合に析出硬化によって鋼の
強度を増すが、多すぎると熱間加工性を著しく害するの
で、その上限を005重量%とするのが良い。
When Cu is contained in an appropriate amount, it increases the strength of steel through precipitation hardening, but if it is too large, hot workability is significantly impaired, so the upper limit is preferably set to 0.05% by weight.

Niは鋼の靭性向上に役立つ元素であるが、多すぎると
オーステナイトが安定となり、耐力の不足をきたすので
、その上限を3重量%とするのが良い。
Ni is an element that helps improve the toughness of steel, but if it is present too much, austenite becomes unstable and yield strength is insufficient, so the upper limit is preferably 3% by weight.

Crは鋼の焼入性および強度を高めるのに有効な元素で
あるが、多すぎると鋼を脆化させ、熱間加工性を悪化す
るので、その上限を2重量%とするのが良い。
Cr is an effective element for increasing the hardenability and strength of steel, but too much Cr makes the steel brittle and impairs hot workability, so the upper limit is preferably 2% by weight.

MOは鋼の焼入性と強度を高めるのに有効な元素である
が、その効果は1.5重量%を越えると飽和状態となり
、それ以上含有させるとかえって鋼の熱間加工性を害す
るので、その上限を1.5重量%とするのが良い。
MO is an effective element for increasing the hardenability and strength of steel, but its effect reaches a saturated state when it exceeds 1.5% by weight, and containing more than that actually impairs the hot workability of steel. , the upper limit is preferably 1.5% by weight.

Wは鋼の強度を高めるのに有効な元素であるが、多すぎ
るとかえって熱間加工性を害するので、その上限を1.
5重量%とするのが良い。
W is an effective element for increasing the strength of steel, but too much W impairs hot workability, so the upper limit is set at 1.
The content is preferably 5% by weight.

Coは鋼の焼もどし軟化抵抗性を増大するのに有効な元
素であるが、2重量%を越えるとその効果は飽和状態と
なるので、その上限を2重量%とするのが良い。
Co is an effective element for increasing the temper softening resistance of steel, but if it exceeds 2% by weight, its effect reaches saturation, so the upper limit is preferably 2% by weight.

さらに、ktおよびV 、 Nb 、 Ti 、 ’Z
、rは、圧延過程において結晶粒を微細化し、Ar、変
態で生成するパーライトが微細化することにより、圧延
後の球状化焼なましにおいて球状化を促進するのに有効
な元素である。しかし、At含有量が多すぎると、鋼中
のA、/、Nが核となって圧延後の球状化焼鈍で黒鉛化
が起りやすくなるので、その上限を0.03重量%とす
るのが良い。また、V、Nb、Tl。
Furthermore, kt and V, Nb, Ti, 'Z
, r are effective elements for promoting spheroidization in the spheroidizing annealing after rolling by refining crystal grains in the rolling process and refining pearlite produced by Ar and transformation. However, if the At content is too large, A, /, and N in the steel will become nuclei and graphitization will easily occur during spheroidizing annealing after rolling, so it is recommended to set the upper limit to 0.03% by weight. good. Also, V, Nb, Tl.

Zrを含有させる場合には上記した効果が飽和する範囲
内で含有させるのが良く、シたがって、VINb 、 
Ti 、 Zrの上限を各々0.1重量%以下とし、V
 + Nb + Tl + Zr (0,3重量%と規
制すルノカ良い。
When Zr is contained, it is preferable to contain it within a range where the above-mentioned effects are saturated; therefore, VINb,
The upper limits of Ti and Zr are each 0.1% by weight or less, and V
+ Nb + Tl + Zr (It is good to regulate it at 0.3% by weight.

次に、上記基本組成および必要に応じて適宜の添加元素
を含む鋼を用いて熱間圧延により鋼線材を製造するに際
しては、前記鋼を900℃以上1000℃以下の温度に
加熱した後圧延を開始し、圧延材のAr、変態点以−ヒ
900℃以下の温度で仕上圧延を行ない、その後球状化
節がましを行なう。
Next, when manufacturing a steel wire rod by hot rolling using the steel containing the above basic composition and appropriate additive elements as necessary, the steel is heated to a temperature of 900°C or more and 1000°C or less, and then rolled. Finish rolling is performed at a temperature of 900° C. or lower than the Ar transformation point of the rolled material, and then spheroidization is performed.

ここで、上記鋼を900℃以上1000℃以下の比較的
低い温度に加熱した後圧延を開始するのは、圧延開始前
における鋼の加熱温度を低くして結晶粒の成長をできる
だけおさえるようにするためである。また、その後実施
する圧延において、圧延の最終ロールを通過するときの
仕上圧延温度をAr3変態点以上900℃以下の温度と
するのは、組織の微細化効果をより高めうるようにする
ためである。すなわち、仕上圧延温度が900℃を越え
ると組織の微細化効果が薄れ、その後の球状化焼なまし
において球状化が進みにくくなるので、仕上圧延温度の
上限を900℃とする。一方、仕」二圧延温変がAr、
変態点よりも低いと変形抵抗が大きくがるので、Ar3
変態点以上とする。
Here, rolling is started after heating the above-mentioned steel to a relatively low temperature of 900°C or more and 1000°C or less, in order to suppress the growth of crystal grains as much as possible by lowering the heating temperature of the steel before starting rolling. It's for a reason. In addition, in the subsequent rolling, the finish rolling temperature when passing through the final roll of rolling is set to a temperature above the Ar3 transformation point and below 900°C in order to further enhance the effect of microstructural refinement. . That is, if the finish rolling temperature exceeds 900°C, the effect of refining the structure will be weakened and spheroidization will be difficult to proceed in the subsequent spheroidizing annealing, so the upper limit of the finish rolling temperature is set at 900°C. On the other hand, the second rolling temperature change is Ar,
If it is lower than the transformation point, the deformation resistance increases, so Ar3
Above the metamorphosis point.

なお、上記仕上圧延において、圧延材が最終ロールを通
過した後の冷却速度を調整し、鋼線材の温度が室温に達
した後の金属組織が、フェライト+パーライトの面積総
和が90多以下となるようにすれば、その後の球状化焼
なましを行なった鋼線材の靭性をさらに改善することが
できるので、より望ましいといえる。
In addition, in the above finish rolling, the cooling rate after the rolled material passes through the final roll is adjusted so that the metal structure after the temperature of the steel wire reaches room temperature has a total area of ferrite + pearlite of 90 or less. This is more desirable because the toughness of the steel wire rod subjected to the subsequent spheroidizing annealing can be further improved.

実施例 1 表1に示す化学成分の鋼を高周波誘導炉によって溶製し
たのち造塊し、これらの鋼塊を同じく表1に示す加熱温
度に加熱した後線材圧延を開始し、圧延材が最終ロール
を通過するときの仕上圧延温度を同じく表1に示す温度
に調整し、その後空冷して直径13m+l+の線素材を
得た。つづいて、、750℃X 6 hrの条件で球状
化焼なましを行なって鋼線材を製造した。次いで、各鋼
線材から第1図および第2図に示す試験片1を切り出し
た。このときの試験片1の寸法は直径CD)が7叫、長
さ100+n+nであり、切欠き部4のθ=60°、■
=:0.2謹、R= 0.02聾であって、L−80閣
に定めて抑圧具2によるブレスノツチ曲げ試験を行なつ
た。この結果を同じく表1に示す。
Example 1 Steel having the chemical composition shown in Table 1 is melted in a high-frequency induction furnace and then formed into an ingot. After heating these steel ingots to the heating temperature also shown in Table 1, wire rod rolling is started, and the rolled material is the final The finish rolling temperature when passing through the rolls was adjusted to the temperature shown in Table 1, and then air-cooled to obtain a wire material with a diameter of 13 m+l+. Subsequently, spheroidizing annealing was performed at 750° C. for 6 hours to produce a steel wire rod. Next, test pieces 1 shown in FIGS. 1 and 2 were cut out from each steel wire rod. The dimensions of the test piece 1 at this time are diameter CD) of 7 mm, length of 100 + n + n, θ of notch 4 = 60°,
=: 0.2 hearing, R = 0.02 deafness, and a breath notch bending test was conducted using suppressor 2 as specified in L-80. The results are also shown in Table 1.

表1に示すように、加熱温11tおよび仕上圧延温度が
いずれも高い供試材AIの線材では、組織の微細化が十
分で彦<、破断たわみ量が小さいという結果となった。
As shown in Table 1, in the wire rod of test material AI in which both the heating temperature of 11 t and the finish rolling temperature were high, the structure was sufficiently refined and the amount of fracture deflection was small.

これに対して、加熱温度を900〜1000℃と比較的
低くシ、かつ仕上圧延温度もAr3変態点(表1に示す
供試材のAr3変態点は約720℃)以上900℃以下
と比較的低くした供試材A2〜70線材ではいずれも破
断たわみ量が多くなっており、仕上圧延温度を低くした
ものほど組織の微細化効果が大きく、その後の球状化が
良好に促進されて破断たわみ葉が多くなっている。また
、NbおよびVを含むものでは組織の微細化が良好で破
断たわみ歌がより多くなっている。
On the other hand, the heating temperature is relatively low at 900 to 1000°C, and the finish rolling temperature is also relatively high, above the Ar3 transformation point (the Ar3 transformation point of the sample material shown in Table 1 is about 720°C) and below 900°C. The amount of fracture deflection was large in all of the test materials A2 to 70 wire rods with lower finish rolling temperatures, and the lower the finish rolling temperature, the greater the effect of refining the structure, and the subsequent spheroidization was promoted well, resulting in a lower fracture deflection. are increasing. In addition, in those containing Nb and V, the structure was finely refined and the fracture deflection was more frequent.

実施例 2 表2に示す化学成分の鋼を実施例1の場合と同様に溶製
・造塊し、各鋼塊を同じく表2に示す加熱温度に加熱し
た後圧延を開始し、仕上圧延温度を同じく表2に示す温
gvc調整して最終ロールを通過させたのち空冷し、直
径10■の線素材を製造した。次いで、各線素材に対し
750℃X(3hrの条件で球状死焼なましを行なって
線材を製造し、実施例1と同様に試験片1を作成してプ
レスノツチ曲げ試験を行なった。この結果を同じく表2
に示す。なお、表2に示す供試材のAr3変態点は約7
29℃である。
Example 2 Steel having the chemical composition shown in Table 2 was melted and made into ingots in the same manner as in Example 1, and after each steel ingot was heated to the heating temperature shown in Table 2, rolling was started, and the finish rolling temperature was The wire material was adjusted to the temperature gvc shown in Table 2, passed through a final roll, and then cooled in air to produce a wire material with a diameter of 10 cm. Next, each wire material was subjected to spherical dead annealing at 750° C. Similarly, Table 2
Shown below. The Ar3 transformation point of the sample materials shown in Table 2 is approximately 7.
It is 29°C.

表2に示すように、加熱温度および仕上圧延温度がいず
れも高い供試材A8の線材では、組織の像細化が十分で
なく、破断たわみ量が小さいという結果が得られた。ま
た、加熱温度が高い供試材A9の線材および仕上圧延温
度が高い供試材屋10の線材においても破断たわみ量が
小さいという結果が得られた。これに対して供試材A1
1〜13の線材ではいずれも良好な結果を得た。このほ
か、Cr、Be含む線材についても実験したが、いずれ
も良好な結果が得られた。
As shown in Table 2, in the wire rod of specimen A8 in which both the heating temperature and the finish rolling temperature were high, the image fineness of the structure was not sufficient and the amount of deflection at break was small. Furthermore, results were obtained that the amount of fracture deflection was small for the wire rod of sample material A9, which had a high heating temperature, and the wire rod of sample material shop 10, which had a high finish rolling temperature. In contrast, sample material A1
Good results were obtained for all wire rods Nos. 1 to 13. In addition, experiments were also conducted on wire rods containing Cr and Be, and good results were obtained in both cases.

以上説明してきたように、この発明によれば、C: 0
.4〜1.5重量%、Si : 0.1〜O04重量%
、Mn : 0.1〜1.5重量%を基本組成とする鋼
を用いて熱間圧延により鋼線材を製造するに際し、前記
鋼f、900℃以上1000℃以下の温度に加熱した後
圧延を開始し、該圧延材のAr3変態点以上900℃以
下の温度で仕上圧延を行ない、その後球状北都なましを
行なうようにしたから、低温加熱および低温圧延によっ
て組織の微細化をはかることができ、その後の球状北都
なましにおける球状化を促進して鋼線材の破断たわみ量
を大きくすることが可能であり、破断たわみ量の増大に
よって伸線時における折損の発生を低減することができ
るという非常にすぐれた効果を有する。
As explained above, according to this invention, C: 0
.. 4-1.5% by weight, Si: 0.1-04% by weight
, Mn: When manufacturing a steel wire rod by hot rolling using steel having a basic composition of 0.1 to 1.5% by weight, the steel f is heated to a temperature of 900°C or more and 1000°C or less, and then rolled. Since finishing rolling is performed at a temperature above the Ar3 transformation point of the rolled material and below 900°C, and then spherical Hokuto annealing is performed, it is possible to refine the structure by low-temperature heating and low-temperature rolling. It is possible to increase the amount of fracture deflection of the steel wire by promoting spheroidization in the subsequent spherical Hokuto annealing, and the increase in the amount of fracture deflection reduces the occurrence of breakage during wire drawing. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は鋼線材の靭性評価に用いたプレス
ノツチ曲げ試験方法の実施状況を示す説明図および試験
片の切欠部拡大説明図である。 特許出願人  大同特殊鋼株式会社
FIGS. 1 and 2 are an explanatory diagram showing the implementation status of the press notch bending test method used for evaluating the toughness of steel wire rods, and an enlarged explanatory diagram of the notch of the test piece. Patent applicant: Daido Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)C:0゜4〜1.5重量%、Si : 0.1〜
0.4重量%、Mn : 0゜1〜1.5重量%を基本
組成とする鋼を用いて熱間圧延により鋼線材を製造する
に際し、前記鋼を900℃以上1000℃以下の温度に
加熱した後圧延を開始し、該圧延材のAr3変態点以上
900℃以下の温度で仕上圧延を行ない、その後球状化
焼なましを行なうことを特徴とする鋼線材の製造方法。
(1) C: 0°4~1.5% by weight, Si: 0.1~
0.4% by weight, Mn: When manufacturing a steel wire rod by hot rolling using steel having a basic composition of 0°1 to 1.5% by weight, the steel is heated to a temperature of 900°C or higher and 1000°C or lower. 1. A method for manufacturing a steel wire rod, which comprises starting rolling after rolling, performing finish rolling at a temperature of not less than the Ar3 transformation point of the rolled material and not more than 900° C., and then performing spheroidizing annealing.
JP10124381A 1981-07-01 1981-07-01 Manufacture of steel wire rod Pending JPS583928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10124381A JPS583928A (en) 1981-07-01 1981-07-01 Manufacture of steel wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10124381A JPS583928A (en) 1981-07-01 1981-07-01 Manufacture of steel wire rod

Publications (1)

Publication Number Publication Date
JPS583928A true JPS583928A (en) 1983-01-10

Family

ID=14295459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10124381A Pending JPS583928A (en) 1981-07-01 1981-07-01 Manufacture of steel wire rod

Country Status (1)

Country Link
JP (1) JPS583928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261188A (en) * 1988-08-23 1990-03-01 Kanai Hiroyuki Steel cord and tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261188A (en) * 1988-08-23 1990-03-01 Kanai Hiroyuki Steel cord and tire

Similar Documents

Publication Publication Date Title
TWI606124B (en) Steel for mechanical structure for cold room processing and manufacturing method thereof
JP3527641B2 (en) Steel wire with excellent cold workability
JP4008320B2 (en) Rolled and drawn wire rods for bearings
JPH05214484A (en) High strength spring steel and its production
JP2002194491A (en) Steel for spring
JP6969683B2 (en) Manufacturing method of induction material for induction hardened crankshaft and induction hardened crankshaft
WO2017169667A1 (en) Steel wire material, and methods respectively for producing steel wire material and steel wire
JP2000119806A (en) Steel wire rod excellent in cold workability, and its manufacture
JPS583928A (en) Manufacture of steel wire rod
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JPH11302785A (en) Steel for seamless steel pipe
JPS583919A (en) Manufacture of steel wire rod
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JP2781325B2 (en) Method for producing medium and high carbon martensitic stainless steel strip having fine carbides
JPS6137333B2 (en)
JPS583929A (en) Manufacture of steel wire rod
TWI806526B (en) Steel wire for mechanical structural parts and manufacturing method thereof
JPH05255738A (en) Production of steel for machine structural use excellent in delayed fracture resistance
JPH01123029A (en) Production of seamless stainless steel pipe
JP2002194432A (en) Method for manufacturing steel stock for spring
JPH0570894A (en) Alloy wire having high strength and low thermal expansion and excellent in twisting characteristic and its production
JPH066750B2 (en) Method for producing high strength ERW oil well steel pipe with excellent low temperature toughness
JP4517459B2 (en) Manufacturing method of steel material having ultrafine martensite structure
JP4103191B2 (en) High hardness steel for induction hardening with excellent corrosion resistance
JPH05214443A (en) Production of high carbon steel wire rod for wiredrawing