JPS5838824A - Temperature measuring system - Google Patents

Temperature measuring system

Info

Publication number
JPS5838824A
JPS5838824A JP13656881A JP13656881A JPS5838824A JP S5838824 A JPS5838824 A JP S5838824A JP 13656881 A JP13656881 A JP 13656881A JP 13656881 A JP13656881 A JP 13656881A JP S5838824 A JPS5838824 A JP S5838824A
Authority
JP
Japan
Prior art keywords
temperature
thermocouple
measured
thermoelectromotive force
thermocouples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13656881A
Other languages
Japanese (ja)
Other versions
JPS6334970B2 (en
Inventor
Fumiya Furuno
古野 二三也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Hokushin Electric Works Ltd
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokushin Electric Works Ltd, Yokogawa Hokushin Electric Corp filed Critical Hokushin Electric Works Ltd
Priority to JP13656881A priority Critical patent/JPS5838824A/en
Publication of JPS5838824A publication Critical patent/JPS5838824A/en
Publication of JPS6334970B2 publication Critical patent/JPS6334970B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples

Abstract

PURPOSE:To perform the accurate temperature measurement, by measuring the temperature at the same one position by two pairs of different thermocouples, and obtaining the measured temperature from the thermal electromotive forces. CONSTITUTION:The temperature at the same one position is measured by temperature measuring contact points A and D of two pairs of the different thermocouples 1 and 2. The thermal electromotive forces at reference contact points B, C, E, and F are inputted into a receiving meter 5, and the temperature is computed by an operator. Since two pairs of the thermocouples 1 and 2 are used for determining the temperature, no compensation error is present and the accurate temperature measurement is performed.

Description

【発明の詳細な説明】 この発明は熱電対費用いて温度を測定する温度測定シス
テムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature measurement system that uses thermocouples to measure temperature.

周知のように、熱電対は基準接点(冷接点)の温度が変
動すると測定結果に誤差が生じる。そこで、従来この測
定誤差を補償するために次のような対策がとちれていた
As is well known, when the temperature of a reference junction (cold junction) of a thermocouple changes, errors occur in the measurement results. Conventionally, the following measures have been taken to compensate for this measurement error.

(1)  基準接点を一定温度に保つ方法、第1図にこ
の方法による温度測定システムの概略構成を示す。
(1) Method of keeping the reference junction at a constant temperature. Figure 1 shows the schematic configuration of a temperature measurement system using this method.

この図において、1.2は熱電対線であシ、ムはそれら
の接点すなわち測温接点である。熱電対線1と銅導線4
1との接点1および熱電対iI2と銅導線4bとの接点
Oは共に基準接点であシ、氷点槽3に挿入され0℃に保
持される。このような構成によれば銅導線の開放端には
測温接点ムの温度のみで決定される熱起電力が得られる
。この熱起電力を受信計器うで測定して温度測定を行う
In this figure, numerals 1 and 2 are thermocouple wires, and numeral 2 is their contact point, that is, a temperature measuring junction. Thermocouple wire 1 and copper conductor wire 4
The contact point 1 between the thermocouple iI2 and the copper conducting wire 4b are both reference junctions, and are inserted into the freezing point bath 3 and maintained at 0°C. According to such a configuration, a thermoelectromotive force determined only by the temperature of the temperature-measuring contact point can be obtained at the open end of the copper conducting wire. The temperature is measured by measuring this thermoelectromotive force with a receiving instrument.

(8)  基準接点の温度補償を受信計器の入力回路で
行う方法。第2図に示すように熱電対線1.2が直接受
信計器に入力され、この場合の基準接点λOの温度は一
定に保れない、これを補償するため例えば入力回路をブ
リッジ回路にし、ブリッジ抵抗の一部として適応な温度
係数をもった基準接点温度補償用の抵抗R(lを基準接
点1、aの近傍に設ける。
(8) A method of performing temperature compensation of the reference junction using the input circuit of the receiving instrument. As shown in Figure 2, the thermocouple wire 1.2 is directly input to the receiving instrument, and in this case the temperature of the reference junction λO cannot be kept constant.To compensate for this, for example, the input circuit is made into a bridge circuit, and As part of the resistance, a reference junction temperature compensation resistor R(l) having an appropriate temperature coefficient is provided near the reference junction 1, a.

このような構成によシ測定誤差を補償する。この方法は
遠隔の温tl[l定の場合、第3図に示すように熱電対
線1.2に補償導線7.8を各々直列に接続して用いら
れることが多い。
Such a configuration compensates for measurement errors. When the remote temperature tl is constant, this method is often used by connecting compensation conductors 7.8 in series with the thermocouple wires 1.2, as shown in FIG.

ところで、上述した従来の温度測定システムには以下に
述べる欠点がある。
By the way, the conventional temperature measurement system described above has the following drawbacks.

(1)の方法においては、基準接点B、0の温度を氷点
に保つための氷点槽3が高価であると共に保守が面倒で
あシ、特に多個所温度測定の場合は測定点の数だけ氷点
槽3を必要とすることが多く、費用、保守作業が増大す
る欠点がある。
In the method (1), the freezing point tank 3 for keeping the temperature of the reference junctions B and 0 at the freezing point is expensive and troublesome to maintain. A tank 3 is often required, which has the drawback of increasing costs and maintenance work.

(2)の方法においては、補償導線7.8による補償の
誤差および受信計器6の入力回路部分での基準接点補償
回路の誤差が熱電対本来の誤差に加わシ、測定精度が低
下する欠点があシ、また、測定点と受信計器6との距離
が長い場合、高価な補償導線を多く要し、費用が嵩む欠
点がある。
In the method (2), the error of compensation by the compensation conductor 7.8 and the error of the reference junction compensation circuit in the input circuit of the receiving instrument 6 are added to the error inherent in the thermocouple, resulting in a reduction in measurement accuracy. Furthermore, if the distance between the measuring point and the receiving instrument 6 is long, a large number of expensive compensating conductors are required, resulting in increased costs.

この発明は上述した事情に鑑み、氷点槽、補償導線、あ
るいは補償回路勢を用いることなく、正確に被測定点の
温度を測定することができる温度測定システムを提供す
るもので、被測定点の温度を互いに異なる2対の熱電対
を用いて測定し、これらの熱電対から得られる異なる熱
起電力に基づいて温度測定を行うものである。
In view of the above-mentioned circumstances, the present invention provides a temperature measurement system that can accurately measure the temperature of a point to be measured without using a freezing point bath, a compensation conductor, or a compensation circuit. The temperature is measured using two different pairs of thermocouples, and the temperature is measured based on the different thermoelectromotive forces obtained from these thermocouples.

以下図面を参照しこの発明の実施例について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第4図はこの発明の一実施例の構成を示す概略構成図で
ある。この図において、αは熱電対線1.2とこれらの
接続点である測温接点ムを持つ熱電対であり、熱電対M
l、2の基準接点1、Cは各々銅導線10&を介して受
信計器5の入力端子に接続されている。また、βは熱電
対線1.2とは異なる材料で作られた熱電対1i!11
.12と、これらの接続点である測温接点りを持つ熱電
対であシ、熱電対線11.12の各々の基準接点X%ア
は各々銅導線l Obを介して受信計器5の入力端子に
接続されている。受信計器5は例えばマイクロプロセッ
サ等を用いて構成され熱電対αから得られる熱起電力1
αと、熱電対βから得られる熱起電力Iβとを測定し、
この測定結果に基づいて演算を行い測定温度t!11を
求めるものである。
FIG. 4 is a schematic configuration diagram showing the configuration of an embodiment of the present invention. In this figure, α is a thermocouple having a thermocouple wire 1.2 and a temperature measuring junction M which is the connection point of these wires, and the thermocouple M
The reference junctions 1, C of 1, 2 are connected to the input terminals of the receiving instrument 5 via copper conductors 10&, respectively. Also, β is a thermocouple 1i made of a different material from the thermocouple wire 1.2! 11
.. 12 and a thermocouple having a temperature measuring junction which is the connection point of these, and the reference junction X%A of each thermocouple wire 11. It is connected to the. The receiving instrument 5 is configured using, for example, a microprocessor, and receives thermoelectromotive force 1 obtained from the thermocouple α.
α and the thermoelectromotive force Iβ obtained from the thermocouple β are measured,
Calculation is performed based on this measurement result and the measured temperature t! 11.

次に受信計器5における演算動作を説明する。Next, the calculation operation in the receiving instrument 5 will be explained.

一般に熱電対の熱起電力Z、Vは、基準接点温度を0℃
とすると、測温接点温度t ”(の関数であり、次式で
示される。
Generally, the thermoelectromotive forces Z and V of a thermocouple are set at a reference junction temperature of 0°C.
Then, it is a function of the temperature measuring junction temperature t'', and is expressed by the following equation.

IC= t (t)             ・・・
・・・(1)なお、関数r(t)の形は「Jより  0
1602熱電対」に各穐熱電対毎に数嵌および式の形で
示されている。
IC=t(t)...
...(1) Furthermore, the form of the function r(t) is "0 from J
1602 Thermocouple", each thermocouple is shown in the form of numbers and formulas.

そして、互いに異なる2種の熱電対a1 βについて、
各々の熱起電力ma・1βは x a= t a(t)          ・・・…
(2)Eβ=fβ(1)        曲・・(3)
となる。今、熱電対α、βの測温接点温度が共に七〇℃
、基準接点温度が共にtr℃であるとすると、各熱電対
の熱起電力1ta% Mβは1ia−’g(tm’  
fa(tr)   ・・・・・・(4)鳶β=fβ(1
m) −1β(tl)  ・・・・・・(5)なる式に
よシ嵌わされる。熱起電力lα、Iβは測定によって得
られるから(4)% (5)式は未仰数t。
Regarding the two different types of thermocouples a1β,
Each thermoelectromotive force ma・1β is x a= t a(t)...
(2) Eβ=fβ(1) Song...(3)
becomes. Now, the temperature measurement junction temperature of thermocouples α and β are both 70℃.
, the reference junction temperature is tr℃, the thermoelectromotive force 1ta% Mβ of each thermocouple is 1ia-'g(tm'
fa(tr) ・・・・・・(4) Tobi β=fβ(1
m) -1β(tl) ......It is fitted according to the formula (5). Since the thermoelectromotive force lα and Iβ are obtained by measurement, it is (4)%.Equation (5) is an unexpressed number t.

とtrを持つ連立方程式となシ、一般に解が存在する。For simultaneous equations with and tr, there is generally a solution.

(4)、(5)式からtrを消去すると、’a(fa(
tm3  Ig)−/’jβ(tl(t、)−1β)=
0   ・・・・−(III) したがって、受信計器6内のマイクロセッサ等から成る
演算器が(6)式を解くことによυ、測定温度t、を求
めることができる。(6)式では未却数tr(基準接点
温度)が消去されていることから、演算結果t、!lは
熱起電力1ケ、Σβによって決定され基準接点温度tr
に全く影響されないことがわかる。
If tr is eliminated from equations (4) and (5), 'a(fa(
tm3 Ig)-/'jβ(tl(t,)-1β)=
0...-(III) Therefore, by solving equation (6) by the arithmetic unit, such as a microprocessor, in the receiving instrument 6, υ and the measured temperature t can be obtained. Since the uncalculated number tr (reference junction temperature) is eliminated in equation (6), the calculation result t,! l is determined by 1 thermoelectromotive force, Σβ, and the reference junction temperature tr
It can be seen that it is not affected at all.

なお、受信計器がすでに演算機能を持ったものであれば
、これをそのtt利用し、この実施例のためにわざわざ
新しい受信計器を設ける必要がない。
Incidentally, if the receiving instrument already has an arithmetic function, this can be used for the tt, and there is no need to take the trouble to provide a new receiving instrument for this embodiment.

また、上述した実施例において、熱電対α、βの各々の
片方の熱電対線2.11が同一部材であれば第う図に示
すようにこの同一部材で作られた熱電対線2.11e共
通にして構成してもよい。
In the above embodiment, if one thermocouple wire 2.11 of each of the thermocouples α and β is made of the same material, the thermocouple wire 2.11e made of the same material as shown in FIG. It may be configured in common.

このり線構成では、共通に使用する熱電対線2.11の
均一度、不均質度、熱起電力特性力安定度などに基づく
画然電対α、βの熱起電力誤差は画然電対a1  βに
等しく影響を及ぼすので、熱起電力誤差が最終結果に殆
んど影響を与えないという長所がある。また、5線構成
であることから、延長線(銅導線)や受信計器5の入力
端子数が少なくて済む利点が得られる。なお、このよう
な構成にし得る熱電対の組合せを具体的に挙げれば、ご
規格による1熱電対とJ熱電対の組合せが挙げられる。
In this linear wire configuration, the thermoelectromotive force error of the thermocouples α and β is based on the uniformity, heterogeneity, thermoelectromotive force characteristic force stability, etc. of the commonly used thermocouple wires 2.11. There is an advantage that the thermoelectromotive force error has little influence on the final result since it equally affects the pair a1β. Further, since it has a five-wire configuration, there is an advantage that the number of extension wires (copper conductive wires) and input terminals of the receiving instrument 5 can be reduced. Specifically, a combination of thermocouples that can be configured in this manner is a combination of thermocouple 1 and thermocouple J according to the standard.

また、このような51m構造の場合、共通でない2線間
の電圧を測定し、この結果から、測定温度t、を矧るこ
ともできる。
Furthermore, in the case of such a 51m structure, it is also possible to measure the voltage between two wires that are not common, and to estimate the measured temperature t from this result.

また、この実施例では受信計器5が測定した熱起電力K
a、!βに基づき、種々の演算を行って測定温度tm1
求めたが、測定温度131を簡単に求めるための図表、
表、もしくは式を予め作成しておき、これから測定温[
1,を求めることも可能である。第6図にこのような図
表の一例を示す。
Further, in this embodiment, the thermoelectromotive force K measured by the receiving instrument 5
a,! Based on β, various calculations are performed to determine the measured temperature tm1
However, there is a chart for easily determining the measured temperature 131,
Create a table or formula in advance and measure the temperature [
1, is also possible. Figure 6 shows an example of such a diagram.

この図表は「J工801602熱電対」に規定された1
熱電対とJ熱電対を使用し、双方の熱起電力から測定温
ft、を求める図表である。例えば、1熱電対の熱起電
力が52−06mV、W熱電対の熱起電力が23.52
 m Vであった場合、その交点の座標から測定温度t
!Ilが4〒5℃であることが解る。また、この図表を
拡大して作成しておけば、測定温度t、を1〜2゛Cの
精度で測定することができる。
This chart is 1 stipulated in "J Engineering 801602 Thermocouple"
This is a chart for calculating the measured temperature ft from the thermoelectromotive force of both using a thermocouple and a J thermocouple. For example, the thermoelectromotive force of 1 thermocouple is 52-06mV, and the thermoelectromotive force of W thermocouple is 23.52mV.
m V, the measured temperature t is determined from the coordinates of the intersection point.
! It can be seen that Il is 4〒5℃. Furthermore, if this chart is enlarged and created, the measured temperature t can be measured with an accuracy of 1 to 2°C.

また、この実施例において、測定箇所が多数ある場合は
、測定箇所毎に設置した熱電対の出力を各熱電対の直後
または受信計器6の入力端子付近で切換えるようにする
と、受信計器5が1台で済むことになシ、測定点1点画
シのシステムの価格を更に低下させることができる。
In addition, in this embodiment, when there are many measurement points, if the output of the thermocouple installed at each measurement point is switched immediately after each thermocouple or near the input terminal of the receiving instrument 6, the receiving instrument 5 can be Since only a single measuring point is required, the price of the system with one measurement point can be further reduced.

ところで、telとfβが共に直線に極めて近い関数で
あれば測定温度t、と基準接点温度t1との両値は熱起
電力m、、!βとからは一義的に決まらないのはいうま
でもない、*た、上述した温度測定システムにおいては
、測定温度t、と基準接点温度trとが極めて近い値で
あるとき(例えば、測定対象の温度が上昇を開始した直
後)、測定誤差が大きくなるという欠点がある。
By the way, if both tel and fβ are functions extremely close to a straight line, both the values of the measured temperature t and the reference junction temperature t1 are the thermoelectromotive force m,...! It goes without saying that it cannot be determined uniquely from β. Immediately after the temperature starts to rise), the disadvantage is that the measurement error increases.

すなわち、’m’Wtrにおいては前記(4)、@)式
においてI a ’q O、lβ−Oとなシ、tヨとt
lはほぼ相等しいという条件を保ちながら値自体は不定
である。このため、数学的には前記(4)、(6)式の
解が存在しても求められた値は誤差の大きいものとなる
。このことは、第6図において熱起電力が小さくなる#
1ど等温線が密になることからも明らかである。
That is, in 'm'Wtr, in the above formula (4), I a 'q O, lβ-O, tyo and t
The value itself is indefinite while maintaining the condition that l is approximately equal. Therefore, mathematically, even if solutions to equations (4) and (6) exist, the obtained values will have a large error. This means that the thermoelectromotive force becomes smaller in Figure 6.
This is clear from the fact that the isotherms become denser.

他方s t y(′−4trにおいては通常正確なt、
の値は必要とされず極端に真の値からずれていなければ
よい場合が多い。そこで、tm−trにおける温度測定
方法として次の方法が考えられる。
On the other hand, s ty (usually exact t in '-4tr,
The value of is not required and is often sufficient as long as it does not deviate significantly from the true value. Therefore, the following method can be considered as a temperature measurement method at tm-tr.

tll1−1r>0と1m−1r=0との閣の適当なt
シtrに和尚するどちらかの熱電対の熱起電力を設定し
、この値を]!!0として、Iα≦Eo(もしくはlβ
≦Io)の範囲で、基準接点温度trを予めある一定値
troに設定しておき、このtreを前述した(4)式
または(5)式のtrに代入して測定温度t!Ilを算
出する。(なお、(4)、(6)式双方から測定温Wt
mを求め、これらの値を平均してもよい。)即ち、演算
結果tmitIl11とすると(7)式が得られる。
Appropriate t for cabinets with tll1-1r>0 and 1m-1r=0
Set the thermoelectromotive force of either thermocouple and set this value]! ! 0, Iα≦Eo (or lβ
≦Io), the reference junction temperature tr is set in advance to a certain constant value tro, and this tre is substituted into tr in the above-mentioned equation (4) or (5) to obtain the measured temperature t! Calculate Il. (In addition, from both equations (4) and (6), the measured temperature Wt
m may be determined and these values may be averaged. ) That is, when the calculation result is tmitIl11, equation (7) is obtained.

tm+=?’a(f*(tro )+Ia)     
  ”” (7)Kg>Ioでは(6)式から得られる
twoを、M6M。
tm+=? 'a(f*(tro)+Ia)
``'' (7) When Kg>Io, two obtained from equation (6) is M6M.

では(7)式から得られるt、1をtI!lとする。Now, let t,1 obtained from equation (7) be tI! Let it be l.

このようにして求めたtつをχαを独立変数としてグラ
フにすると第7図に示すようになる。なお、この図にお
いて曲111rJ1が(6)式を表し、また曲線L!が
(テ)式を表している。また、この図においては(6)
式の1βの値はtrをある一定値に固定したときの値で
あるが%trが変化した場合は図に示す破線のように曲
* L sが変化する。
When the t values obtained in this way are plotted as a graph with χα as an independent variable, it becomes as shown in FIG. In this figure, the song 111rJ1 represents equation (6), and the curve L! represents the (Te) expression. Also, in this figure (6)
The value of 1β in the equation is the value when tr is fixed at a certain constant value, but when %tr changes, the song *Ls changes as shown by the broken line in the figure.

図から解るように冨f4゜においてはくも)式、(7)
式から各々求められるtlII 0% t12+1は一
般に不連続となシ、この不連続性は例えイ測定対象に対
し温度制御を行う場合郷にシいては不都合がある。
As can be seen from the figure, at a depth f4°, the spider) formula, (7)
tlII 0% t12+1, which are obtained from the equations, are generally discontinuous, and this discontinuity is inconvenient, for example, when temperature control is performed on the object to be measured.

このため、1α誼!。においてtヨ。と連続となるよう
なtm茸を与える関数を設定する0例えば次式がこれな
満たす。
For this reason, 1α! . At tyo. Set a function that gives tm mushrooms that are continuous with 0. For example, the following equation satisfies this.

この(8)式および前出の(6)式をグツ7にすると第
8図に示すように1m社]1 oの点で連続となるが、
(8)式かられかるようにtagはl a tx Q付
近において、この付近では誤差の大きいtWOの影響が
全くOにはならず、このため測定結果に誤差が生じてし
まう。そこで、これを回避するためにo <m D〈!
。を満たすl を設定し、鵞α≦IDの範囲ではt!、
loの影替が全くない(マ)式を用い、ID<”≦1゜
の範囲では1110でt讃と連続1かつ% −一1でt
llllと連続な関数t1.laを導入する。
If this equation (8) and the above-mentioned equation (6) are reduced to 7, they become continuous at the point 1m, 1o, as shown in Figure 8.
As can be seen from equation (8), when tag is near l a tx Q, the influence of tWO, which has a large error, does not become O at all in this vicinity, which causes an error in the measurement result. Therefore, to avoid this, o <m D<!
. Set l that satisfies, and t in the range of α≦ID! ,
Using the (Ma) formula, which has no shadow change of lo, in the range of ID
lllll and continuous function t1. Introducing la.

例えば、次式がこの条件を満たす。For example, the following formula satisfies this condition.

このように、IeeIlのとる値によって範囲を3つに
分は各々の範囲において異なる式を用いて測定温度tI
llt−算出するようにする。Xヶ>10の範囲で(6
)式を1!iI)◇−く!。の範囲で(9)式を、m、
(xつの範囲で(〕)式を用いて測定温度t を算出し
た場合のグラフを第9図に示す。この図から解かるよう
に測定温度1mは測定する熱起電力−。(もしくはIβ
)の全範囲で連続である。なお、上述した説明では測定
温ftmを熱起電力1.の関数として扱ったが、もちろ
ん、熱起電力1βの関数として扱ってもよい。
In this way, the range is divided into three depending on the value of IeeIl, and a different formula is used in each range to calculate the measured temperature tI.
llt-calculate. In the range of X > 10 (6
) expression 1! iI) ◇-ku! . Expression (9) within the range of m,
Figure 9 shows a graph when the measured temperature t is calculated using the formula () within x ranges.
) is continuous over the entire range. Note that in the above explanation, the measured temperature ftm is the thermoelectromotive force 1. Although treated as a function of , of course, it may also be treated as a function of thermoelectromotive force 1β.

このように、上記方法は熱起電力鵞α(モジくは1β)
のとる値に応じて測定温ft!lを算出する式を費更す
るので、熱起電力1a(もしくはlβ)の値の大小にか
かわらず、測定温[1,を極めて正確に算出することが
できる。
In this way, the above method generates thermoelectromotive force α (mojiku is 1β)
Depending on the value taken, the measured temperature ft! Since the formula for calculating l is changed, the measured temperature [1,] can be calculated extremely accurately regardless of the magnitude of the thermoelectromotive force 1a (or lβ).

以上説明したようにこの発明によれば、異なる2対の熱
電対で同一箇所の温度を測定し、この結果両熱電対に得
られる1つの熱起電力から−j定温度を求めるようにし
たので、以下に述べる効果が得られる。
As explained above, according to the present invention, the temperature at the same location is measured with two different pairs of thermocouples, and the -j constant temperature is determined from one thermoelectromotive force obtained as a result of both thermocouples. , the following effects can be obtained.

■ 氷点槽などの基準接点装置が不要であシ、シたがっ
て温mm走システムは保守が容易になシ、その構成を簡
単にできる。■補償導線が不要で、それに代るものは通
常の銅導線でよく特に遠隔測定システムの場合に、シス
テムを構成する費用を安くできる。■補償導線が不要で
あシ、また、受信計器の入力回路に基準接点補償回路が
不要であることからそれらによる補償誤差が全くなく、
シたがって、精度のよいgIAll!醐定を行うことが
でききる。
■ A reference junction device such as a freezing point tank is not required, so the warm mm running system is easy to maintain and its configuration is simple. - Compensating conductors are not required; instead, ordinary copper conductors can be used instead, reducing the cost of constructing the system, especially in the case of telemetry systems. ■No compensation conductor is required, and there is no need for a reference junction compensation circuit in the input circuit of the receiving instrument, so there is no compensation error caused by them.
Therefore, highly accurate gIAll! Be able to make decisions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜館り図は従来の1度測定システムの構成を示す
概略構成図、第4図はこの発明の一実施例の構成を示す
概略構成図、第う図は熱電対a5βをj[i構成にした
場合の構成を示す図、第6図は1N!熱電対および1熱
電対の各熱起電力から一定温度1.を求めるための図、
第7図〜第9図は咎々熱起電力1αに対する測定温度t
1の変化を表わす図である。 α、β・・・・・・熱電対、5・・・・・・受信計器。 第1図 第7図 ノ/ 第8図
Figures 1 to 2 are schematic diagrams showing the configuration of a conventional one-time measurement system, Figure 4 is a schematic diagram showing the configuration of an embodiment of the present invention, and Figure 3 shows the thermocouple a5 Figure 6, which shows the configuration when the i configuration is used, is 1N! Constant temperature 1. from each thermoelectromotive force of a thermocouple and 1 thermocouple. Diagram for finding
Figures 7 to 9 show the measured temperature t for the thermoelectromotive force 1α.
FIG. 1 is a diagram showing a change in number. α, β...Thermocouple, 5...Receiving instrument. Figure 1 Figure 7 / Figure 8

Claims (1)

【特許請求の範囲】[Claims] L 同一測定点の温度を測定し、2種の熱起電力を発生
する熱電対を具備し、前記熱電対に得られる2種の熱起
電力に基づき測定点の温度を測定することを特徴とする
温度測定システム。
L. It is characterized by comprising a thermocouple that measures the temperature at the same measurement point and generates two types of thermoelectromotive force, and measures the temperature at the measurement point based on the two types of thermoelectromotive force obtained by the thermocouple. temperature measurement system.
JP13656881A 1981-08-31 1981-08-31 Temperature measuring system Granted JPS5838824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13656881A JPS5838824A (en) 1981-08-31 1981-08-31 Temperature measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13656881A JPS5838824A (en) 1981-08-31 1981-08-31 Temperature measuring system

Publications (2)

Publication Number Publication Date
JPS5838824A true JPS5838824A (en) 1983-03-07
JPS6334970B2 JPS6334970B2 (en) 1988-07-13

Family

ID=15178290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13656881A Granted JPS5838824A (en) 1981-08-31 1981-08-31 Temperature measuring system

Country Status (1)

Country Link
JP (1) JPS5838824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148026A (en) * 1989-11-01 1991-06-24 Luxtron Corp Automatic calibration pair sensor non- contact temperature measuring method and apparatus
WO1999031493A1 (en) * 1997-12-17 1999-06-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Differential thermoanalysis device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100476A (en) * 1973-02-01 1974-09-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100476A (en) * 1973-02-01 1974-09-24

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148026A (en) * 1989-11-01 1991-06-24 Luxtron Corp Automatic calibration pair sensor non- contact temperature measuring method and apparatus
JPH0754272B2 (en) * 1989-11-01 1995-06-07 ラクストロン コーポレイション Method and apparatus for auto-calibration vs. sensor non-contact temperature measurement
WO1999031493A1 (en) * 1997-12-17 1999-06-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Differential thermoanalysis device

Also Published As

Publication number Publication date
JPS6334970B2 (en) 1988-07-13

Similar Documents

Publication Publication Date Title
US7775711B2 (en) Temperature measurement device and measurement method
US4403296A (en) Measuring and determination device for calculating an output determination based on a mathematical relationship between multiple different input responsive transducers
US7658539B2 (en) Temperature sensor configuration detection in process variable transmitter
US3891391A (en) Fluid flow measuring system using improved temperature compensation apparatus and method
CA1043124A (en) Fluid flow measuring system
US8864378B2 (en) Process variable transmitter with thermocouple polarity detection
EP0434824B1 (en) Integrated digital standardized precision thermometer
JPH02136754A (en) Method and apparatus for measuring fine electrical signal
US4011746A (en) Liquid density measurement system
JPS5838824A (en) Temperature measuring system
JPH0766480B2 (en) Measuring head
JPH07286910A (en) Temperature converter
CN108204865A (en) Industrial instrument, industrial control system and RTD temp measuring methods
JP2675467B2 (en) Multi-point temperature measuring device
JPS60220872A (en) Instrument for measuring resistance
JPH10185642A (en) Flowmeter
CN115077745A (en) Thermal resistance thermometer calibration method based on thermometer
JPS6131925A (en) Level gauge for liquid helium
JPS62182670A (en) Flow velocity measuring instrument
JPS5815050B2 (en) pirani vacuum gauge
SU101709A1 (en) Device for automatic thermocouple error compensation
JPH01216224A (en) Multipoint temperature measuring instrument
SU805218A1 (en) Method of testing electro-thermal pulse pickups of non-electric values
JPH0430858B2 (en)
JPH08178763A (en) Calibration of thermometer