JPS6334970B2 - - Google Patents

Info

Publication number
JPS6334970B2
JPS6334970B2 JP56136568A JP13656881A JPS6334970B2 JP S6334970 B2 JPS6334970 B2 JP S6334970B2 JP 56136568 A JP56136568 A JP 56136568A JP 13656881 A JP13656881 A JP 13656881A JP S6334970 B2 JPS6334970 B2 JP S6334970B2
Authority
JP
Japan
Prior art keywords
temperature
thermocouple
junction
thermoelectromotive force
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56136568A
Other languages
Japanese (ja)
Other versions
JPS5838824A (en
Inventor
Fumya Furuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP13656881A priority Critical patent/JPS5838824A/en
Publication of JPS5838824A publication Critical patent/JPS5838824A/en
Publication of JPS6334970B2 publication Critical patent/JPS6334970B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 この発明は熱電対を用いて温度を測定する温度
測定システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature measurement system that measures temperature using a thermocouple.

周知のように、熱電対は基準接点(冷接点)の
温度が変動すると測定結果に誤差が生じる。そこ
で、従来この測定誤差を補償するために次のよう
な対策がとられていた。
As is well known, when the temperature of a reference junction (cold junction) of a thermocouple changes, errors occur in the measurement results. Therefore, the following measures have been conventionally taken to compensate for this measurement error.

(1) 基準接点を一定温度に保つ方法。第1図にこ
の方法による温度測定システム概略構成を示
す。この図において、1,2は熱電対線であ
り、Aはそれらの接点すなわち測温接点であ
る。熱電対線1と銅導線4aとの接点Bおよび
熱電対線2と銅導線4bとの接点cは共に基準
接点であり、氷点槽3に挿入され0℃に保持さ
れる。このような構成によれば銅導線の開放端
には測温接点Aの温度のみで決定される熱起電
力が得られる。この熱起電力を受信計器5で測
定して温度測定を行う。
(1) A method of keeping the reference junction at a constant temperature. FIG. 1 shows a schematic configuration of a temperature measurement system using this method. In this figure, 1 and 2 are thermocouple wires, and A is their contact point, that is, a temperature measuring contact point. A contact point B between the thermocouple wire 1 and the copper conducting wire 4a and a contact point C between the thermocouple wire 2 and the copper conducting wire 4b are both reference junctions, and are inserted into the freezing point bath 3 and maintained at 0°C. According to such a configuration, a thermoelectromotive force determined only by the temperature of the temperature measuring junction A can be obtained at the open end of the copper conducting wire. This thermoelectromotive force is measured by the receiving instrument 5 to measure the temperature.

(2) 基準接点の温度補償を受信計器の入力回路で
行う方法。第2図に示すように熱電対線1,2
が直接受信計器5に入力され、この場合の基準
接点B,Cの温度は一定に保れない。これを補
償するため例えば入力回路をブリツジ回路に
し、ブリツジ抵抗の一部として適応な温度係数
をもつた基準接点温度補償用の抵抗Rdを基準
接点B,Cの近傍に設ける。
(2) A method in which temperature compensation of the reference junction is performed using the input circuit of the receiving instrument. As shown in Figure 2, thermocouple wires 1 and 2
is directly input to the receiving instrument 5, and in this case the temperature of the reference junctions B and C cannot be kept constant. To compensate for this, for example, the input circuit is a bridge circuit, and a reference junction temperature compensation resistor Rd having an appropriate temperature coefficient is provided near the reference junctions B and C as part of the bridge resistance.

このような構成により測定誤差を補償する。
この方法は遠隔の温度測定の場合、第3図に示
すように熱電対線1,2に補償導線7,8を
各々直列に接続して用いられることが多い。
Such a configuration compensates for measurement errors.
In the case of remote temperature measurement, this method is often used by connecting compensating lead wires 7 and 8 in series with thermocouple wires 1 and 2, respectively, as shown in FIG.

ところで、上述した従来の温度測定システムに
は以下に述べる欠点がある。(1)の方法において
は、基準接点B,Cの温度を氷点に保つための氷
点槽3が高価であると共に保守が面倒であり、特
に多個所温度測定の場合は測定点の数だけ氷点槽
3を必要とすることが多く、費用、保守作業が増
大する欠点がある。(2)の方法においては、補償導
線7,8による補償の誤差および受信計器5の入
力回路部分での基準接点補償回路の誤差が熱電対
本来の誤差に加わり、測定精度が低下する欠点が
あり、また、測定点と受信計器5との距離が長い
場合、高価な補償導線を多く要し、費用が嵩む欠
点がある。
By the way, the conventional temperature measurement system described above has the following drawbacks. In the method (1), the freezing point tank 3 for keeping the temperature of the reference junctions B and C at the freezing point is expensive and troublesome to maintain.Especially in the case of temperature measurement at multiple points, the freezing point tank 3 for keeping the temperature of the reference junctions B and C at the freezing point is required. 3 is often required, which has the disadvantage of increasing costs and maintenance work. The method (2) has the disadvantage that the compensation error caused by the compensation conductors 7 and 8 and the error of the reference junction compensation circuit in the input circuit section of the receiving instrument 5 are added to the inherent error of the thermocouple, reducing measurement accuracy. Furthermore, when the distance between the measuring point and the receiving instrument 5 is long, a large number of expensive compensating conductors are required, resulting in increased costs.

この発明は上述した事情に鑑み、氷点槽、補償
導線、あるいは補償回路等を用いることなく、正
確に被測定点の温度を測定することができる温度
測定システムを提供するもので、第1の熱電対
と、測温接点および基準接点が前記第1の熱電対
の測温接点および基準接点と各々同一箇所に配置
され、前記第1の熱電対と構成材料が異なる第2
の熱電対と、前記第1の熱電対から得られる前記
測温接点と基準接点との間に温度差に応じた第1
の熱起電力と、前記第2の熱電対から得られる前
記測温接点と基準接点との間の温度差に応じた第
2の熱起電力とに基づいて、前記測温接点の温度
を算出する演算手段とを具備することを特徴とし
ている。
In view of the above-mentioned circumstances, the present invention provides a temperature measurement system that can accurately measure the temperature of a point to be measured without using a freezing point tank, compensation conductor, compensation circuit, etc. a second thermocouple whose temperature measuring junction and reference junction are respectively arranged at the same location as the temperature measuring junction and the reference junction of the first thermocouple, and whose constituent material is different from that of the first thermocouple;
and a first thermocouple corresponding to a temperature difference between the temperature measuring junction and the reference junction obtained from the first thermocouple.
and a second thermoelectromotive force according to the temperature difference between the temperature measurement junction and the reference junction obtained from the second thermocouple, calculate the temperature of the temperature measurement junction. The present invention is characterized in that it is equipped with a calculation means that performs the following steps.

以下図面を参照しこの発明の実施例について説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第4図はこの発明の一実施例の構成を示す概略
構成図である。この図において、αは熱電対線
1,2とこれらの接続点である測温接点Aを持つ
熱電対であり、熱電対線1,2の基準接点B,C
は各々銅導線10aを介して受信計器5の入力端
子に接続されている。また、βは熱電対線1,2
とは異なる材料で作られた熱電対線11,12
と、これらの接続点である測温接点Dを持つ熱電
対であり、熱電対線11,12の各々の基準接点
E,Fは各々銅導線10bを介して受信計器5の
入力端子に接続されている。受信計器5は例えば
マイクロプロセツサ等を用いて構成され熱電対α
から得られる熱起電力E〓と、熱電対βから得られ
る熱起電力E〓とを測定し、この測定結果に基づい
て演算を行い測定温度tnを求めるものである。
FIG. 4 is a schematic configuration diagram showing the configuration of an embodiment of the present invention. In this figure, α is a thermocouple that has thermocouple wires 1 and 2 and a temperature measuring junction A that is their connection point, and reference junctions B and C of thermocouple wires 1 and 2
are each connected to an input terminal of the receiving instrument 5 via a copper conducting wire 10a. Also, β is thermocouple wire 1, 2
Thermocouple wires 11, 12 made of a material different from
and a thermocouple having a temperature measuring junction D which is a connection point between them, and reference junctions E and F of each of the thermocouple wires 11 and 12 are connected to the input terminal of the receiving instrument 5 via a copper conductor wire 10b, respectively. ing. The receiving instrument 5 is configured using, for example, a microprocessor, and has a thermocouple α.
The thermoelectromotive force E〓 obtained from the thermocouple β and the thermoelectromotive force E〓 obtained from the thermocouple β are measured, and calculations are performed based on the measurement results to obtain the measured temperature t n .

次に受信計器5における演算動作を説明する。
一般に熱電対の熱起電力EnVは、基準接点温度
を0℃とすると、測温接点温度t℃の関数であ
り、次式で示される。
Next, the calculation operation in the receiving instrument 5 will be explained.
Generally, the thermoelectromotive force E n V of a thermocouple is a function of the temperature measuring junction temperature t° C. when the reference junction temperature is 0° C., and is expressed by the following equation.

E=f(t) ………(1) なお、関数f(t)の形は「JIS C1602熱電対」
に各種熱電対毎に数表および式の形で示されてい
る。
E=f(t) ......(1) The form of the function f(t) is "JIS C1602 thermocouple"
are shown in the form of numerical tables and formulas for each type of thermocouple.

そして、互いに異なる2種の熱電対α,βにつ
いて、各々の熱起電力E〓,E〓は E〓=f〓(t) ………(2) E〓=f〓(t) ………(3) となる。今、熱電対α,βの測温接点温度が共に
tn℃、基準接点温度が共にtr℃であるとすると、
各熱電対の熱起電力E〓,E〓は E〓=f〓(tn)−f〓(tr) ………(4) E〓=f〓(tn)−f〓(tr) ………(5) なる式により表わされる。熱起電力Eα,Eβは測
定によつて得られるから(4)、(5)式は未知数tnとtr
を持つ連立方程式となり、一般に解が存在する。
(4)、(5)式からtrを消去すると、 f-1〓(f〓(tn) −E〓)−f-1〓(f〓(tn)−E〓)=0 ………(6) したがつて、受信計器5内のマイクロセツサ等
から成る演算器が(6)式を解くことにより、測定温
度tnを求めることができる。(6)式では未知数tr
(基準接点温度)が消去されていることから、演
算結果tnは熱起電力E〓,E〓によつて決定され基準
接点温度trに全く影響されないことがわかる。
For two different types of thermocouples α and β, the respective thermoelectromotive forces E〓 and E〓 are E〓=f〓(t) ………(2) E〓=f〓(t) ……… (3) becomes. Now, the temperature measurement junction temperatures of thermocouples α and β are both
Assuming that both t n ℃ and the reference junction temperature are t r ℃,
The thermoelectromotive force E〓, E〓 of each thermocouple is E〓=f〓(t n )−f〓(tr) ………(4) E〓=f〓(t n )−f〓(tr) … ...(5) It is expressed by the formula. Since thermoelectromotive forces Eα and Eβ can be obtained by measurement, equations (4) and (5) are expressed as unknowns t n and t r
It becomes a simultaneous equation with , and there is generally a solution.
Eliminating tr from equations (4) and (5), f -1 〓(f〓(t n ) −E〓)−f -1 〓(f〓(t n )−E〓)=0... ...(6) Therefore, the measured temperature t n can be obtained by solving equation (6) by the arithmetic unit consisting of a microprocessor or the like in the receiving instrument 5. In equation (6), the unknown t r
Since (reference junction temperature) is erased, it can be seen that the calculation result t n is determined by the thermoelectromotive force E〓, E〓 and is not influenced at all by the reference junction temperature tr .

なお、受信計器がすでに演算機能を持つたもの
であれば、これをそのまま利用し、この実施例の
ためにわざわざ新しい受信計器を設ける必要がな
い。
Note that if the receiving instrument already has a calculation function, it can be used as is, and there is no need to take the trouble to provide a new receiving instrument for this embodiment.

また、上述した実施例において、熱電対α,β
の各々の片方の熱電対線2,11が同一部材であ
れば第5図に示すようにこの同一部材で作られた
熱電対線2,11を共通にして構成してもよい。
この3線構成では、共通に使用する熱電対線2,
11の均一度、不均質度、熱起電力特性の安定度
などに基づく両熱電対α,βの熱起電力誤差は両
熱電対α,βに等しく影響を及ぼすので、熱起電
力誤差が最終結果に殆んど影響を与えないという
長所がある。また、3線構成であることから、延
長線(銅導線)や受信計器5の入力端子数が少な
くて済む利点が得られる。なお、このような構成
にし得る熱電対の組合せを具体的に挙げれば、
JIS規格によるE熱電対とJ熱電対の組合せが挙
げられる。また、このような3線構造の場合、共
通でない2線間の電圧を測定し、この結果から、
測定温度tnを知ることもできる。
In addition, in the embodiment described above, thermocouples α and β
If one of the thermocouple wires 2, 11 is made of the same material, the thermocouple wires 2, 11 made of the same material may be used in common, as shown in FIG.
In this three-wire configuration, the commonly used thermocouple wire 2,
The thermoelectromotive force error of both thermocouples α and β based on the uniformity, heterogeneity, stability of thermoelectromotive force characteristics, etc. in 11 affects both thermocouples α and β equally, so the thermoelectromotive force error is the final It has the advantage of having almost no effect on the results. Further, since it has a three-wire configuration, there is an advantage that the number of extension wires (copper conductive wires) and input terminals of the receiving instrument 5 can be reduced. In addition, specific combinations of thermocouples that can be configured like this are:
An example is a combination of E thermocouple and J thermocouple according to JIS standards. In addition, in the case of such a three-wire structure, measure the voltage between two wires that are not common, and from this result,
It is also possible to know the measured temperature t n .

また、この実施例では受信計器5が測定した熱
起電力E〓,E〓に基づき、種々の演算を行つて測定
温度tnを求めたが、測定温度tnを簡単に求めるた
めの図表、表、もしくは式を予め作成しておき、
これから測定温度tnを求めることも可能である。
第6図にこのような図表の一例を示す。この図表
は「JIS C 1602熱電対」に規定されたE熱電対
とJ熱電対を使用し、双方の熱起電力から測定温
度tnを求める図表である。例えば、E熱電対の熱
起電力が32.06mV、J熱電対の熱起電力が23.52
mVであつた場合、その交点の座標から測定温度
tnが475℃であることが解る。また、この図表を
拡大して作成しておけば、測定温度tnを1〜2℃
の精度で測定することができる。
In addition, in this embodiment, the measured temperature t n was obtained by performing various calculations based on the thermoelectromotive force E〓, E〓 measured by the receiving instrument 5. Create a table or formula in advance,
It is also possible to determine the measured temperature t n from this.
Figure 6 shows an example of such a diagram. This chart uses the E thermocouple and J thermocouple specified in "JIS C 1602 Thermocouple" and calculates the measured temperature t n from the thermoelectromotive force of both. For example, the thermoelectromotive force of thermocouple E is 32.06mV, and the thermoelectromotive force of thermocouple J is 23.52mV.
mV, the measured temperature is determined from the coordinates of the intersection.
It can be seen that t n is 475℃. Also, if you enlarge this chart and create it, you can increase the measured temperature t n by 1 to 2 degrees Celsius.
can be measured with an accuracy of

また、この実施例において、測定箇所が多数あ
る場合は、測定箇所毎に設置した熱電対の出力を
各熱電対の直後または受信計器5の入力端子付近
で切換えるようにすると、受信計器5が1台で済
むことになり、測定点1点当りのシステムの価格
を更に低下させることができる。
In addition, in this embodiment, when there are many measurement points, if the output of the thermocouple installed at each measurement point is switched immediately after each thermocouple or near the input terminal of the receiving instrument 5, the receiving instrument 5 can be Since only one stand is required, the cost of the system per measurement point can be further reduced.

ところで、f〓とf〓が共に直線に極めて近い関数
であれば測定温度tnと基準接点温度trとの両値は
熱起電力E〓,E〓とからは一義的に決まらないのは
いうまでもない。また、上述した温度測定システ
ムにおいては、測定温度tnと基準接点温度trとが
極めて近い値であるとき(例えば、測定対象の温
度が上昇を開始した直後)、測定誤差が大きくな
るという欠点がある。
By the way, if both f〓 and f〓 are functions very close to straight lines, the values of the measured temperature t n and the reference junction temperature t r cannot be uniquely determined from the thermoelectromotive force E〓, E〓. Needless to say. In addition, the above-mentioned temperature measurement system has the disadvantage that the measurement error becomes large when the measured temperature t n and the reference junction temperature t r are extremely close (for example, immediately after the temperature of the measurement target starts to rise). There is.

すなわち、tn≒trにおいては前記(4)、(5)式にお
いてE〓≒0、E〓≒0となり、tnとtrはほぼ相等し
いという条件を保ちながら値自体は不定である。
このため、数学的には前記(4)、(5)式の解が存在し
ても求められた値は誤差の大きいものとなる。こ
のことは、第6図において熱起電力が小さくなる
ほど等温線が密になることからも明らかである。
In other words, when t n ≒ t r , E〓≒0 and E〓≒0 in equations (4) and (5) above, and while maintaining the condition that t n and t r are almost equal, the value itself is indefinite. .
Therefore, mathematically, even if a solution to equations (4) and (5) exists, the obtained value will have a large error. This is also clear from the fact that the smaller the thermoelectromotive force is in FIG. 6, the denser the isothermal lines are.

他方、tn≒trにおいては通常正確なtnの値は必
要とされず極端に真の値からずれていなければよ
い場合が多い。そこで、tn≒trにおける温度測定
方法として次の方法が考えられる。
On the other hand, when t n ≒ t r , an accurate value of t n is usually not required, and it is often sufficient as long as it does not deviate extremely from the true value. Therefore, the following method can be considered as a temperature measurement method when t n ≒ t r .

tn−tr≫0とtn−tr=0との間の適当なtnとtr
相当するどちらかの熱電対の熱起電力を設定し、
この値をEoとして、E〓≦Eo(もしくはE〓≦Eo)
の範囲で、基準接点温度trを予めある一定値trp
設定しておき、このtrpを前述した(4)式または(5)
式のtrに代入して測定温度tnを算出する。(なお、
(4)、(5)式双方から測定温度tnを求め、これらの値
を平均してもよい。) 即ち、演算結果tnをtn1とすると(7)式が得られ
る。
Set the thermoelectromotive force of either thermocouple corresponding to an appropriate t n and t r between t n −t r ≫ 0 and t n − t r = 0,
If this value is Eo, E〓≦Eo (or E〓≦Eo)
The reference junction temperature t r is set in advance to a certain constant value t rp within the range of
Substitute t r in the formula to calculate the measured temperature t n . (In addition,
The measured temperature t n may be determined from both equations (4) and (5), and these values may be averaged. ) That is, when the calculation result t n is set to t n 1, equation (7) is obtained.

tn=f-1〓(f〓(trp)+E〓) ………(7) E〓>Epでは(6)式から得られるtnpを、E〓≦Ep
は(7)式から得られるtn1をtnとする。
t n = f -1 〓 (f 〓 (t rp ) + E〓) ………(7) When E〓>E p , t np is obtained from equation (6), and when E〓≦E p , equation (7) is obtained. Let t n be t n 1 obtained from .

このようにして求めたtnをE〓を独立変数として
グラフにすると第7図に示すようになる。なお、
この図において曲線L1が(6)式を表し、また曲線
L2が(7)式を表している。また、この図において
は(6)式のE〓の値はtrをある一定値に固定したとき
の値であるが、trが変化した場合は図に示す破線
のように曲線L1が変化する。
When t n obtained in this way is plotted as a graph with E〓 as an independent variable, it becomes as shown in Fig. 7. In addition,
In this figure, the curve L 1 represents equation (6), and the curve
L 2 represents equation (7). Also, in this figure, the value of E〓 in equation (6) is the value when t r is fixed at a certain constant value, but when t r changes, the curve L 1 changes as shown by the broken line in the figure. Change.

図から解るようにE〓=Epにおいては(6)式、(7)式
から各々求められるtnp、tn1は一般に不連続とな
り、この不連続性は例えば測定対象に対し温度制
御を行う場合等においては不都合がある。このた
め、E〓=Epにおいてtn0と連続となるようなtn2
与える関数を設定する。例えば次式がこれを満た
す。
As can be seen from the figure, when E = E p , t np and t n1 obtained from equations (6) and (7), respectively, are generally discontinuous, and this discontinuity can be used, for example, to control the temperature of the measurement target. This is inconvenient in some cases. For this reason, a function is set that gives t n2 that is continuous with t n0 at E=E p . For example, the following formula satisfies this.

tn2=E〓tn0+(Ep−E〓)tn1/Ep………(8) この(8)式および前出の(6)式をグラフにすると第
8図に示すようにE〓=Epの点で連続となるが、(8)
式からわかるようにtn2はE〓=0付近において、
この付近では誤差の大きいtn0の影響が全く0に
はならず、このため測定結果に誤差が生じてしま
う。そこで、これを回避するために0<ED<E0
を満たすEDを設定し、E〓≦EDの範囲ではtn0の影
響が全くない(7)式を用い、ED<E〓≦Epの範囲で
はE〓=Epでtn0と連続、かつ、E〓=EDでtn1と連続
な関数tn3を導入する。
t n2 = E〓t n0 + (E p −E〓) t n1 /E p ………(8) When this equation (8) and the above-mentioned equation (6) are graphed, it is as shown in Figure 8. It is continuous at the point E = E p , but (8)
As can be seen from the formula, t n2 is near E = 0,
In this vicinity, the influence of t n0 , which has a large error, does not become zero at all, which causes an error in the measurement results. Therefore, in order to avoid this, 0<E D <E 0
Set E D that satisfies E D and use equation (7) where there is no influence of t n0 in the range E〓≦E D , and use equation (7) where E D <E〓≦E p , E〓=E p and t n0 Introduce a function t n3 that is continuous and continuous with t n1 with E = E D.

例えば、次式がこの条件を満たす。 For example, the following formula satisfies this condition.

tn3=(E〓−ED)tn0+(Ep−E〓)tn1/Ep−ED………(
9) このように、E〓のとる値によつて範囲を3つに
分け各々の範囲において異なる式を用いて測定温
度tnを算出するようにする。E〓>Epの範囲で(6)式
をED<E〓<Epの範囲で(9)式を、E〓<EDの範囲で
(7)式を用いて測定温度tnを算出した場合のグラフ
を第9図に示す。この図から解かるように測定温
度tnは測定する熱起電力E〓(もしくはE〓)の全範
囲で連続である。なお、上述した説明では測定温
度tnを熱起電力E〓の関数として扱つたが、もちろ
ん、熱起電力E〓の関数として扱つてもよい。
t n3 = (E〓−E D )t n0 + (E p −E〓)t n1 /E p −E D ………(
9) In this way, the range is divided into three depending on the value of E〓, and the measured temperature t n is calculated using a different formula in each range. Expression (6) in the range E〓>E p Expression (9) in the range E D <E〓<E p , Equation (9) in the range E〓<E D
FIG. 9 shows a graph when the measured temperature t n is calculated using equation (7). As can be seen from this figure, the measured temperature t n is continuous over the entire range of the thermoelectromotive force E〓 (or E〓) to be measured. In the above explanation, the measured temperature t n was treated as a function of the thermoelectromotive force E〓, but of course it may be treated as a function of the thermoelectromotive force E〓.

このように、上記方法は熱起電力Eα(もしくは
E〓)のとる値に応じて測定温度tnを算出する式を
変更するので、熱起電力E〓(もしくはEβ)の値の
大小にかかわらず、測定温度tnを極めて正確に算
出することができる。
In this way, the above method uses thermoelectromotive force Eα (or
Since the formula for calculating the measured temperature t n is changed depending on the value of E〓), the measured temperature t n can be calculated extremely accurately regardless of the value of the thermoelectromotive force E〓 (or Eβ). Can be done.

以上説明したようにこの発明によれば、第1の
熱電対と、測温接点および基準接点が前記第1の
熱電対の測温接点および基準接点と各々同一箇所
に配置され、前記第1の熱電対と構成材料が異な
る第2の熱電対と、前記第1の熱電対から得られ
る前記測温接点と基準接点との間に温度差に応じ
た第1の熱起電力と、前記第2の熱電対から得ら
れる前記測温接点と基準接点との間の温度差に応
じた第2の熱起電力とに基づいて、前記測温接点
の温度を算出する演算手段とを設けたので、以下
に述べる効果が得られる。
As explained above, according to the present invention, the first thermocouple, the temperature measuring junction and the reference junction are arranged at the same location as the temperature measuring junction and the reference junction of the first thermocouple, and a second thermocouple whose constituent material is different from that of the thermocouple; a first thermoelectromotive force according to a temperature difference between the temperature measuring junction and the reference junction obtained from the first thermocouple; calculation means for calculating the temperature of the temperature measurement junction based on a second thermoelectromotive force corresponding to the temperature difference between the temperature measurement junction and the reference junction obtained from the thermocouple; The following effects can be obtained.

氷点槽などの基準接点装置が不要であり、
したがつて温度測定システムは保守が容易にな
り、その構成を簡単にできる。補償導線が不要
で、それに代るものは通常の銅導線でよく特に遠
隔測定システムの場合に、システムを構成する費
用を安くできる。補償導線が不要であり、ま
た、受信計器の入力回路に基準接点補償回路が不
要であることからそれらによる補償誤差が全くな
く、したがつて、精度のよい温度測定を行うこと
ができきる。
A reference junction device such as a freezing point tank is not required,
The temperature measuring system is therefore easy to maintain and its construction is simple. Compensating conductors are not required; instead they can be replaced by ordinary copper conductors, which reduces the cost of constructing the system, especially in the case of telemetry systems. Since there is no need for a compensation conductor and no need for a reference junction compensation circuit in the input circuit of the receiving instrument, there is no compensation error caused by these, and therefore temperature measurement can be performed with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は従来の温度測定システムの構
成を示す概略構成図、第4図はこの発明の一実施
例の構成を示す概略構成図、第5図は熱電対α,
βを3線構成にした場合の構成を示す図、第6図
はE熱電対およびJ熱電対の各熱起電力から測定
温度tnを求めるための図、第7図〜第9図は各々
熱起電力E〓に対する測定温度tnの変化を表わす図
である。 α……熱電対(第1の熱電対)、β……熱電対
(第2の熱電対)、A,D……測温接点、B,C,
E,F……基準接点、5……受信計器(演算手
段)。
1 to 3 are schematic configuration diagrams showing the configuration of a conventional temperature measurement system, FIG. 4 is a schematic configuration diagram showing the configuration of an embodiment of the present invention, and FIG. 5 is a thermocouple α,
A diagram showing the configuration when β has a three-wire configuration, Figure 6 is a diagram for determining the measured temperature t n from each thermoelectromotive force of the E thermocouple and J thermocouple, and Figures 7 to 9 are each FIG. 3 is a diagram showing changes in measured temperature t n with respect to thermoelectromotive force E〓. α... Thermocouple (first thermocouple), β... Thermocouple (second thermocouple), A, D... Temperature measuring junction, B, C,
E, F... Reference junction, 5... Receiving instrument (calculating means).

Claims (1)

【特許請求の範囲】 1 第1の熱電対と、 測温接点および基準接点が前記第1の熱電対の
測温接点および基準接点と各々同一箇所に配置さ
れ、前記第1の熱電対と構成材料が異なる第2の
熱電対と、 前記第1の熱電対から得られる前記測温接点と
基準接点との間に温度差に応じた第1の熱起電力
と、前記第2の熱電対から得られる前記測温接点
と基準接点との間の温度差に応じた第2の熱起電
力とに基づいて、前記測温接点の温度を算出する
演算手段と、 を具備することを特徴とする温度測定システム。
[Scope of Claims] 1. A first thermocouple, a temperature measuring junction and a reference junction are arranged at the same locations as the temperature measuring junction and the reference junction of the first thermocouple, respectively, and have a configuration with the first thermocouple. a second thermocouple made of a different material; a first thermoelectromotive force according to the temperature difference between the temperature measuring junction and the reference junction obtained from the first thermocouple; and a first thermoelectromotive force from the second thermocouple. Calculating means for calculating the temperature of the temperature-measuring junction based on the obtained second thermoelectromotive force corresponding to the temperature difference between the temperature-measuring junction and the reference junction; Temperature measurement system.
JP13656881A 1981-08-31 1981-08-31 Temperature measuring system Granted JPS5838824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13656881A JPS5838824A (en) 1981-08-31 1981-08-31 Temperature measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13656881A JPS5838824A (en) 1981-08-31 1981-08-31 Temperature measuring system

Publications (2)

Publication Number Publication Date
JPS5838824A JPS5838824A (en) 1983-03-07
JPS6334970B2 true JPS6334970B2 (en) 1988-07-13

Family

ID=15178290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13656881A Granted JPS5838824A (en) 1981-08-31 1981-08-31 Temperature measuring system

Country Status (1)

Country Link
JP (1) JPS5838824A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216625A (en) * 1989-11-01 1993-06-01 Luxtron Corporation Autocalibrating dual sensor non-contact temperature measuring device
DE19756069C1 (en) * 1997-12-17 1999-09-23 Deutsch Zentr Luft & Raumfahrt Differential thermal analysis device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100476A (en) * 1973-02-01 1974-09-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49100476A (en) * 1973-02-01 1974-09-24

Also Published As

Publication number Publication date
JPS5838824A (en) 1983-03-07

Similar Documents

Publication Publication Date Title
US4338563A (en) Corrosion measurement with secondary temperature compensation
EP0404567B1 (en) Temperature reference junction for a multichannel temperature sensing system
US7775711B2 (en) Temperature measurement device and measurement method
US4403296A (en) Measuring and determination device for calculating an output determination based on a mathematical relationship between multiple different input responsive transducers
US4588308A (en) Temperature measuring device with thermocouple
US3800592A (en) Flowmeter
RU2757064C1 (en) Heat flow sensor with increased heat exchange
US8864378B2 (en) Process variable transmitter with thermocouple polarity detection
US7234864B2 (en) Measurement of multi-channel cold junction temperature
EP3586097B1 (en) Thermocouple temperature sensor with cold junction compensation
KR101057555B1 (en) Thermometer side circuit in flow meter
JPH02136754A (en) Method and apparatus for measuring fine electrical signal
US4011746A (en) Liquid density measurement system
CA1044326A (en) Measurement system including bridge circuit
US4682898A (en) Method and apparatus for measuring a varying parameter
JPS6334970B2 (en)
CN108204865A (en) Industrial instrument, industrial control system and RTD temp measuring methods
US4417477A (en) Train gage measurement circuit for high temperature applications using high value completion resistors
US3230772A (en) Electrical measurement of a physical quantity
US3106086A (en) Strain gage dilatometer
US3543583A (en) Circuit arrangement for connecting devices for picking up measuring values to be recorded
JPH102807A (en) Thermocouple measuring device
EP4019984B1 (en) Temperature compensation circuit in a voltage measurement
US2588564A (en) Thermoelectrically balanced meter network
CN112798129B (en) Temperature measuring device