JPS5837644B2 - Method for manufacturing compound superconducting wire - Google Patents

Method for manufacturing compound superconducting wire

Info

Publication number
JPS5837644B2
JPS5837644B2 JP55093051A JP9305180A JPS5837644B2 JP S5837644 B2 JPS5837644 B2 JP S5837644B2 JP 55093051 A JP55093051 A JP 55093051A JP 9305180 A JP9305180 A JP 9305180A JP S5837644 B2 JPS5837644 B2 JP S5837644B2
Authority
JP
Japan
Prior art keywords
wire
compound
conducting metal
normal conducting
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55093051A
Other languages
Japanese (ja)
Other versions
JPS5717513A (en
Inventor
操 小泉
秀明 前田
暁 村瀬
八男 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55093051A priority Critical patent/JPS5837644B2/en
Publication of JPS5717513A publication Critical patent/JPS5717513A/en
Publication of JPS5837644B2 publication Critical patent/JPS5837644B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明は、化合物超電導線の製造方法に係り、特に、常
電導金属中に化合物超電導体が断続した繊維状に分布し
てなる化合物超電導線の製造方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a compound superconducting wire, and particularly relates to an improvement in the method for producing a compound superconducting wire in which a compound superconductor is distributed in the form of intermittent fibers in a normal conducting metal.

化合物超電導線は、通常、常電導金属中にNb 3 S
n v V 3 G aなどの化合物超電導体を形成
したものとなっている。
Compound superconducting wires usually contain Nb 3 S in a normal conducting metal.
It is made of a compound superconductor such as n v V 3 Ga.

そして、このような化合物超電導線には、大きく分けて
、常電導金属中にこの金属の長手力向に沿って連続した
化合物超電導体層を設けたものと、常電導金属中に断続
した繊維状に化合物超電導体を分布させたものとがある
These compound superconducting wires can be roughly divided into those in which a continuous compound superconductor layer is provided in a normal conducting metal along the longitudinal direction of this metal, and those in which a fibrous layer is disposed in a normal conducting metal. There are some types in which compound superconductors are distributed.

後者は、接近効果、微小抵抗、微細超電導析出物等によ
って超電導機能を発揮させるようにしたもので、化合物
超電導体が断続した繊維状に分布している故に前者に較
べて歪による臨界電流値の劣化が少ない特徴を備えてい
る。
The latter is designed to exhibit superconducting function through the proximity effect, microresistance, fine superconducting precipitates, etc., and because the compound superconductor is distributed in the form of intermittent fibers, the critical current value due to strain is smaller than the former. It is characterized by low deterioration.

ところで、上記のように常電導金属中に化合物超電導体
が断続した繊維状に分布してなる化合物超電導線を製造
する方法としては、従来、次のような方法が採用されて
いる。
By the way, as a method for manufacturing a compound superconducting wire in which a compound superconductor is distributed in a normal conducting metal in the form of intermittent fibers as described above, the following method has been conventionally employed.

すなわち、ここではgSn層を形成する場合を例にあげ
て説明する。
That is, the case where a gSn layer is formed will be described here as an example.

(1)CuにNb,Snを添加した合金を溶解させた後
、冷却して、たとえば円柱状のインゴットを形戒し、こ
のインゴットに減首加工を施して細線化した後、熱処理
を施し、これによって導体中に断続した繊維状のNb3
Sn層を形成する方法。
(1) After melting an alloy in which Cu has been added with Nb and Sn, it is cooled and shaped into a cylindrical ingot, for example, and this ingot is subjected to a neck reduction process to become a thin wire, and then heat treated, This results in intermittent fibrous Nb3 in the conductor.
Method of forming a Sn layer.

(2)CuにNbを添加した合金を溶解させ、こい合金
融液を柱状の穴を有した冷却ブロック内に流し込んで急
冷させ、これによってCu中に刈の粒子が均一に析出し
た棒状のインゴットを形成し、このインゴットを減面加
工して細線化し、内部にNbが断続した繊維状に分布し
たものとする。
(2) An alloy made of Cu with Nb added is melted, and the molten metal liquid is poured into a cooling block with column-shaped holes to rapidly cool it, resulting in a rod-shaped ingot in which the cutting particles are uniformly precipitated in the Cu. This ingot is processed to reduce its area and made into fine wires, so that Nb is distributed inside in the form of intermittent fibers.

次に、この細線化した導体の表面にSnを付着した後、
熱処理を施してSnを拡散させ、内部に存在する断続し
た繊維状Nbの周囲にNb3Sn層を形成する方法。
Next, after attaching Sn to the surface of this thinned conductor,
A method of applying heat treatment to diffuse Sn to form an Nb3Sn layer around the intermittent fibrous Nb existing inside.

(3)Nb,Cu−Snの合金粉末をCuパイプ等に充
填し、これに減面加工を施して細線化した後、熱処理を
施して導体中に断続した繊維状のNb3Sn層を形成す
る方法。
(3) A method in which Nb, Cu-Sn alloy powder is filled into a Cu pipe, etc., the area is reduced to make the wire thinner, and then heat treatment is performed to form an intermittent fibrous Nb3Sn layer in the conductor. .

しかしながら、このような従来の製造方法にあっては、
次のような欠点があった。
However, in such conventional manufacturing methods,
It had the following drawbacks.

すなわち、(1)の方法にあって、Cu−Nb−Sn合
金を減而加工するときの可撓性を考慮すると、袖の添加
量は10原子%、Snのそれは5原子係が限度である。
That is, in method (1), considering the flexibility when processing the Cu-Nb-Sn alloy to reduce the amount of metal, the amount added for sleeves is limited to 10 atomic %, and that of Sn is limited to 5 atoms. .

このため、得られた超電導線全体(オーバーオール)の
臨界電流値(IC,)が非常に小さく、結局、実用的な
ものを製造できない欠点がある。
For this reason, the critical current value (IC,) of the obtained superconducting wire (overall) is very small, which has the drawback that it cannot be manufactured into a practical product.

また、(2)の方法にあっては、Cu−Nb合金を減面
加工して細線化するため、加工時における可撓性は良い
Furthermore, in the method (2), since the Cu--Nb alloy is processed to reduce its surface area and made into thin wires, flexibility during processing is good.

したがって、Nbの添加量も40原子係まで許容でき、
(1)の方法で製造されたものに較べて臨界電流値(■
e)を大幅に向上させることができる。
Therefore, the amount of Nb added can be tolerated up to 40 atoms,
The critical current value (■
e) can be significantly improved.

しかし、Nbの添加量が増大すると、Cu−Nb合金融
液を冷却して棒状のインゴットを形成するとき、均一に
かつ大きな冷却速度で急冷しなければ、Cu中に析出さ
れる袖の粒子同志が結合して大きなデンドライトが形成
され、Nbの偏析が生じる。
However, when the amount of Nb added increases, when the Cu-Nb alloy liquid is cooled to form a rod-shaped ingot, unless it is rapidly cooled uniformly and at a high cooling rate, the sleeve particles that are precipitated in the Cu are combined to form large dendrites, resulting in segregation of Nb.

このようにNbの偏析が生じると、臨界電流値の低下や
線材の長手力向に沿っての特性のばらつきが生じること
になる。
If Nb segregation occurs in this way, a decrease in the critical current value and variations in characteristics along the longitudinal direction of the wire will occur.

偏析が生じないように均一にかつ大きな冷却速度で冷却
するためには必然的にインゴットの径を小さくする必要
があり、結局、この方法では量産化が困難であった。
In order to uniformly cool the ingot at a high cooling rate to prevent segregation, it is necessary to reduce the diameter of the ingot, and as a result, mass production is difficult with this method.

また(3)の方法にあっては、粉末の充填時に長手力向
に沿って配合比が不均一になり易く、長手力向に沿って
均一な特性のものを得難い問題があった。
Further, in the method (3), there is a problem that the blending ratio tends to become non-uniform along the longitudinal direction during powder filling, making it difficult to obtain uniform properties along the longitudinal direction.

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、常電導金属中に化合物超電導体
が断続的にかつ繊維状に分布してなる化合物超電導線を
、少ない工程数で、しかも線材の長手力向に沿って均一
な臨界電流値を示す関係に多量に製造し得る製造方法を
提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to produce a compound superconducting wire in which a compound superconductor is distributed intermittently and in the form of fibers in a normal conducting metal in a small number of steps. It is an object of the present invention to provide a manufacturing method that can produce a large number of wire rods with uniform critical current values along the longitudinal force direction of the wire rod.

以下、本発明の詳細を第1図から第4図を参照しながら
説明する。
Hereinafter, details of the present invention will be explained with reference to FIGS. 1 to 4.

まず、第1図に示すように、内部空間がたとえば円筒状
で、かつ内部空間の内外径が異なる複数の容器1a,1
b・・・を用意し、これら容器1 a t1b・・・の
円筒状空間2a ,2b・・・内にそれぞれ常電導金属
に化合物超電導体を構成する元素のうちの第1の元素が
添加されてなる合金3を収容する。
First, as shown in FIG.
b... are prepared, and the first element among the elements constituting the compound superconductor is added to the normal conducting metal in the cylindrical spaces 2a, 2b... of these containers 1a, t1b..., respectively. Contains Alloy 3.

次に各容器1a,1b・・・を同時あるいは順次加熱し
て各円筒状空間2a,2b・・・内に収容されている合
金3を溶解させる。
Next, the containers 1a, 1b, . . . are heated simultaneously or sequentially to melt the alloy 3 contained in each cylindrical space 2a, 2b, .

次に合金融液の入った各容器1a,1b・・・をそのま
ま水、油、あるいは溶融した低融点金属中に投入して急
冷し、これによって第2図に示すように内外径がそれぞ
れ異なり、かつ前記第1の元素が均一に析出した複数個
の円筒体4a ,4b・・・を形成する。
Next, the containers 1a, 1b, etc. containing the composite liquid are put into water, oil, or molten low-melting point metal and rapidly cooled. , and a plurality of cylindrical bodies 4a, 4b, . . . in which the first element is uniformly precipitated are formed.

次に各円筒体4a , 4b・・・を第3図に示すよう
に同心状に重合させて多重筒5(図の場合は4重筒)を
形成するとともにこの多重筒5の中心部に常電導金属棒
からなる芯材6を挿着して複合導体ヱを形成する。
Next, as shown in FIG. 3, the cylindrical bodies 4a, 4b,... A core material 6 made of a conductive metal rod is inserted to form a composite conductor.

次に上記複合導体Lに減面加工を施して細線化、これに
よって前記第1の元素の粒子を断続した繊維状に分布さ
せる。
Next, the composite conductor L is subjected to an area reduction process to make the wire thinner, thereby distributing the particles of the first element in an intermittent fibrous shape.

次に上記のように細線化されたものの表面に前記化合物
超電導体を構或する元素のうちの第2の元素を付着させ
た後、熱処理を施す。
Next, a second element of the elements constituting the compound superconductor is deposited on the surface of the thin wire as described above, and then heat treatment is performed.

このように熱処理を施すと、前記第2の元素が拡散し、
断続した繊維状の第1の元素の表面に化合物超電導体が
形成され、ここに化合物超電導線を得ることができる。
When the heat treatment is performed in this way, the second element is diffused,
A compound superconductor is formed on the surface of the first element in the form of interrupted fibers, and a compound superconductor wire can be obtained here.

第4図はこのようにして製造された化合物超電導線X1
の端面を示すもので、図中Yは常電導金属を示し、Zは
断続した繊維状に分布してなる化合物超電導体を示して
いる。
Figure 4 shows the compound superconducting wire X1 manufactured in this way.
In the figure, Y indicates a normal conducting metal, and Z indicates a compound superconductor distributed in the form of interrupted fibers.

なお、このような製造方法を採用するに当り、常電導金
属としてはCutAltNiあるいはこれらの合金など
が使用でき、また、第1、第2の元素としては、Nb3
Sn,Nb3Al,Nb3(Al,Ge),V Ga,
Nb Ga,Nb3Ge,NbCNなどの化合物33 超電導体を構成し得るものが使用できる。
In addition, when adopting such a manufacturing method, CutAltNi or an alloy thereof can be used as the normal conductive metal, and Nb3 or Nb3 can be used as the first and second elements.
Sn, Nb3Al, Nb3(Al, Ge), V Ga,
Compounds 33 such as NbGa, Nb3Ge, and NbCN that can constitute a superconductor can be used.

もちろん、上記化合物超電導体を構成する元素の一部を
I n t Ga t Hf t Z r t Mg
,A lt T aなどに置換して超電導特性の改善を
図ることもできる。
Of course, some of the elements constituting the above compound superconductor are I n t Ga t Hf t Z r t Mg
, Alt Ta, etc., to improve the superconducting properties.

また、上述した製造方法を次のように変形することもで
きる。
Furthermore, the above-described manufacturing method can be modified as follows.

すなわち、第5図に示すように多重筒5の中心部に化合
物超電導体を構成する元素のうちの第2の元素からなる
純金属を常電導金属層で覆ってなる芯材もしくは第2の
元素を含んだ合金8を常電導金属層9で覆ってなる芯材
10を挿着して複合超電導基体11を構戒する。
That is, as shown in FIG. 5, a core material or a second element formed by covering a pure metal made of the second element of the elements constituting the compound superconductor with a normal conductive metal layer is placed in the center of the multiple cylinder 5. A composite superconducting substrate 11 is prepared by inserting a core material 10 formed by covering an alloy 8 containing the above with a normal conducting metal layer 9.

次に、この基体11に減而加工を施して細線化し、この
細線に熱処理を施しても第4図に示したものと同様な化
合物超電導線を製造することができる。
Next, a compound superconducting wire similar to that shown in FIG. 4 can be manufactured by subjecting this base body 11 to a thinning process and heat-treating the thin wire.

この場合、常電導金属層9は減面加工時に第1の元素と
第2の元素とが接触したときに起こり易い加工性の低下
を防止する。
In this case, the normal conductive metal layer 9 prevents deterioration in workability that is likely to occur when the first element and the second element come into contact during area reduction processing.

また、第5図において説明した方法を採用するに当って
、複合超電導基体L1を、この基体上1中の第2の元素
の拡散を防止する拡散防止筒で覆い、これを安定化材で
形成されたパイプ内に装着した後、減面加工によって細
線化し、その後に前記同様に熱処理を施すと安定性に勝
れた化合物超電導線を得ることができる。
In addition, in adopting the method explained in FIG. 5, the composite superconducting substrate L1 is covered with a diffusion prevention cylinder that prevents the diffusion of the second element in the substrate 1, and this is formed of a stabilizing material. After the compound superconducting wire is installed in a pipe, the wire is made thinner by area reduction processing, and then heat treatment is performed in the same manner as described above, thereby making it possible to obtain a compound superconducting wire with excellent stability.

第6図は、このようにして製造された化合物超電導線X
2の端而を示すもので、図中Rは安定化金属を、Sは拡
散防止用金属を、Yは常電導金属を、Zは断続した繊維
状の化合物超電導体を示している。
Figure 6 shows the compound superconducting wire X produced in this way.
2, in which R represents a stabilizing metal, S represents a diffusion prevention metal, Y represents a normal conducting metal, and Z represents an intermittent fibrous compound superconductor.

そして、この場合、構成要素をそれぞれ角筒状に形戒し
ておけば第7図に示す構或の化合物超電導線X3が得ら
れ、また、複数の穴あきブロック状に形成された安定化
材を用いると第8図に示す構成の化合物超電導線X4を
得ることができる。
In this case, if each component is shaped into a rectangular tube shape, a compound superconducting wire X3 having the structure shown in FIG. 7 can be obtained. By using this, a compound superconducting wire X4 having the structure shown in FIG. 8 can be obtained.

このような本発明に係る製造方法を採用すれば次のよう
な利点がある。
If such a manufacturing method according to the present invention is adopted, there are the following advantages.

すなわち、常電導金属に化合物超電導体を構成する第1
,第2の元素を添加してなる合金を減面加工するのでは
なく、第1の元素と第2の元素とが機械的に分離された
状態下で減面加工を施して細線化するようにしているの
で、たとえ第1、第2の元素の添加量を多くした場合で
あっても加工性が損なわれる虞れがない。
That is, the first compound forming a compound superconductor in a normal conducting metal
, instead of reducing the area of the alloy formed by adding the second element, the process reduces the area of the alloy in a state where the first element and the second element are mechanically separated to make the wire thinner. Therefore, even if the amounts of the first and second elements added are increased, there is no risk that the workability will be impaired.

これに加え、常電導金属中に第1の元素を添加してなる
合金ブロックを得る手段として、上記組成でかつ内外径
の異なる複数個の筒状体4a,4b・・・を同心状に重
合させて多重筒の合金ブロックに形成しているので、厚
みの十分薄い筒状体であってもこれらの重合数を選択す
ることによって断面積の任意な合金ブロックを形成する
ことができる。
In addition, as a means of obtaining an alloy block made by adding the first element to a normal conducting metal, a plurality of cylindrical bodies 4a, 4b... having the above composition and different inner and outer diameters are polymerized concentrically. Since the alloy block is formed into a multi-tubular alloy block, even if the thickness is sufficiently thin, an alloy block with an arbitrary cross-sectional area can be formed by selecting the number of these stacks.

このように各筒状体の肉厚を十分薄くすることができる
ので各筒状体を形成するとき、合金融液を均一にかつ大
きい冷却速度で冷却することが可能になり、たとえば第
lの元素の添加量が多い場合であっても第1の元素の偏
析を防止でき、第1の元素の粒子が均一に分散した筒状
体を形成することができ、結局、第1の元素の添加量を
増大させることができる。
In this way, since the wall thickness of each cylindrical body can be made sufficiently thin, when forming each cylindrical body, it is possible to cool the alloy liquid uniformly and at a high cooling rate. Even when the amount of the added element is large, segregation of the first element can be prevented, and a cylindrical body in which the particles of the first element are uniformly dispersed can be formed. The amount can be increased.

そして、このような形成された多重筒5の中心部に常電
導金属棒からなる芯材6を挿着した後、細線化して第2
の元素を付着させたり、あるいは多重筒5の中心部に第
2の元素を含む芯材10を挿着した後、細線化するよう
にしているので、第2の元素のいわゆる添加量も増大さ
せることができる。
After inserting a core material 6 made of a normal conductive metal rod into the center of the multi-tube 5 formed in this way, the core material 6 is thinned into a second wire.
After attaching the element or inserting the core material 10 containing the second element into the center of the multi-layer tube 5, the wire is thinned, so the so-called addition amount of the second element is also increased. be able to.

したがって、臨界電流値の太きい、つまり高特性の化合
物超電導線を容易に作り出すことができる。
Therefore, a compound superconducting wire with a large critical current value, that is, with high characteristics, can be easily produced.

また、多重筒5の断面積を大きくしたり、あるいは多重
筒5の中心部の内径を大きくするとともに外径も大きく
することによって1度に得られる線材量を多くでき、結
局、生産性の向上化を図ることができる。
In addition, by increasing the cross-sectional area of the multiple tube 5, or by increasing the inner diameter and outer diameter of the center of the multiple tube 5, the amount of wire that can be obtained at one time can be increased, which ultimately improves productivity. It is possible to aim for

なお、第5図を用いて説明した方法、つまり多重筒5の
中心部に第2の元素を含む芯材10を装着した後、細線
化する方法を採用すれば第2の元素を付着させる工程を
省略できるとともに線材の長手方向になお一層均一な特
性を示す化合物超電導線が得られる。
Incidentally, if the method explained using FIG. 5 is adopted, that is, the method of thinning the core material 10 containing the second element is attached to the center of the multiple tube 5, then the step of attaching the second element can be performed. can be omitted, and a compound superconducting wire can be obtained that exhibits even more uniform characteristics in the longitudinal direction of the wire.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例 1 まず、常電導金属のCuに化合物超電導体Nb3Snを
構成する第1の元素であるNbを30原子係添加してな
る合金を第1図に示した容器を使ってアルゴンガス中で
加熱溶融させ、この合金融液を容器ごと急冷して第2図
に示したように常電導金属のCu中に前記第1の元素で
あるNbの粒子が均一に析出した内外径の異なる円筒体
を形成した。
Example 1 First, an alloy made by adding 30 atomic proportions of Nb, which is the first element constituting the compound superconductor Nb3Sn, to Cu, which is a normal conducting metal, was heated in argon gas using the container shown in Figure 1. The composite liquid was melted and rapidly cooled in a container to form a cylindrical body with different inner and outer diameters in which particles of Nb, the first element, were uniformly precipitated in Cu, a normal conducting metal, as shown in Figure 2. Formed.

形成した合金円筒体は、いずれも長さが約100關で、
内径が約20yntttで外径が約30關のもの、内径
が約30mmで外径が約40山のもの、内径が約40M
TILで外径が約50關のもの、内径が約50間で外径
が約60m馬のものの合計4本である。
The formed alloy cylinders each had a length of about 100 mm,
The inner diameter is about 20ynttt and the outer diameter is about 30mm, the inner diameter is about 30mm and the outer diameter is about 40mm, the inner diameter is about 40mm.
There are four in total: one with a TIL outer diameter of about 50 m, and one with an inner diameter of about 50 m and an outer diameter of about 60 m.

次にこれらの円筒体を第3図に示したように同心状に重
合させて多重筒とし、この多重筒の中心部に常電導金属
であるCuの外径20間の棒を芯材として挿着して複合
導体を形戒し、この複合導体に減面加工を施してCu中
にNbが断続した繊維状に分布してなる線径1闘の線材
を350m形威した。
Next, as shown in Fig. 3, these cylindrical bodies are concentrically superimposed to form a multiple cylinder, and a rod of normal conductive metal Cu with an outer diameter of 20 mm is inserted as a core material in the center of the multiple cylinder. The composite conductor was then processed to reduce its surface area, and a 350 m long wire with a wire diameter of 1 mm, consisting of Nb distributed in the form of intermittent fibers in Cu, was produced.

次にこの線材に前記化合物超電導体を構成する第2の元
素であるSnを付着し、しかる後、この線材にアルゴン
ガス中で700℃、100時間の熱処理を施してSnを
拡散させ、第4図に示したように常電導金属のCu−S
n合金中にNb3Snが断続した繊維状に分布してなる
化合物超電導線を製造した。
Next, Sn, which is the second element constituting the compound superconductor, is attached to this wire, and then the wire is heat-treated at 700°C for 100 hours in argon gas to diffuse Sn. As shown in the figure, the normal conducting metal Cu-S
A compound superconducting wire in which Nb3Sn is distributed in an intermittent fibrous form in an n-alloy was manufactured.

このようにして得られた超電導線について臨界電流値を
測定したところ、外部磁界4テスラで臨界電流値■。
When the critical current value of the superconducting wire thus obtained was measured, the critical current value was ■ in an external magnetic field of 4 Tesla.

=120OA、臨界電流密度J。=1. 5 X ]
0 3A/mrNを示し、また外部磁界7テスラでI。
=120OA, critical current density J. =1. 5 X]
0 3 A/mrN and I at an external magnetic field of 7 Tesla.

=4 7 0AXJo=0.6X1 03A/一と優れ
た値を示した。
=470AXJo=0.6X103A/1, which was an excellent value.

また、線材の長手力向に任意にサンプリングして同様な
測定を行なったところ、ほとんど等しい値を示した。
Furthermore, when similar measurements were made by randomly sampling in the longitudinal force direction of the wire, almost equal values were obtained.

実施例 2 実施例1におけるSnの付着工程を省略するために、同
心状に重合したCu−Nb多重筒の中心部に、Cu棒に
換えて厚さ2tnxのCuパイプに覆われたSn−5%
Cu合金棒を挿着して複合超電導基体を構成し、この基
体に減面加工を施してCu中にNbが断続した繊維状に
均一に析出した線径1xx(D線材を350m形成した
Example 2 In order to omit the Sn adhesion step in Example 1, a Sn-5 covered with a Cu pipe with a thickness of 2 tnx was placed in the center of a concentrically polymerized Cu-Nb multiple cylinder instead of a Cu rod. %
A composite superconducting substrate was constructed by inserting a Cu alloy rod, and this substrate was subjected to surface reduction processing to form a 350 m wire diameter 1xx (D wire rod) in which Nb was uniformly precipitated in the form of intermittent fibers in Cu.

次に、この線材にアルゴンガス中で700°C,100
時間熱処理を施してSnを拡散させ第4図に示したよう
に常電導金属のCu−Sn合金中にNb3Snが断続し
た繊維状に分布してなる化合物超電導線を製造した。
Next, this wire was heated at 700°C and 100°C in argon gas.
A heat treatment was performed for a period of time to diffuse Sn, thereby producing a compound superconducting wire in which Nb3Sn was distributed in the form of interrupted fibers in a Cu--Sn alloy, which was a normal conducting metal, as shown in FIG.

このようにして得られた超電導線について臨界電流値を
測定したところ、外部磁界4テスラでIo=1 450
AXJo=1.8XI O3A/iiを示し、外部磁界
7テスラでI。
When the critical current value of the superconducting wire obtained in this way was measured, it was found that Io = 1 450 in an external magnetic field of 4 Tesla.
Shows AXJo=1.8XI O3A/ii, I at an external magnetic field of 7 Tesla.

=570AXJo=0. 7 2 X 1 03A/m
t?tを示し、実施例1で得られたものより優れた結果
が得られ、また、線材の長手方向に沿っての均一性も良
かった。
=570AXJo=0. 7 2 x 1 03A/m
T? t, which was better than that obtained in Example 1, and the uniformity along the longitudinal direction of the wire was also good.

実施例 3 実施例2における複合超電導基体(Cu−Nb多重筒の
中心部にCuで覆われたSn−5%Cu棒を挿着したも
の。
Example 3 Composite superconducting substrate in Example 2 (Sn-5% Cu rod covered with Cu was inserted into the center of a Cu-Nb multilayer tube).

)に減而加工を施して線径20間に細線化した後、これ
を熱処理時におけるSnの拡散が安定化材に及ぶのを防
ぐための拡散防止材として機能する内径約2 0 mn
t,外形約24朋、のTa製パイプ内に挿着し、さらに
これを安定化材として機能する内径約24皿、外径約3
0M1nのCu製パイプに挿着した。
) to reduce the wire diameter to a thinner wire with an inner diameter of approximately 20 mm, which functions as a diffusion prevention material to prevent the diffusion of Sn from reaching the stabilizing material during heat treatment.
It is inserted into a Ta pipe with an outer diameter of about 24mm, and this is then used as a stabilizing material with an inner diameter of about 24mm and an outer diameter of about 3mm.
It was inserted into a 0M1n Cu pipe.

次にこれに減面加工を施して細線化し、線径1.5mm
の線材を形成した。
Next, this was subjected to surface reduction processing to make the wire thinner, and the wire diameter was 1.5 mm.
A wire rod was formed.

次に、この線材にアルゴンガス中で700℃、100時
間熱処理を施してSnを拡散させ、第6図に示したよう
に安定化材に覆われたCu−Sn合金中にNb3Snが
断続した繊維状に分布してなる化合物超電導線を製造し
た。
Next, this wire was heat-treated at 700°C for 100 hours in argon gas to diffuse Sn, and as shown in Figure 6, fibers with Nb3Sn intermittent in the Cu-Sn alloy covered with the stabilizing material We manufactured a compound superconducting wire with a pattern of distribution.

このようにして得られた超電導線について臨界電流を測
定したところ、外部磁界4テスラで■。
When the critical current of the superconducting wire thus obtained was measured, it was found to be ■ in an external magnetic field of 4 Tesla.

=1 5 00AXJo=0.8 5X1 03k/m
i外部磁界7テスラでI。
=1 5 00AXJo=0.8 5X1 03k/m
i with an external magnetic field of 7 Tesla.

=58OA,J。=0.33X103A/m4を示し、
臨界電流密度が実施例2で得られたものより小さかった
が、臨界電流値を越えたときの電流一電圧特性における
電圧の出方がゆるやかで安定した特性が得られた。
=58OA,J. =0.33X103A/m4,
Although the critical current density was smaller than that obtained in Example 2, stable characteristics were obtained in which the voltage in the current-voltage characteristics was gradual and stable when the critical current value was exceeded.

このように、本発明に係る製造方法を採用すれば高特性
の化合物超電導線を容易にかつ多量に生産できることが
確認された。
Thus, it was confirmed that by employing the manufacturing method according to the present invention, compound superconducting wires with high characteristics can be easily produced in large quantities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図は本発明に係る製造方法の一実施形態
を工程順に説明するための図、第5図は上記実施形態を
一部変更したときの場合を説明するための図、第6図か
ら第8図は本発明に係る製造方法で製造されたそれぞれ
異なる構成の化合物超電導線の端面をそれぞれ示す図で
ある。 4a ,4b・・・・・・筒状体、旦・・・・・・多重
筒、6,10・・・・・・芯材、R・・・・・・安全化
金属、S・・・・・・拡散防止金属、Y・・・・・・常
電導金属、Z・・・・・・化合物超電導体、X1,X2
,X3・・・・・・化合物超電導線。
1 to 4 are diagrams for explaining an embodiment of the manufacturing method according to the present invention in the order of steps, and FIG. 5 is a diagram for explaining a case where the above embodiment is partially modified. 6 to 8 are diagrams showing end faces of compound superconducting wires of different configurations manufactured by the manufacturing method according to the present invention, respectively. 4a, 4b...Cylindrical body, Dan...Multiple tube, 6, 10...Core material, R...Safety metal, S... ...Diffusion prevention metal, Y...Normal conductive metal, Z...Compound superconductor, X1, X2
,X3...Compound superconducting wire.

Claims (1)

【特許請求の範囲】 1 常電導金属に化合物超電導体を構成する元素のうち
の第1の元素を添加してなる合金で内外径の異なる複数
の筒状体を形成する工程と、上記内外径の異なる複数の
筒状体を同心状に重合させて多重筒を形成するとともに
上記多重筒の中心部に常電導金属材で形成された芯材を
挿着して複合導体を形成する工程と、上記複合導体に減
而加工を施して細線化する工程と、この工程によって細
線化されたものに前記化合物超電導体を構或する第2の
元素を付着させた後、熱処理して上記第2の元素を拡散
せしめ、常電導金属中に断続した繊維状の化合物超電導
体を形成する工程とを具備してなることを特徴とする化
合物超電導線の製造方法。 2 常電導金属中に化合物超電導体を構成する元?のう
ちの第1の元素を添加してなる合金で内外径の異なる複
数の筒状体を形成する工程と、上記内外径の異なる複数
の筒状体を同心状に重合させて多重筒を形成するととも
に上記多重筒の中心部に前記化合物超電導体を構成する
元素のうちの第2の元素金属を常電導金属で覆ってなる
芯材もしくは上記第2の元素を含んだ合金を常電導金属
で覆ってなる芯材を挿着して複合超電導基体を形戒する
工程と、上記複合超電導基体に減面加工を施して細線化
する工程と、この工程によって細線化されたものに熱処
理を施して前記第2の元素を拡散せしめ、常電導金属中
に断続した繊維状の化合物超電導体を形成する工程とを
具備してなることを特徴とする化合物超電導線の製造方
法。
[Scope of Claims] 1. A step of forming a plurality of cylindrical bodies having different inner and outer diameters from an alloy made by adding a first element of the elements constituting a compound superconductor to a normal conducting metal; a step of concentrically polymerizing a plurality of cylindrical bodies with different values to form a multiple tube, and inserting a core material made of a normal conductive metal material into the center of the multiple tube to form a composite conductor; A step of thinning the composite conductor by thinning the composite conductor, and adhering a second element constituting the compound superconductor to the wire thinned by this step, followed by heat treatment to make the wire thinner. 1. A method for manufacturing a compound superconducting wire, comprising the step of diffusing an element to form an intermittent fibrous compound superconductor in a normal conducting metal. 2 What constitutes a compound superconductor in a normal conducting metal? a step of forming a plurality of cylindrical bodies with different inner and outer diameters from an alloy formed by adding the first element of the above, and forming a multiple cylinder by concentrically polymerizing the plurality of cylindrical bodies with different inner and outer diameters. At the same time, a core material formed by covering a second elemental metal of the elements constituting the compound superconductor with a normal conducting metal or an alloy containing the above second element is placed in the center of the multi-tube with a normal conducting metal. A step of forming a composite superconducting substrate by inserting a covering core material, a step of reducing the area of the composite superconducting substrate to make it thin, and heat-treating the wire made thin by this step. A method for manufacturing a compound superconducting wire, comprising the step of diffusing the second element to form an intermittent fibrous compound superconductor in a normal conducting metal.
JP55093051A 1980-07-08 1980-07-08 Method for manufacturing compound superconducting wire Expired JPS5837644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55093051A JPS5837644B2 (en) 1980-07-08 1980-07-08 Method for manufacturing compound superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55093051A JPS5837644B2 (en) 1980-07-08 1980-07-08 Method for manufacturing compound superconducting wire

Publications (2)

Publication Number Publication Date
JPS5717513A JPS5717513A (en) 1982-01-29
JPS5837644B2 true JPS5837644B2 (en) 1983-08-17

Family

ID=14071703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55093051A Expired JPS5837644B2 (en) 1980-07-08 1980-07-08 Method for manufacturing compound superconducting wire

Country Status (1)

Country Link
JP (1) JPS5837644B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69610049T2 (en) * 1995-03-01 2001-04-12 Koninkl Philips Electronics Nv CIRCUIT ARRANGEMENT FOR IGNITING A HIGH PRESSURE GAS DISCHARGE LAMP
US6094011A (en) 1995-06-26 2000-07-25 Kokusan Denki Co., Ltd Discharge lamp lighting device driven by internal combustion engine

Also Published As

Publication number Publication date
JPS5717513A (en) 1982-01-29

Similar Documents

Publication Publication Date Title
US4055887A (en) Method for producing a stabilized electrical superconductor
US4161062A (en) Method for producing hollow superconducting cables
KR20190019043A (en) Method for manufacturing multifilament Nb3Sn superconducting wire
US4646428A (en) Method of fabricating multifilament intermetallic superconductor
US5926942A (en) Method for manufacturing superconducting wire
US4224735A (en) Method of production multifilamentary intermetallic superconductors
JPS61194155A (en) Production of nb3sn superconductive wire
JPS62113306A (en) Complex superconductor and manufacture of the same
US4084989A (en) Method for producing a stabilized electrical superconductor
US4532703A (en) Method of preparing composite superconducting wire
JPS5837644B2 (en) Method for manufacturing compound superconducting wire
US4094059A (en) Method for producing composite superconductors
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
FI108174B (en) Superconducting filament and method for its manufacture
EP0498413B1 (en) Method of manufacturing Nb3Sn superconducting wire
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
US6810276B1 (en) Method to reduce magnetization in high current density superconductors formed by reaction of multi-component elements in filamentary composite superconductors
JPS5933653B2 (en) Method for producing stabilized superconductor
JPH0350368B2 (en)
JPS5837643B2 (en) Method for manufacturing compound superconducting wire
JPH0492316A (en) Manufacture of compound linear material
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPH03283320A (en) Manufacture of nb3sn multicore superconductor
JPH0735561B2 (en) Method for producing fiber-dispersed superconducting wire
JPH08287752A (en) Manufacture of superconducting wire material