JPS5837518A - Electromagnetic flow meter - Google Patents
Electromagnetic flow meterInfo
- Publication number
- JPS5837518A JPS5837518A JP13573581A JP13573581A JPS5837518A JP S5837518 A JPS5837518 A JP S5837518A JP 13573581 A JP13573581 A JP 13573581A JP 13573581 A JP13573581 A JP 13573581A JP S5837518 A JPS5837518 A JP S5837518A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- flow rate
- measurement
- exciting current
- excitation current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/56—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
- G01F1/58—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
- G01F1/60—Circuits therefor
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、ワンチップマイクロコンビュータナどの計測
制御部を使用して流量を計測する電磁流量計に関し、そ
の目的とするところは流量計測誤差を極めて小さく抑制
することのできる新規な電磁流量計を提供することであ
る。[Detailed Description of the Invention] The present invention relates to an electromagnetic flowmeter that measures flow rate using a measurement control unit such as a one-chip microcomputer, and its purpose is to suppress flow rate measurement errors to an extremely small level. An object of the present invention is to provide a new electromagnetic flowmeter.
第1図は、本発明の一実施例の全体のブロック回路図で
ある。本件実施例の電磁流量計は、大きく分けて、伝送
器1と励磁器2と、検出器3とから成るブロック回路で
構成される。伝送器1と検出器8は流量信号線4を介し
て相互に接続され、また、伝送器1と励磁器2は、励磁
電流信号線5、励磁電流信号極性方向切シ替え制御線6
、励磁電流極性方向選択制御線7、および同期信号線8
を介して相工に接続される。FIG. 1 is an overall block circuit diagram of one embodiment of the present invention. The electromagnetic flowmeter of this embodiment is roughly divided into block circuits consisting of a transmitter 1, an exciter 2, and a detector 3. The transmitter 1 and the detector 8 are connected to each other via a flow rate signal line 4, and the transmitter 1 and the exciter 2 are connected to each other via an excitation current signal line 5 and an excitation current signal polarity direction switching control line 6.
, an exciting current polarity direction selection control line 7, and a synchronization signal line 8
Connected to Soiko via.
伝送器1は、同期信号発生器26、ワンチップマイクロ
コンピュータなどの計測制御部27、流bt信号増幅器
28、励磁電流信号増幅器29、積分器31、比較器8
2.41.積分スイッチ84.85、誤電圧保持スイッ
チ86.37、およびフォトカプラ88.42で主に構
成される。励磁器2は励磁電源供給トランス14、励磁
電流検出トランス15、整流器16.17、励磁電流信
号替えスイッチ18〜21、励磁電流信号切シ替えスイ
ッチ22〜25で主に構成される。検出器3は、界磁発
生巻線9,10.検出電極11.12、および導管43
で主に構成される。The transmitter 1 includes a synchronization signal generator 26, a measurement control section 27 such as a one-chip microcomputer, a current bt signal amplifier 28, an excitation current signal amplifier 29, an integrator 31, and a comparator 8.
2.41. It mainly consists of an integral switch 84.85, an erroneous voltage holding switch 86.37, and a photocoupler 88.42. The exciter 2 mainly includes an excitation power supply transformer 14, an excitation current detection transformer 15, a rectifier 16, 17, excitation current signal changeover switches 18-21, and excitation current signal changeover switches 22-25. The detector 3 includes field generating windings 9, 10 . Detection electrodes 11.12 and conduits 43
It mainly consists of.
本件実施例の電lへ流量計による流量計測動作を、第2
図を参照にして説明する。The flow rate measurement operation using the flow meter in this example is performed in the second
This will be explained with reference to the drawings.
励磁器2の励磁電源供給トランス14の同期用巻線で発
生する。第2図(1)に示すごとき交流信号ACINが
、同期信号線8を介して、同期信号発生器26に入力さ
れる。この交流信号ACINは、タイミングt・(iは
正の整数)毎に半サイクルが正負方向に変化する信号で
ある。フォトカプラなどを含む同期信号発生器26は、
このような交流信号ACINが最大値または、本件実施
例のように零値に到達するたびごとに、第2図(2)に
示すように、ハイレベル(E)の短かいパルス幅を有す
る同期信号5YNCi発生する。同期信号発生器26か
ら出力された同期信号S YNCは、計測制御部27の
割り込みポー) INTに入力される。計測制御部27
に、同期信号5YNCが入力されたときに、流量計測処
理プログラムが実行開始する。This occurs in the synchronization winding of the excitation power supply transformer 14 of the exciter 2. An alternating current signal ACIN as shown in FIG. 2(1) is input to the synchronization signal generator 26 via the synchronization signal line 8. This alternating current signal ACIN is a signal whose half cycle changes in the positive and negative directions at every timing t (i is a positive integer). A synchronization signal generator 26 including a photocoupler etc.
Each time such an alternating current signal ACIN reaches a maximum value or a zero value as in the present embodiment, a synchronization signal with a short pulse width of a high level (E) is generated as shown in FIG. 2 (2). Signal 5YNCi is generated. The synchronization signal SYNC output from the synchronization signal generator 26 is input to the interrupt port (INT) of the measurement control section 27. Measurement control section 27
When the synchronization signal 5YNC is input, the flow rate measurement processing program starts executing.
即ち、タイミングt2で、同期信号S YNCが、計測
制御部270割多込みポー)INTに入れされると、計
測制御部27の端子7から、第2図(3)に示すごとき
波形を有する正方向励磁指令信号1 ONFが送出され
る。この指令信号1ONFは、励磁電流選択制御線7の
正方向制御線71を介して、励磁電流極性方向切シ替え
スイッチ18 、19に印加され、これによって、これ
らのスイッチ18.19は導通される。That is, at timing t2, when the synchronization signal SYNC is input to the measurement control section 270 (interrupt port) INT, a positive signal having a waveform as shown in FIG. Directional excitation command signal 1 ONF is sent. This command signal 1ONF is applied to the excitation current polarity direction changeover switches 18 and 19 via the positive direction control line 71 of the excitation current selection control line 7, thereby rendering these switches 18 and 19 conductive. .
この導通によって、界磁発生巻線9,10には、整流器
16を介して、正方向の励磁電流が流れる。そうすると
、導管43の外側に対向配置された界磁発生巻線9,1
0が正方向に励磁され、この励磁によって、導管43の
内側であって、かつ界磁発生巻線9、lOを結ぶ直線に
直交する方向に対向配置された1対の検出電極11.1
2には、導管48の内部を流れる流体の流量に応じた信
号が発生する。Due to this conduction, a positive excitation current flows through the field generation windings 9 and 10 via the rectifier 16. Then, the field generating windings 9 and 1 disposed opposite to each other on the outside of the conduit 43
0 is excited in the positive direction, and this excitation causes a pair of detection electrodes 11.1 located inside the conduit 43 and facing each other in a direction orthogonal to the straight line connecting the field generation windings 9 and 1O to each other.
2, a signal is generated depending on the flow rate of the fluid flowing inside the conduit 48.
この信号は、流縫信号線4を介して伝送器1の前置増幅
器28に入力されるとともに、この増幅器28で増幅さ
れた後、第2図0υに示すごとき流量信号eとしてこの
増幅器28から出力される。流量信号eは、伝送器l内
において参照符X、Xで示すように、基準入力端子と比
較入力端子とを備える比較器41のその比較入力端子に
入力された後、その比較器41内において電圧レベルか
ら見て正であるか負であるかが判定さηする。この比較
器41で正の電圧レベルであると判定された流量信号e
は、フォトカプラ42を介して、第2図04に示すごと
き流量信号正負判定用信号POL Iとして、計測制御
部27に入力される。This signal is input to the preamplifier 28 of the transmitter 1 via the flow signal line 4, and after being amplified by this amplifier 28, it is output from this amplifier 28 as a flow rate signal e as shown in FIG. Output. The flow rate signal e is input into the comparison input terminal of a comparator 41 having a reference input terminal and a comparison input terminal, as indicated by reference symbols X and X in the transmitter l, and then is It is determined whether the voltage is positive or negative based on the voltage level. The flow rate signal e determined to be at a positive voltage level by this comparator 41
is inputted to the measurement control section 27 via the photocoupler 42 as a signal POL I for determining whether the flow rate signal is positive or negative as shown in FIG. 204.
計測制御部27は、入力された流量信号正負判定用信号
POL Iの内容に対応して端子5がら負方向の励磁電
流信号切シ替え制御信号C0NRを送出する。この制御
信号C0NRは、励磁電流信号極性方向切や替え制御線
6の一方の負方向制御線61を介して、励磁電流信号切
シ替えスイッチ24.25に人力され、これによってこ
れらのスイッチ24.25は導通される。The measurement control unit 27 sends out a negative-direction excitation current signal switching control signal C0NR from the terminal 5 in accordance with the content of the input flow rate signal positive/negative determination signal POL I. This control signal C0NR is manually applied to the excitation current signal changeover switches 24, 25 via one negative direction control line 61 of the excitation current signal polarity direction changeover control line 6, and thereby these switches 24. 25 is made conductive.
この導通によって、励磁電流信号線5には、流量信号e
に対しては逆相となる、負方向のレベルを有する励磁電
流信号が流れる〔第2図01参照〕。Due to this conduction, the excitation current signal line 5 receives the flow rate signal e.
An excitation current signal having a negative level and having an opposite phase flows therethrough [see FIG. 2 01].
こうして、界磁発生巻線9,10に流れる励磁電流が飽
和するまで、計測制御部27で、同期信号5yNCが必
要回数計数される。この計数は、励磁電流がタイミング
t6で飽和するまで行われるものであシ、励磁電流信号
11流量信号eのレベルが所定値に安定するタイミング
に対応している。このような計数動作が終了すると、計
測制御部27の端子2,8から、それぞれ、流量信号計
測指令信号EMF 、励磁電流信号計測指令信号CUR
Rが送出される〔第2図(7)、 (8)参照〕。In this way, the measurement control unit 27 counts the necessary number of synchronization signals 5yNC until the excitation currents flowing through the field generation windings 9 and 10 are saturated. This counting is performed until the excitation current is saturated at timing t6, which corresponds to the timing when the level of the excitation current signal 11 flow rate signal e stabilizes at a predetermined value. When such a counting operation is completed, a flow rate signal measurement command signal EMF and an exciting current signal measurement command signal CUR are output from terminals 2 and 8 of the measurement control unit 27, respectively.
R is sent [see Figure 2 (7) and (8)].
前記信号EMF 、 CURRは、それぞれ、積分スイ
ッチ34・85に印加され、との印加によって、これら
′の積分スイッチ84.85は導通される。また、これ
らの信号EMF 、 CURRが、第2図(7L (8
)のタイミングt6に示すように、ハイレベル(E)と
なったとき、このタイミングt6に一致して、計測制御
部27の端子lから送出される計測停止指令信号CNT
がローレベルになる。この計測停止指令信号CNTの機
能については後述する。このようにして、積分スイッチ
34.35が導通される一方、ローレベルの計測停止指
令ft(号CNTによって it圧保持スイッチ36.
37は遮断される。そうすると、ii■置装幅器30、
積分抗抗38、積分コンデンサ39、および積分器31
から成る積分変換部には、積分スイッチ84 、、85
を介して流星信号計測指令信号EMF 、励磁電流信号
計測指令信号CURRが送り込まれ、これによって、こ
れらの信号EMF 、 CURRの積分出力ecが、積
分変換部の積分器3Iから送出される〔第2図■参照〕
。The signals EMF and CURR are applied to the integration switches 34 and 85, respectively, and these integration switches 84 and 85 are rendered conductive by the application of EMF and CURR. In addition, these signals EMF and CURR are shown in Fig. 2 (7L (8
), when the measurement stop command signal CNT reaches a high level (E), the measurement stop command signal CNT is sent from the terminal l of the measurement control unit 27 in coincidence with this timing t6.
becomes low level. The function of this measurement stop command signal CNT will be described later. In this way, the integral switches 34 and 35 are turned on, while the it pressure holding switch 36.
37 is blocked. Then, ii■ device width gauge 30,
Integral resistor 38, integral capacitor 39, and integrator 31
The integral conversion unit includes integral switches 84, , 85.
The meteor signal measurement command signal EMF and the excitation current signal measurement command signal CURR are sent through the integrator 3I of the integral conversion section. See figure■
.
積分出力eCは充電動作によって、タイミングt6〜t
までの間では、積分カーブを描いて徐々に上列してゆく
が、この上昇期間中、計測制御部27では、流量計測の
ために、必要回数計数動作が行われる。この計数終了後
のタイミングt11において、計測制御部27の端子2
から送出されていた流量信号計測指令信号EMFはロー
レベルになシ、一方の積分スイッチ34は、遮断される
〔第2図(7ン参照〕。The integral output eC changes from timing t6 to t due to charging operation.
Up to this point, the flow rate gradually rises in line with an integral curve, but during this rising period, the measurement control section 27 performs a counting operation for the necessary number of times in order to measure the flow rate. At timing t11 after the end of this counting, terminal 2 of the measurement control section 27
The flow rate signal measurement command signal EMF that was being sent from the controller is no longer at a low level, and one of the integral switches 34 is shut off [see FIG. 2 (see 7)].
このとき、積分変換部に入力される信号は、第2図αQ
に示す励磁電流信号lのみとなる。この信号1は、負方
向のレベルを有しているので、積分器31の積分出力e
。は、放電動作によって第2131’lO■に示すよう
に、タイミングt□1以降は徐々に下降してゆく。そし
て、タイミングt12の途中で、積分出力転のレベルが
零となったとき、積分器31に接続されている比較器8
2、フォトカブラ33の比較出力CMPは、第2図01
に示すように、ハイレベルとなる。この比較器出力CM
Pは、タイミングt6〜【12の途中まではローレベル
であ凱判定用信号POL Iと共に計測制御部27に入
力されていたけれども、ハイレベルに反転されることに
よって、励磁電流計測指令信号CURRをローレベルに
反転させるように計測制御部27を制御する。この指令
信号cURRがローレベルになると、他方の積分スイッ
チ35が遮断される。また、タイミングLr3において
、同期パルス信号5YNCが、入力されると、励磁指令
信号l0NF、励磁指令信号切シ替え制#信号C0NR
がローレベルに反転されるとともに、計測停止指令信号
CNTがハイレベルに反転される。その結果、励m束流
&性ノj向切シ替えスイッチ18゜19、励磁電流G4
−号切り替えスイッチ24.25はいずれも遮断される
一方、誤電圧保持スイッチ86 、87はいずれも導通
される。At this time, the signal input to the integral conversion section is αQ in FIG.
Only the excitation current signal l shown in FIG. Since this signal 1 has a level in the negative direction, the integral output e of the integrator 31
. As shown in 2131'lO■, due to the discharge operation, after the timing t□1, the voltage gradually decreases. Then, in the middle of timing t12, when the level of the integral output becomes zero, the comparator 8 connected to the integrator 31
2. The comparative output CMP of the photocoupler 33 is shown in Fig. 2 01
As shown, the level is high. This comparator output CM
Although P was inputted to the measurement control unit 27 together with the detection signal POL I at a low level from timing t6 to the middle of t12, by being inverted to a high level, the excitation current measurement command signal CURR is The measurement control unit 27 is controlled to invert the signal to a low level. When the command signal cURR becomes low level, the other integral switch 35 is cut off. Also, at timing Lr3, when the synchronizing pulse signal 5YNC is input, the excitation command signal l0NF and the excitation command signal switching control # signal C0NR
is inverted to low level, and measurement stop command signal CNT is inverted to high level. As a result, excitation flux flow & direction changeover switch 18°19, excitation current G4
The - number changeover switches 24 and 25 are both cut off, while the false voltage holding switches 86 and 87 are both turned on.
計11111制御部27は、このような流星信号計測指
令信号EMFがハイレベルであるタイミングt6〜tl
oと、流hH74°号計測指令信号EMFがローレベル
であってかつ励磁ゼ流IH号計測指令信号CURRがへ
イレペルであるタイミングt11〜【1□の途中までと
を、それぞれ、高速積算し、その積算値をNe + N
Iとして求め、これらの積算値Ne+ r Ni+ f
対応するメモリMe、Miにストアする。The total 11111 control unit 27 controls timings t6 to tl when such a meteor signal measurement command signal EMF is at a high level.
o and the timing t11 when the flow hH74° measurement command signal EMF is at a low level and the excitation zero flow IH measurement command signal CURR is at a high level, from timing t11 to the middle of [1□, respectively, are integrated at high speed, The integrated value is Ne + N
I, and their integrated value Ne+ r Ni+ f
Store in the corresponding memories Me and Mi.
このようにして、計測制御部270メモリ雁などにスト
アされている校正係数にと、上述の各積算f直Ne+・
N1士とから次式(1)で与えられる流最計測稙Vが、
計測制御部27で演算される。In this way, the calibration coefficients stored in the measurement control unit 270 memory etc.
The flow maximum measurement value V given by the following equation (1) from N1 is
It is calculated by the measurement control section 27.
V=に−(1+ ±N1t7Ne+ ) 曲・・
(1)ここで、NIの負符号は、積算値Niを積算す
るに際し、流祉信号と励磁電流信号とが、4管内金流れ
る流体の流れが反対になったときなどに同相となったと
きの符号である。V=ni-(1+ ±N1t7Ne+) Song...
(1) Here, the negative sign of NI means that when integrating the integrated value Ni, the circulation signal and the excitation current signal become in phase, such as when the flow of fluid flowing in the four pipes becomes opposite. is the sign of
流量の正逆方向は、励磁指令信号1ONFと流IIt正
逆判定用信号POL Iとから判定され、これによって
流量計測値Vに符号が付される。この符号罎流量信号出
力時に正逆を判定されて、流量の正逆信号出力判別のた
めに使用される。The forward or reverse direction of the flow rate is determined from the excitation command signal 1ONF and the flow IIt forward/reverse determination signal POL I, and a sign is assigned to the flow rate measurement value V based on this. This code is used to determine whether the flow rate signal is forward or reverse when the flow rate signal is output.
なお、計測停止指令信号CNTは、誤電圧保持スイッチ
86.87の導通遮断を制御するものであり、コh ラ
(7) y、イツ+86.87の導通、遮断を介して、
積分変換部内の前置増幅器80.積分器31、比較器3
2のオフセットおよびドリフトをコンデンサ4oに誤差
電圧として保持させて、積分変換部における上述の積分
動作の精度を高める。The measurement stop command signal CNT controls the conduction and cutoff of the erroneous voltage holding switch 86.87, and through the conduction and cutoff of (7) y and +86.87,
Preamplifier 80 within the integral converter section. Integrator 31, comparator 3
The offset and drift of 2 is held as an error voltage in the capacitor 4o to improve the accuracy of the above-mentioned integration operation in the integral conversion section.
このようにして、正方向励磁時の流星計測が終了する。In this way, meteor measurement during positive direction excitation is completed.
次に、タイミングt14で、第2図(2)に永すように
、同期パルス信号5YNCが、計測制御部27の割り込
みボー) INTに入力されると、その端子6から逆方
向励磁指令信号1ONRが送出される。Next, at timing t14, as shown in FIG. 2 (2), when the synchronous pulse signal 5YNC is input to the interrupt baud (INT) of the measurement control unit 27, the reverse excitation command signal 1ONR is sent from the terminal 6. is sent.
この指令信号1 ONRは、制御Mtの他方の逆方向i
4ilJ割線72を介して、励磁電流切り替えスイッチ
20゜21に印加され、これによって、これらのスイッ
チ20.21は導通される。そうすると、この導通によ
って、界磁発生巻線9,10には、上述した正方向励磁
時とは逆に、逆方向の励磁電流Iが流れる。This command signal 1 ONR is the other reverse direction i of control Mt.
The excitation current is applied to the switching switches 20 and 21 via the secant line 72, thereby rendering these switches 20 and 21 conductive. Then, due to this conduction, an excitation current I flows in the field generation windings 9 and 10 in a reverse direction, contrary to the above-described positive direction excitation.
この逆方向の励磁電流に対応して、導管43の内側にあ
る対向電極11.12から流量信号線4には、負方向の
流量18号が流れる、そうすると、上述した正方向の励
磁時とは逆に、第2図(6)のタイミングt15で、正
方向の励磁電流信号切り替え制御信号CON Fが、計
測側間部27の端子4から送出される。これによって、
励磁電流信号切り替えスイッチ22.28が導通されて
、励磁電流信号線5には、第2図00のタイミング【1
5でホすごとき正方向の励磁電流信号が流れる。Corresponding to this excitation current in the opposite direction, the flow rate No. 18 in the negative direction flows from the counter electrodes 11. On the contrary, at timing t15 in FIG. 2(6), the positive excitation current signal switching control signal CONF is sent from the terminal 4 of the measurement side part 27. by this,
The excitation current signal changeover switches 22 and 28 are turned on, and the excitation current signal line 5 is connected to the timing [1] of FIG.
5, a positive excitation current signal flows.
このようにして、タイミングt15以降は、上述の正り
向の励磁時と同様にして、励磁電流信号計測指令信号C
URR、流量信号計測指令信号EMF 1計測停正指令
信号CNTなどの各信号のハイレベルとローレベルとの
間の反転が検出制御されて、その結果、計測制御部27
の各対応メモリに積算値Ne−、Ni−が求め−られる
。In this way, from timing t15 onwards, the excitation current signal measurement command signal C
The reversal between high level and low level of each signal such as URR, flow rate signal measurement command signal EMF 1 measurement stop correction command signal CNT is detected and controlled, and as a result, the measurement control unit 27
The integrated values Ne- and Ni- are calculated for each corresponding memory.
このようにして、逆方向励磁時の計測サイクルが終了す
る。ところで、上述のように計測される流量値Vに対す
る計測誤差は、積算値NeとN1とを求めるときに、励
磁電流信号が変動した場合に生じる。このような場合に
おける流量計測誤差比Δ&/Vは、Thl記の式(1)
に基づき、次式(2)で与えられる。In this way, the measurement cycle during reverse direction excitation is completed. Incidentally, a measurement error with respect to the flow rate value V measured as described above occurs when the excitation current signal fluctuates when calculating the integrated values Ne and N1. The flow rate measurement error ratio Δ&/V in such a case is expressed by the equation (1) in Thl.
Based on this, it is given by the following equation (2).
△V/V−C(+Ni/Ne )/ (1±Ni /N
e ) ) ・(△i/i )−(2)ここで、O<N
i/Ne比1であり、△i /iは積算値NeとNiと
を求めるときの励磁電流信号iの平均変動比である。こ
のNi/Neにおける分母、分子の値から、結果的に励
磁電流を起電力で除した格好になり、そのため、励磁電
流が変動して起電力も変動したとしても、除算するため
に流量計測誤差に対する影響が少なくなる。△V/V-C(+Ni/Ne)/(1±Ni/N
e ) ) ・(△i/i ) − (2) Here, O<N
The i/Ne ratio is 1, and Δi/i is the average fluctuation ratio of the excitation current signal i when calculating the integrated values Ne and Ni. From the values of the denominator and numerator in Ni/Ne, the result is the excitation current divided by the electromotive force. Therefore, even if the excitation current fluctuates and the electromotive force also fluctuates, the flow rate measurement error due to the division The impact on
先行技術にあっては、励磁電流Iを流すところに定電流
回路を用いていたが、何十A1何百アンペアの定電流を
流すことが非常に困難であった。In the prior art, a constant current circuit was used where the excitation current I was passed, but it was extremely difficult to pass a constant current of tens of A1 and hundreds of amperes.
本発明では定電流とはせずに、特定周期ごとにNi/N
e比を計測するようにして、変動を−抑えている。ただ
、起電力を計測した後、電流を計測するので、特定周期
が終るまでは、変動が一定でなければならないけれども
、物理上は急激な変化はみられないので、変動があった
としても実用上無視することができる。ただ、その変動
をできる限シ抑えるために、積分値Niに対する積分器
31における放電時間を短かくするとよく、このため、
本発明では積分出力レベルが極端に大きくなることのな
いようにしており、したがって、前記変動を小さく抑制
することができる。In the present invention, instead of constant current, Ni/N
Fluctuations are suppressed by measuring the e ratio. However, since the current is measured after measuring the electromotive force, the fluctuation must be constant until the end of a specific period, but physically there is no sudden change, so even if there is a fluctuation, it is not practical. The above can be ignored. However, in order to suppress the fluctuation as much as possible, it is recommended to shorten the discharge time in the integrator 31 for the integral value Ni.
In the present invention, the integrated output level is prevented from becoming extremely large, and therefore the fluctuation can be suppressed to a small level.
このようにして、O<Ni /Ne <<1となるよう
に、流献信号eと励磁電流信号lとを適切に選定するこ
とができるので、流量計測誤差△■/Vft充分に小さ
くすることができる。In this way, the flow rate signal e and the excitation current signal l can be appropriately selected so that O<Ni/Ne<<1, so that the flow rate measurement error △■/Vft can be made sufficiently small. I can do it.
以上説明したように、本発明によれば、流量の演算処理
、訓測制御などにおける流量計測誤差△V/Vは、積分
値N i/NeO比に基づくようにされているので、そ
の誤差を充分に小さく抑えることができ、したがって正
確な流量計測を行うことができる。As explained above, according to the present invention, the flow rate measurement error △V/V in flow rate calculation processing, pilot measurement control, etc. is based on the integral value Ni/NeO ratio. It can be kept sufficiently small, so accurate flow rate measurement can be performed.
第1図は、本発明の一実施例のブロック回路図、第2図
は、第1図示の実施例の動作を説明するだめの波形図で
ある。
1・・・伝送器、2・・・励磁器、3・・・検出器、4
・・・流量信号線、5・・・励磁電流信号線、6・・・
励磁電流信号正逆切り替え制御線、7・・・正逆励磁電
流選択制御線、8・・・同期信号線、9,1o・・・界
磁発生巻線、11゜12・・・対向電極、13・・・商
用電源、14・・・励磁電源供給トランス、15・・・
励磁電流検出トランス、16.17・・・整流器、18
,19,20,21 用励磁電流切シ替えスイッチ、2
2 、2B 、 24 、25・・・励磁電流信号正逆
替えスイッチ、26・・・同期信号発生器、27・・・
計測制御部、28゜29.80・・・前置増幅器、81
・・・積分器、32.41・・・比較器、83 、42
・・・フォトカプラ、84 、85・・・積分スイッチ
、86.87・・誤電圧保持スイッチ、38・・・積分
抵抗、39・・・積分コンデンサ、4o・・・誤電圧保
持コンデンサ、43・・・導管FIG. 1 is a block circuit diagram of one embodiment of the present invention, and FIG. 2 is a waveform diagram for explaining the operation of the embodiment shown in the first diagram. 1... Transmitter, 2... Exciter, 3... Detector, 4
...Flow rate signal line, 5...Exciting current signal line, 6...
Excitation current signal forward/reverse switching control line, 7... Forward/reverse excitation current selection control line, 8... Synchronization signal line, 9, 1o... Field generation winding, 11° 12... Opposing electrode, 13... Commercial power supply, 14... Excitation power supply transformer, 15...
Exciting current detection transformer, 16.17... Rectifier, 18
, 19, 20, 21 Excitation current changeover switch, 2
2, 2B, 24, 25... Excitation current signal forward/reverse switch, 26... Synchronization signal generator, 27...
Measurement control section, 28° 29.80... Preamplifier, 81
... Integrator, 32.41 ... Comparator, 83, 42
... Photocoupler, 84, 85... Integral switch, 86.87... Erroneous voltage holding switch, 38... Integrating resistor, 39... Integrating capacitor, 4o... Erroneous voltage holding capacitor, 43. ··conduit
Claims (1)
磁電流信号を発生する手段と、信号積分手段と、目11
記流量信号発生手段と信号積分手段との間に介在される
第1の積分スイッチと、前記励磁電流信号発生手段と信
号積分手段との間に介在される第2の噴分スイッチと、
信号積分手段からの積分出力に応答して目υ記積分スイ
ッチの導通遮断を制御する計測制御手段とを含み、第1
の積分スイッチと第2の積分スイッチとが第1の導通遮
の導通遮断状態にあるときの励磁電流信号に対応する第
2の積算値とが計測制御手段を介して積算され、第1の
積算値と第2の積算値とから成る分数式に関連して流量
が前記計測手段によって計測されるように構成されてい
ることを特徴とする、電磁電流計。means for generating a flow rate signal, means for generating an excitation current signal in response to the flow rate signal, signal integrating means;
a first integral switch interposed between the recording amount signal generating means and the signal integrating means; a second injection switch interposed between the excitation current signal generating means and the signal integrating means;
measurement control means for controlling conduction/interruption of the integration switch in response to the integral output from the signal integration means;
A second integrated value corresponding to the excitation current signal when the integral switch and the second integral switch are in the first conductive interrupting state is integrated via the measurement control means, and the first integrated value is An electromagnetic ammeter, characterized in that the flow rate is measured by the measuring means in relation to a fractional expression consisting of a value and a second integrated value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13573581A JPS5837518A (en) | 1981-08-28 | 1981-08-28 | Electromagnetic flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13573581A JPS5837518A (en) | 1981-08-28 | 1981-08-28 | Electromagnetic flow meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5837518A true JPS5837518A (en) | 1983-03-04 |
Family
ID=15158639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13573581A Pending JPS5837518A (en) | 1981-08-28 | 1981-08-28 | Electromagnetic flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5837518A (en) |
-
1981
- 1981-08-28 JP JP13573581A patent/JPS5837518A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008224410A (en) | Electromagnetic flowmeter and zero point measurement method thereof | |
JPS5837518A (en) | Electromagnetic flow meter | |
US4089219A (en) | Bi-directional output electromagnetic flowmeter | |
US4059796A (en) | Second harmonic magnetic field detection circuit with means to rectify the sensed signal | |
JPH05142005A (en) | Electromagnetic flowmeter | |
JPS5837519A (en) | Electromagnetic flow meter | |
JPS6048689B2 (en) | electromagnetic flow meter | |
JP3057410B2 (en) | Electromagnetic flow meter | |
JP5877262B1 (en) | Calibrator for electromagnetic flowmeter | |
JP2539170B2 (en) | Current detection method and device | |
US20050057240A1 (en) | Control device | |
SU1307383A2 (en) | Device for measuring phase error signal | |
JP2619121B2 (en) | Electromagnetic flow meter | |
JP4835417B2 (en) | Power control method and power control apparatus | |
SU852475A1 (en) | Apparatus for measuring active resistance of welding circuit | |
JPH07209050A (en) | Two wire system electromagnetic flow meter | |
JPH0814971A (en) | Electromagnetic flowmeter | |
JP3015996B2 (en) | 2-wire electromagnetic flowmeter | |
JPH0450500Y2 (en) | ||
JPH08285646A (en) | Integral electromagnetic flow meter | |
JP2936843B2 (en) | Electromagnetic flow meter | |
SU893454A1 (en) | Device for measuring and control of power at resistance welding | |
JPH07209049A (en) | Two wire system electromagnetic flow meter | |
JPH0450496Y2 (en) | ||
SU1318923A1 (en) | Digital meter of microwave power |