JPS5837377B2 - wear resistant alloy - Google Patents

wear resistant alloy

Info

Publication number
JPS5837377B2
JPS5837377B2 JP3260480A JP3260480A JPS5837377B2 JP S5837377 B2 JPS5837377 B2 JP S5837377B2 JP 3260480 A JP3260480 A JP 3260480A JP 3260480 A JP3260480 A JP 3260480A JP S5837377 B2 JPS5837377 B2 JP S5837377B2
Authority
JP
Japan
Prior art keywords
alloy
resistant alloy
less
metal
wear resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3260480A
Other languages
Japanese (ja)
Other versions
JPS56130450A (en
Inventor
雅秀 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Daisu Kk
Original Assignee
Fuji Daisu Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Daisu Kk filed Critical Fuji Daisu Kk
Priority to JP3260480A priority Critical patent/JPS5837377B2/en
Publication of JPS56130450A publication Critical patent/JPS56130450A/en
Publication of JPS5837377B2 publication Critical patent/JPS5837377B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、合金中の炭化物ないし窒化物結晶の大部分が
1μ以下の超微粒となることを特徴とするW C −
N i系の耐摩耗性合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that most of the carbide or nitride crystals in the alloy are ultrafine grains of 1μ or less.
The present invention relates to a Ni-based wear-resistant alloy.

一般lこ、W C − N i系合金は、超硬合金とし
てある程度の硬さ、強度を持ち、かつ非磁性とすること
ができるため、金型等に使用されている。
Generally, WC-Ni alloys are used for molds and the like because they have a certain degree of hardness and strength as cemented carbide and can be made non-magnetic.

しかし、焼結性が悪く、かつ高炭素では粗粒になり易い
という欠点を有していた。
However, it has the drawbacks of poor sinterability and high carbon content, which tends to result in coarse grains.

そのため、同一組或のものでも結晶粒度がばらついて、
健全相域中でも硬度は勿論、強度もばらつき、合金とし
ての性質は不安定なものであった。
Therefore, even in the same group, the grain size varies,
Even in the healthy phase range, not only the hardness but also the strength varied, and the properties as an alloy were unstable.

又、公知のWC一Co系合金に比べると、強度、硬度共
に劣るためダイスやプラグ等の耐摩耗性合金としては不
向きであった。
Furthermore, compared to known WC-Co alloys, it is inferior in both strength and hardness, making it unsuitable as a wear-resistant alloy for dies, plugs, and the like.

第1図はWC−15Ni(合金中炭化物の平均粒度1.
5μ)の組織を示す写真であり、第2図は同一組或、製
造条件でも粗粒になったWC−15Ni(合金中炭化物
の平均粒度35μ)の組織を示す写真である。
Figure 1 shows WC-15Ni (average grain size of carbides in the alloy: 1.
5μ), and FIG. 2 is a photograph showing the structure of WC-15Ni (average grain size of carbides in the alloy: 35μ), which has become coarse grained even under the same group or manufacturing conditions.

この第1,2図から明らかなように、従来のWC−Ni
系合金は組織中の結晶粒度、硬度、強度のバラツキがあ
る。
As is clear from Figures 1 and 2, the conventional WC-Ni
Alloys have variations in grain size, hardness, and strength in their structures.

又、TiC−Ni系、Cr3C2−Ni系、WC−Co
系なトニツいては、粒抑制剤の研究がなされているが、
WC− N i系合金については粒抑制剤の研究はなさ
れておらず、このW C − N i系合金で1μ以下
の超微粒組織を有する合金は見当らないのが現状である
Also, TiC-Ni system, Cr3C2-Ni system, WC-Co
Regarding grain control, research is being conducted on grain suppressants.
No research has been conducted on grain suppressors for WC-Ni alloys, and currently no WC-Ni alloys having an ultrafine grain structure of 1 μm or less have been found.

本発明は、上記の事情に鑑み、これを改良するために創
案されたものであって、WC−Ni系合金中の炭化物な
いし窒化物結晶の大部分を1μ以下の超微粒とすること
により、耐摩耗性が優れ、かつ硬度、強度のばらつきの
少いものを提供することにある。
In view of the above circumstances, the present invention was devised to improve this, and by making most of the carbide or nitride crystals in the WC-Ni alloy into ultrafine grains of 1μ or less, The object of the present invention is to provide a material that has excellent wear resistance and has less variation in hardness and strength.

本発明の発明者らは、上記の目的を以てWC一Ni系合
金に各種炭化物を添加する研究を重ねた結果、VCが最
もWCの粒抑制効果を有することを知り、本発明に到達
したものである。
The inventors of the present invention have repeatedly conducted research on adding various carbides to WC-Ni alloys for the above purpose, and have found that VC has the most effect of suppressing WC grains, and have arrived at the present invention. be.

すなわち、本発明は結合金属として3〜30w%のNi
を含み、この結合金属の2〜8W%のVC(VとしてL
tl.6〜6.5w%)を含み、残部はWCからなるこ
とを特徴とする耐摩耗性合金、及び結合金属として3〜
30w%のN!を含み、この結合金属の2〜8w%のV
C(Vとしては1.6 〜6.5w%)を含み、残部は
WCからなる耐摩耗性合金において、前記WCと1:1
以下の比率で置換する形で遷移金属の炭化物及び/又は
窒化物を含み、前記Niと1:1以下の比率で置換する
形でNi以外の鉄族金属を含むことを特徴とする耐摩耗
性合金である。
That is, the present invention uses 3 to 30 w% of Ni as the binding metal.
containing 2 to 8 W% of VC (V as L) of this bond metal.
tl. 6 to 6.5 w%) with the remainder being WC, and 3 to 6.5 w% as a bonding metal.
30w% N! containing 2 to 8 w% of V of this bond metal.
In a wear-resistant alloy containing C (1.6 to 6.5 w% as V) and the remainder being WC, the WC is 1:1.
Wear resistance characterized by containing carbides and/or nitrides of transition metals in the following proportions, and containing iron group metals other than Ni in substitutions with the Ni in a proportion of 1:1 or less. It is an alloy.

しかして、本発明のW C − N i系耐摩耗性合金
においてVCを添加する理由は、上述の通りWCに対し
て粒抑制効果を有する知見を得たからであり、その添加
比率を結合金属の2〜8%としたのは、研究の結果とし
て結合金属に対し2%未満ではその効果が充分でなく、
また8%を超えるとVCが組織中に顕著に見られるよう
になり効果が薄れることが判明したからである。
However, the reason why VC is added to the WC-Ni wear-resistant alloy of the present invention is that, as mentioned above, we have obtained the knowledge that it has a grain suppressing effect on WC, and the addition ratio is determined by adjusting the addition ratio of VC to the bonding metal. The reason for setting it at 2 to 8% is that as a result of research, less than 2% of the binding metal does not have sufficient effect.
Furthermore, it has been found that when the content exceeds 8%, VC becomes noticeable in the tissue and the effect is weakened.

又、特許請求の範囲第2項に記載した発明で、WCと1
:1以下の比率で置換する形で遷移金属の炭化物及び/
又は窒化物を含み、Ni と1:1以下の比率で置換
する形でNi以外の鉄族金属を含むこととした理由は、
遷移金属の炭化物、窒化物及びNi以外の鉄族金属を上
記の範囲内で合金中に含んだ場合でも特許請求の範囲第
1項に記載した発明と同一の効果を得ることができるか
らである。
In addition, in the invention described in claim 2, WC and 1
: Transition metal carbide and/or in the form of substitution at a ratio of 1 or less
The reason why we decided to include iron group metals other than Ni in the form of substituting with Ni at a ratio of 1:1 or less is that
This is because even if transition metal carbides, nitrides, and iron group metals other than Ni are included in the alloy within the above range, the same effect as the invention described in claim 1 can be obtained. .

上記の構成になる本発明のW C − N i系耐摩耗
性合金は、W C − N i系合金にVCを小量添加
することにより、合金中の炭化物の大部分力月μ以下の
超微粒となり、この系の合金としては硬度、強度共に高
い、耐摩耗性の優れた合金となる。
The WC-Ni-based wear-resistant alloy of the present invention having the above-mentioned structure is produced by adding a small amount of VC to the WC-Ni-based alloy, so that most of the carbides in the alloy have a force exceeding μ or less. It becomes a fine-grained alloy that has high hardness and strength for this type of alloy, and has excellent wear resistance.

したがって、従来はW C − N i系合金が使用さ
れていなかったダイス、プラグ等の優れた耐摩耗性を要
求される用途にもまた金型等の用途にも向けることがで
きるので、産業上貢献するところが多大である。
Therefore, it can be applied to applications that require excellent wear resistance such as dies and plugs, for which WC-Ni alloys have not been used in the past, as well as applications such as molds, making them suitable for industrial use. There is a lot to contribute.

次に、実施例を挙げて本発明の説明を補足し、併せて効
果を示す。
Next, examples will be given to supplement the explanation of the present invention and also to show the effects.

実施例 1 平均粒度が0.5μのWCと、平均粒度が0.3μのN
iと、平均粒度が1.5μのVCとを、次に示す第1表
の組成になるよう配合し、ボールミルで充分混合し、i
t/iの加匡力で粉末を成型した後、1500゜Cの温
度で真空焼結し、さらに、1350゜CXIOOO気匡
の熱間静水匡処理を施した。
Example 1 WC with an average particle size of 0.5μ and N with an average particle size of 0.3μ
i and VC with an average particle size of 1.5μ are blended to have the composition shown in Table 1 below, and thoroughly mixed in a ball mill.
After molding the powder with a compacting force of t/i, it was vacuum sintered at a temperature of 1500°C, and was further subjected to hot hydrostatic treatment at 1350°CXIOOO air.

このものの硬さおよび抗折力は第2表の如くてあった。The hardness and transverse rupture strength of this product were as shown in Table 2.

実施例 2 平均粒度が0.5μのWC ,TaC ,TiC及びT
iNと、平均粒度が0.3μのNi及びCoと、平均粒
度が1.5μのVCとを次に示す第3表の組成になるよ
うに配合し、ボールミルで充分混合し、1t/CI1l
の加モカで粉末を成型した後、1500゜Cの温度
で真空焼結し、さらに、1350’CX1,000気玉
の熱間静水玉処理を施した。
Example 2 WC, TaC, TiC and T with an average particle size of 0.5μ
iN, Ni and Co with an average particle size of 0.3μ, and VC with an average particle size of 1.5μ are blended so as to have the composition shown in Table 3 below, and thoroughly mixed in a ball mill to produce 1t/CI1l.
After molding the powder using a hot mold, vacuum sintering was performed at a temperature of 1500°C, and a hot still water beading process was performed using 1350'CX1,000 air beads.

このものの硬さおよび抗折力は第4表の如くであった。The hardness and transverse rupture strength of this product were as shown in Table 4.

Claims (1)

【特許請求の範囲】 1 結合金属として3〜30w%のNiを含み、この結
合金属の2〜8w%のVC(Vとしては16〜6.5w
%)を含み、残部はWCからなることを特徴とする耐摩
耗性合金。 2 結合金属として3〜30w%のNiを含み、この結
合金属の2〜8W%のVC(Vとしては16〜6.5w
%)を含み、残部はWCからなる耐摩耗性合金において
、前記WCと1:1以下の比率で置換する形で遷移金属
の岸化物及び/又は窒化物を含み、前記Niと1:1以
下の比率で置換する形でNi以外の鉄族金属を含むこと
を特徴とする耐摩耗性合金。
[Claims] 1 Contains 3 to 30 w% of Ni as a binding metal, and contains 2 to 8 w% of VC (V is 16 to 6.5 w%) of this binding metal.
%), with the remainder being WC. 2 Contains 3 to 30 w% Ni as a binding metal, and 2 to 8 W% of VC (V is 16 to 6.5 w) of this binding metal.
%), and the remainder is WC, which contains transition metal oxides and/or nitrides in substitution for the WC at a ratio of 1:1 or less, and 1:1 or less with the Ni. A wear-resistant alloy characterized by containing an iron group metal other than Ni in a substituted proportion.
JP3260480A 1980-03-17 1980-03-17 wear resistant alloy Expired JPS5837377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3260480A JPS5837377B2 (en) 1980-03-17 1980-03-17 wear resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3260480A JPS5837377B2 (en) 1980-03-17 1980-03-17 wear resistant alloy

Publications (2)

Publication Number Publication Date
JPS56130450A JPS56130450A (en) 1981-10-13
JPS5837377B2 true JPS5837377B2 (en) 1983-08-16

Family

ID=12363456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3260480A Expired JPS5837377B2 (en) 1980-03-17 1980-03-17 wear resistant alloy

Country Status (1)

Country Link
JP (1) JPS5837377B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5661618B2 (en) * 2008-07-02 2015-01-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing geometric oxide compact

Also Published As

Publication number Publication date
JPS56130450A (en) 1981-10-13

Similar Documents

Publication Publication Date Title
US2814566A (en) Boron and carbon containing hard cemented materials and their production
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
JP2002520485A (en) Manufacturing method of cemented carbide
JPH07508312A (en) Extremely fine-grained sintered titanium-based carbonitride alloy with improved toughness and/or wear resistance
EP0990056B1 (en) Pre-alloyed copper containing powder, and its use in the manufac ture of diamond tools
JP3303187B2 (en) Method for producing tungsten carbide based cemented carbide having high strength
JPS5837377B2 (en) wear resistant alloy
JP3303186B2 (en) Method for producing heat-resistant tungsten carbide-based cemented carbide having high strength
JPH073357A (en) High hardness cemented carbide excellent in oxidation resistance
JP3341776B2 (en) Super hard alloy
JPS6176646A (en) Tungsten carbide-base sintered hard alloy
JPH05230588A (en) Hard alloy
JPS58199778A (en) Manufacture of high abrasion resistance and tenacity hard sintering material
JPS5891140A (en) High tensile metal alloy material and production thereof
KR950007174B1 (en) Hard alloy process of watch case
JP3356461B2 (en) Manufacturing method of iron-based sintered member
JPH0372148B2 (en)
JPH10259433A (en) Production of hyperfine-grained tungsten carbide base sintered hard alloy having high strength
JPS634618B2 (en)
JPH0252681B2 (en)
JPH06340941A (en) Nano-phase composite hard material and its production
JPH03281752A (en) High toughness cermet
JPS6335706B2 (en)
JPH05287407A (en) Production of ceramic powder coated with metal on surface for powder metallurty
JPS6039137A (en) Manufacture of tungsten carbide-base sintered hard alloy