JPS6039137A - Manufacture of tungsten carbide-base sintered hard alloy - Google Patents
Manufacture of tungsten carbide-base sintered hard alloyInfo
- Publication number
- JPS6039137A JPS6039137A JP58147571A JP14757183A JPS6039137A JP S6039137 A JPS6039137 A JP S6039137A JP 58147571 A JP58147571 A JP 58147571A JP 14757183 A JP14757183 A JP 14757183A JP S6039137 A JPS6039137 A JP S6039137A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- particles
- compound
- tungsten carbide
- cemented carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 229910045601 alloy Inorganic materials 0.000 title abstract description 8
- 239000000956 alloy Substances 0.000 title abstract description 8
- 229910052721 tungsten Inorganic materials 0.000 title description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title 1
- 239000010937 tungsten Substances 0.000 title 1
- 239000000843 powder Substances 0.000 claims abstract description 103
- 239000002245 particle Substances 0.000 claims abstract description 55
- 150000001875 compounds Chemical class 0.000 claims abstract description 46
- 238000005245 sintering Methods 0.000 claims abstract description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910020515 Co—W Inorganic materials 0.000 claims abstract description 9
- 150000004767 nitrides Chemical class 0.000 claims abstract description 7
- 150000001247 metal acetylides Chemical class 0.000 claims abstract description 4
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 3
- 150000003624 transition metals Chemical class 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 13
- 239000011812 mixed powder Substances 0.000 claims description 12
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 9
- 238000004663 powder metallurgy Methods 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims description 2
- 239000006104 solid solution Substances 0.000 claims description 2
- 238000010298 pulverizing process Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 10
- 239000007858 starting material Substances 0.000 abstract 2
- 238000000354 decomposition reaction Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000007787 solid Substances 0.000 abstract 1
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 7
- 239000006229 carbon black Substances 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- -1 co7w6 Chemical class 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- LBFUKZWYPLNNJC-UHFFFAOYSA-N cobalt(ii,iii) oxide Chemical compound [Co]=O.O=[Co]O[Co]=O LBFUKZWYPLNNJC-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、分散相を形成する炭化タングステン(以下
WCで示す)粒子の平均粒径が約0 、 g Itm以
下の微粒にして、かつ高強度および高靭性を有するWC
C超超硬合金製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides fine tungsten carbide (hereinafter referred to as WC) particles forming a dispersed phase having an average particle size of about 0.0 g Itm or less and having high strength and toughness.
This relates to a method for producing C cemented carbide.
一般に、分散相を形成するWC粒子を主成分とし、これ
を結合相形成成分であるCoで結合したものからなるW
CC超超硬合金あるいは、さらに、これに分散相形成成
分として周期律表の4a、5aおよび6a族の遷移金属
の炭化物および窒化物、並びにこれらの2種以上の固溶
体(以下これらを総称して金属の炭・窒化物という)の
うちの1種または2種以上を、通常0.1〜20%(重
@%、以下同じ)の割合で含有させたWCC超超硬合金
、切削工具や耐摩耗工具、さらに耐衝撃工具などとして
用いられ、工業」二重要な役割を果している。In general, W consists of WC particles that form a dispersed phase as a main component, which are bonded with Co that is a bonded phase forming component.
CC cemented carbide or, in addition, carbides and nitrides of transition metals of groups 4a, 5a and 6a of the periodic table as dispersed phase forming components, and solid solutions of two or more of these (hereinafter collectively referred to as WCC cemented carbide containing one or more types of metal carbon/nitride in a ratio of usually 0.1 to 20% (weight @ %, the same hereinafter), cutting tools and They are used as wear tools and impact-resistant tools, and play an important role in industry.
これらのWCC超超0合金のうち、特にWC粒子の平均
粒径が111m以下の微粒のものは、エンドミル、ドリ
ル、スリッターナイフなどの切削速度が比較的低い領域
の切削工具や冷間耐摩耗工具などとして用いた場合にす
ぐれた性能を発揮するが、近年の生産性向上の要求から
、より微粒にして、より高強度および高靭性を有するW
CC超超硬合金求められる傾向にある。Among these WCC super-zero alloys, fine-grained ones with an average WC grain size of 111 m or less are suitable for cutting tools with relatively low cutting speeds such as end mills, drills, and slitter knives, and cold wear-resistant tools. However, due to the recent demand for improved productivity, W has been made into finer particles and has higher strength and toughness.
There is a growing demand for CC cemented carbide.
ざらに、この種のWC粒子が微粒のWCC超超硬合金、
通常、原料粉末として、微細なWC粉末とCo粉末から
なる混合粉末、あるいは、これにさらに粒成長抑制効果
のある金属の炭・窒化物のうちの1種または2 F++
以上の粉末を配合した混合粉末を用いて、粉末冶金法に
て焼結することによって製造されている。しかし、市販
のWC粉末には最も微細なもので、0・5μm程度の平
均粒径を有するものがあるが、このWC粉末は酸化し易
いので取扱が難しくなるばかりでなく、品質的安定性に
も疑問があり、さらに微細なWC粉末を用いた場合、焼
結体中に巣が生し易く、これによって強度が低下するよ
うになるという問題もある。また、この種のWCC超超
硬合金おいては、分散相と結合相との界面におけろ耐ク
ラツク伝播性は比較的高いが、分散相同志の界面におけ
る耐クラツク伝播性は低く、シたがって、例えば切削工
具として用いると、切削速度が遅いので被削材が溶着し
、これがはがれる時に分散相同志の界面から破壊が生じ
るようになるという靭性低下の問題がある。In general, this type of WCC cemented carbide has fine WC particles,
Usually, the raw material powder is a mixed powder consisting of fine WC powder and Co powder, or one type or 2 F++ of metal carbon/nitride that has the effect of suppressing grain growth.
It is manufactured by sintering using a powder metallurgy method using a mixed powder containing the above powders. However, some of the commercially available WC powders have an average particle size of about 0.5 μm, which is the finest, but this WC powder is easily oxidized, making it difficult to handle, and it also has poor quality stability. However, there is also a problem that when finer WC powder is used, cavities are likely to form in the sintered body, resulting in a decrease in strength. In addition, in this type of WCC cemented carbide, the crack propagation resistance at the interface between the dispersed phase and the binder phase is relatively high, but the crack propagation resistance at the interface between the dispersed phases is low; For example, when used as a cutting tool, there is a problem that the cutting speed is slow, so the workpiece material is welded, and when the material is peeled off, fracture occurs at the interface between the dispersed phases, resulting in a decrease in toughness.
そこで、本発明者等は、上述のような観点から、WC粒
子が微粒にして、高強度および高靭性を有するWCC超
超硬合金得べく研究を行なった結果、従来方法島すなわ
ち原料粉末としてWC粉末を使用する限り、粒成長抑制
効果を有する金属の炭・窒化物粉末を配合しても、得ら
れるWCC超超硬合金おけるWC粒子の平均粒径は約0
.8μmが限度であって、これより微粒にすることはで
きず、また同じく原料粉末としてCo粉末を使用する限
り、これには延性があるので混合時に完全に粉砕するこ
とができず、粗い00粒子として残留して焼結体中の巣
発生の原因となり、さらにWC粉末とCo粉末の混合時
にWC粉末同志の接触を避けることは不可能であること
から、焼結体における界面破壊を完全に防止することが
できないものであるが1、原料粉末としてCo3W+
co7w6などのCo−W系化合物ヤ、Co3W3 C
,C06W6 C,Co、、′w4C,Co3%C4な
どのCo−W−C系化合物の粉末を使用すると、これら
の化合物粉末は金属間化合物特有の脆い特性をもつので
、容易に微粉砕することができ、さ°らにこれに炭素粉
末を混合し、圧粉体とした状態で焼結すると、これらの
化合物は容易に分解してWCとCOを形成するので、焼
結条件を調整して、WCの形成後粒成長しないようにす
れば、WC粒子が、平均粒径で約0.8μm以下のきわ
めて微粒の組織をもつばかりでなく、WC粒子同志の接
着も著しく少なく、かつ結合相がWC粒子と同様に析出
Coによって形成されているので、巣発生の原因となる
粗大Co粒子がほとんど存在しないWCC超超硬合金得
られ、この結果のWCC超超硬合金高強度と高靭性をも
つという知見を得たのである。Therefore, from the above-mentioned viewpoint, the present inventors conducted research to obtain a WCC cemented carbide having high strength and high toughness by making the WC particles into fine particles. As long as powder is used, the average particle size of the WC particles in the resulting WCC cemented carbide will be approximately 0, even if metal carbon/nitride powder, which has the effect of suppressing grain growth, is blended.
.. The limit is 8 μm, and it is impossible to make the particles finer than this. Also, as long as Co powder is used as the raw material powder, it has ductility and cannot be completely crushed during mixing, resulting in coarse 00 particles. Since it is impossible to avoid contact between WC powders when mixing WC powder and Co powder, interfacial destruction in the sintered body can be completely prevented. 1. Co3W+ as raw material powder
Co-W compounds such as co7w6, Co3W3C
When using powders of Co-W-C compounds such as , C06W6 C, Co, ,'w4C, Co3%C4, these compound powders have brittle characteristics peculiar to intermetallic compounds, so they cannot be easily pulverized. When carbon powder is mixed with this and the green compact is sintered, these compounds easily decompose to form WC and CO, so the sintering conditions must be adjusted accordingly. , if grain growth is prevented after WC formation, the WC particles not only have a very fine structure with an average particle size of about 0.8 μm or less, but also the adhesion between the WC particles is extremely small, and the binder phase is Since it is formed by precipitated Co like WC particles, a WCC cemented carbide with almost no coarse Co particles that cause cavities can be obtained, and the resulting WCC cemented carbide has high strength and high toughness. We obtained this knowledge.
この発明は、上記知見にもとづいてなされたものであっ
て、粉末冶金法によりWCC超超硬合金製造するに際し
て、原料粉末として、C0−W系化合物粉末およびCo
−W−C系化合物粉末のうちの1種または2種以上に、
焼結中の脱炭および浸炭量を加味し、これらの化合物中
のWと結合して背を生成するのに必要な量の炭素粉末を
配合してなる混合粉末、あるいは、これにさらにWC粒
子の粒成長抑制、並びに合金の耐摩耗性、耐熱性、およ
び耐食性の向上をはかる目的で、金属の炭・窒化物のう
ちの1種または2種以上の粉末を、望ましくは0.1〜
20%配合してなる混合粉末を使用し、この混合粉末を
圧粉体とした状態で、望ましくは1350℃以下の温度
で焼結し、この焼結時に前記化合物を分解させてWCと
Coとを生成せしめることによって、WC粒子の平均粒
径が約0.8μm以下の’j11粒にして、高強度およ
び高靭性を有するWCC超超硬合金製造することに特徴
を有するものである。This invention was made based on the above knowledge, and when manufacturing WCC cemented carbide by powder metallurgy, C0-W compound powder and Co
-One or more of the W-C compound powders,
A mixed powder made by blending carbon powder in the amount necessary to combine with W in these compounds to form a spine, taking into account the amount of decarburization and carburization during sintering, or a mixed powder containing WC particles in addition to this. For the purpose of suppressing grain growth and improving the wear resistance, heat resistance, and corrosion resistance of the alloy, one or more powders of metal carbons and nitrides are added, preferably from 0.1 to
A mixed powder containing 20% is used, and the mixed powder is sintered as a green compact, preferably at a temperature of 1350°C or less, and during this sintering, the above-mentioned compounds are decomposed to form WC and Co. By producing WC grains, the average grain size of the WC grains is about 0.8 μm or less, and a WCC cemented carbide having high strength and toughness is produced.
なお、この発明の方法において用いられるCO−W系化
合物粉末およびCo−W−C系化合物粉末は例えばCo
粉末とW粉末、あるいはCo粉末と、W粉末と、WCお
よびW2Cなどの炭素源粉末、さらにあるいは酸化コバ
ルト粉末と酸化タングステン粉末と炭素粉末をそれぞれ
所定の組成に配合し、非酸化性雰囲気中、800〜13
00℃の範囲内の所定の温度に加熱することによって製
造することができ、また、製造されるWCC超超硬合金
組成は、それぞれ原料粉末として、例えば(:o、、
W粉末を用いれば、焼結後の合金中のCo含有量は47
%となり、同様にco、W3Cでは23%、C02W4
Cでは13%、Co3W、C1では9%となるので、こ
れら原料粉末を適当に組合せろことによって所定の組成
とすることができる。ざらに焼結後のWCC超超硬合金
熱間静水圧処理を施して、残留しているわずかの巣など
を除去してやれば、より一層の特性向上がはかれる。Note that the CO-W compound powder and Co-W-C compound powder used in the method of the present invention are, for example, Co-W-based compound powder and Co-W-C based compound powder.
Powder and W powder, or Co powder, W powder, carbon source powder such as WC and W2C, or cobalt oxide powder, tungsten oxide powder, and carbon powder are blended into a predetermined composition, and in a non-oxidizing atmosphere, 800-13
WCC cemented carbide can be manufactured by heating to a predetermined temperature within the range of 00°C, and the WCC cemented carbide composition to be manufactured can be prepared using raw material powders such as (:o, ,
If W powder is used, the Co content in the alloy after sintering is 47
%, similarly co, W3C is 23%, C02W4
Since it is 13% for C and 9% for Co3W and C1, a predetermined composition can be obtained by appropriately combining these raw material powders. If the WCC cemented carbide is subjected to hot isostatic pressure treatment after sintering to remove the few remaining cavities, the properties can be further improved.
つぎに、この発明の方法を実施例により具体的に説明す
る。Next, the method of the present invention will be specifically explained using examples.
実施例1
CO−W系化合物を調製する目的で、平均粒径:1.3
/1mのCo粉末と、同1.0μmのW粉末を用意し、
これら粉末を、Co粉末:27%、W粉末=73%の割
合に配合し、乾式混合した後、1気圧の水素気流中、温
度:900℃に3時間保持することによってCo−W系
化合物粉末を製造した。このC。Example 1 For the purpose of preparing a CO-W compound, average particle size: 1.3
/1 m Co powder and the same 1.0 μm W powder were prepared,
These powders were blended at a ratio of Co powder: 27% and W powder = 73%, and after dry mixing, the mixture was kept at a temperature of 900°C for 3 hours in a hydrogen stream of 1 atm to form a Co-W compound powder. was manufactured. This C.
−W系化合物粉末は、X線回折によりCo7w6の単一
組成をもつことが判明した。ついで、このCo −W系
化合物粉末に、4.6%のカーボンブラックを配合し、
ボールミルにて24時時間式混合して混合粉末とし、乾
燥した後、圧粉体にプレス成形し、この圧粉体を、真空
中、温度:1280’Cに2時間の条件で焼結すること
によって本発明法1を実施した。この本発明法1により
得られたwc基超超硬合金、Co:26%を含有し、w
cとCoがきれいに分散した組織を有し、かっwc粒子
の平均粒径ば0.3μmときわめて微細であり、異常成
長したWC粒子やボアは全く観察されなかった。The -W-based compound powder was found to have a single composition of Co7w6 by X-ray diffraction. Next, 4.6% carbon black was blended into this Co-W-based compound powder,
A mixed powder is obtained by mixing 24 hours a day in a ball mill, and after drying, it is press-molded into a green compact, and this green compact is sintered in a vacuum at a temperature of 1280'C for 2 hours. Method 1 of the present invention was carried out. This wc-based cemented carbide obtained by method 1 of the present invention, containing 26% Co, w
It had a structure in which c and Co were neatly dispersed, and the average grain size of the cwc particles was extremely fine, 0.3 μm, and no abnormally grown WC particles or bores were observed.
一方、比較の目的で、原料粉末として、平均粒径: 0
.55μmを有するWC粉末をボールミルにて粉砕して
同0.2μmとしたWC粉末と、同1.3/zmのCo
粉末を使用する以外は、上記の本発明法1と同一の条件
で従来法1を行なった。この従来法1により製造された
WCC超超硬合金、WC粒子が平均粒径:0.8μmを
示すものの、数μmにまで異常成長したWC粒子が散在
し、WC粒子の分散も悪く、しかもその研摩面上にはボ
アが認められるものであった。On the other hand, for the purpose of comparison, as a raw material powder, average particle size: 0
.. WC powder with a diameter of 55 μm was ground in a ball mill to a diameter of 0.2 μm, and a Co powder with a diameter of 1.3/zm was used.
Conventional method 1 was carried out under the same conditions as method 1 of the present invention described above except that powder was used. Although the WC particles of the WCC cemented carbide manufactured by conventional method 1 have an average particle size of 0.8 μm, there are scattered WC particles that have abnormally grown to several μm, and the dispersion of the WC particles is poor. Bores were observed on the polished surface.
なお、本発明法1により製造されたWCC超超硬合金、
480kg/−のきわめて高い抗折力を示すのに対して
、従来法1により製造されたものは300kg/maの
低い抗折力しか示享なかった。In addition, WCC cemented carbide manufactured by method 1 of the present invention,
In contrast, the material produced by Conventional Method 1 exhibited a low transverse rupture strength of only 300 kg/ma, whereas it exhibited an extremely high transverse rupture strength of 480 kg/ma.
実施例2
まず、C0−W−C系化合物粉末を製造する目的で、実
施例1で用いたと同じCo粉末およびW粉末のほかに、
未粉砕のWC粉末を用い、これら粉末を、Co粉末=1
4%、W粉末=64%、WC粉末=22%の割合に配合
し、乾式混合した後、真空中、温度: 1000°Cに
2時間保持の条件で加熱して、X線回折で組成式二C0
2W4Cを示す化合物を主成分とするCo−W−C系化
合物粉末を製造した。Example 2 First, for the purpose of producing a C0-W-C compound powder, in addition to the same Co powder and W powder used in Example 1,
Using unmilled WC powder, these powders were mixed with Co powder=1
4%, W powder = 64%, WC powder = 22%, dry mixed, heated in vacuum at 1000°C for 2 hours, and the composition formula was determined by X-ray diffraction. 2C0
A Co-W-C compound powder containing a compound exhibiting 2W4C as a main component was produced.
ついで、このCo −W −C系化合物粉末に、4.1
%のカーボンブラックを配合し、ボールミルにて48時
時間式混合し、乾燥して混合粉末とし、この混合粉末よ
り成形した圧粉体を、真空中、温度71290℃に1時
間保持の条件で焼結することによる本発明法2を実施し
た。この本発明法2により製造されたWCC超超硬合金
、CO:13%を含有し、かつWCとCoがきれいに分
散した組織を有し、しかもWC粒子の平均粒径が0.2
μmの微粒であって、異常成長したWC粒子やボアの存
在は全く観察されず、さらに400 kg/+utの高
い抗折力を示すものであった。Next, 4.1 was applied to this Co-W-C compound powder.
% of carbon black was mixed in a ball mill for 48 hours, dried to form a mixed powder, and a green compact formed from this mixed powder was sintered in a vacuum at a temperature of 71,290°C for 1 hour. Method 2 of the present invention was carried out by tying. This WCC cemented carbide manufactured by the method 2 of the present invention contains 13% CO, has a structure in which WC and Co are neatly dispersed, and has an average particle size of WC particles of 0.2
The particles were micro-sized, no abnormally grown WC particles or bores were observed, and showed a high transverse rupture strength of 400 kg/+ut.
これに対して、原料粉末として、Co粉末とwc粉末の
混合粉末を使用する以外は、上記の本発明法2と同一の
条件で従来法2を行なった。この従未決2では、WC粒
子の平均粒径: n、97imを示し、異常成長したW
C粒子が散在し、WCおよびCOの分散も悪く、さらに
研摩面にはボアが存在した組織を有し、かつ260 k
g/IB7iの抗折力しか示さないWCC超超硬合金か
製造することができなかった。On the other hand, Conventional Method 2 was conducted under the same conditions as Method 2 of the present invention, except that a mixed powder of Co powder and WC powder was used as the raw material powder. In this case 2, the average particle size of the WC particles is n, 97im, and the abnormally grown W
C particles were scattered, WC and CO were poorly dispersed, and the polished surface had a structure with bores.
It was not possible to produce a WCC cemented carbide having a transverse rupture strength of only g/IB7i.
実施例3
同じ<Co−W−C系化合物粉末を製造する目的で、実
施例1で用いたと同しCO粉末およびW粉末のほかに、
平均粒径:1.5μmを有するW2C粉末を用意し、こ
れら粉末を、CO粉末=9%、W粉末:10%、W2C
粉末=81%の割合に配合し、さらに別KCO粉末:2
4%、W粉末=25%、W2C粉末:51%の割合で配
合したものも用意し、これら2種類の配合粉末を、それ
ぞれボールミルにて24時時間式混合し、乾燥した後、
真空中、温度: 1000°Cに1時間保持の条件で加
熱することによって、X線回折で、それぞれ組成式:
Co3W9C4およびCo3W3Cを示す化合物を主成
分として含有するCo−W−C系化合物粉末を製造した
。Example 3 For the purpose of producing the same Co-W-C compound powder, in addition to the same CO powder and W powder used in Example 1,
Prepare W2C powder having an average particle size of 1.5 μm, and combine these powders with CO powder = 9%, W powder: 10%, W2C
Powder = 81% ratio, further KCO powder: 2
4%, W powder = 25%, W2C powder: 51% were also prepared, and these two types of blended powders were mixed 24 hours a day in a ball mill, and after drying,
By heating in vacuum at a temperature of 1000°C for 1 hour, the composition formulas were determined by X-ray diffraction:
A Co-W-C-based compound powder containing compounds representing Co3W9C4 and Co3W3C as main components was produced.
ついで、この結果得られたCO,W、C4糸化合物粉末
およびCO3W3 Ca化合物粉末と、カーボンブラッ
クとを、Co3 W9 C4系化合物粉末゛35%、C
o、、 W3C系化合物粉末:61%、カーボンブラッ
ク:4%の割合で配合し、ボールミルにて48時時間式
混合し、乾燥した後、圧粉体にプレス成形し、この圧粉
体を、真空中、温1i:1280℃に1.5時間保持の
条件で焼結することによって本発明法3を実施した。こ
の本発明法3により製造されたWCC超超硬合金、CO
:18%を含有し、WC粒子の平均粒径:0.3μmを
示し、かつWCとC0とがきれいに分散し、異常成長し
たWC粒子やボアの存在しない微粒組織を有し、抗折力
も420kg/mAを示すものであった。Next, the resulting CO, W, C4 yarn compound powder and CO3W3 Ca compound powder, and carbon black were mixed into a Co3 W9 C4-based compound powder (35%, C).
o, W3C compound powder: 61%, carbon black: 4%, mixed in a ball mill for 48 hours, dried, press-molded into a green compact, this green compact is Method 3 of the present invention was carried out by sintering in vacuum at a temperature of 1280° C. for 1.5 hours. The WCC cemented carbide manufactured by this method 3 of the present invention, CO
: Contains 18%, exhibits an average particle size of WC particles of 0.3 μm, has a fine grain structure in which WC and CO are neatly dispersed, has no abnormally grown WC particles or bores, and has a transverse rupture strength of 420 kg. /mA.
これに対して、従来法3として、平均粒径:1.3μm
のCO粉末と同0゜2μmのWC粉末との混合粉末を使
用する以外は、上記本発明法3の製造条件と同一の条件
で製造したWCC超超硬合金、抗折カニ 280kg/
mmを示すにすぎず、また、その組織も、WC粒子は0
.8μmの平均粒径を示すものの、11−
異常成長したWC粒子が散在し、WCおよびC。On the other hand, as conventional method 3, average particle size: 1.3 μm
WCC cemented carbide manufactured under the same manufacturing conditions as the method 3 of the present invention, except for using a mixed powder of CO powder of
mm, and its structure is 0.
.. Although exhibiting an average particle size of 8 μm, 11- abnormally grown WC particles are scattered, WC and C.
の分散も悪く、さらに研摩面上にボアが認められるもの
であった。The dispersion of the particles was also poor, and bores were observed on the polished surface.
実涌i例4
原料粉末として、実施例2で製造したCo2W、、Cを
主成分とする化合物粉末、平均粒径:1.3μmのCO
粉末、同0.2 pmのwc粉末、同1.1μmのVC
粉末、同1.3μmのTjC粉末、およびカーボンブラ
ックを用意し、これら原料粉末を、それぞれ第1表に示
される配合組成に配合し、以後、実施例1におけると同
一の条件で本発明法4,5および従来法4,5をそれぞ
れ実施した。Example 4 As a raw material powder, the compound powder mainly composed of Co2W, C produced in Example 2, average particle size: 1.3 μm CO
Powder, 0.2 pm WC powder, 1.1 μm VC
Powder, 1.3 μm TjC powder, and carbon black were prepared, and these raw material powders were blended into the composition shown in Table 1, and thereafter, the method 4 of the present invention was carried out under the same conditions as in Example 1. , 5 and conventional methods 4 and 5, respectively.
この結果得られた各種WCC超超硬合金ついて、Co含
有量、WCおよびCoの分散状態、WC粒子の平均粒径
、ASTM規格にもとづくボアの状態、並びに抗折力を
測定および観察し、第1表に合せて示した。For the various WCC cemented carbides obtained as a result, we measured and observed the Co content, the dispersion state of WC and Co, the average particle size of WC particles, the bore state based on ASTM standards, and the transverse rupture strength. It is also shown in Table 1.
第1表に示されるように、この場合も実施例1〜3にお
けろと同様な結果を示し、本発明法4゜5によって製造
きれたWCC超超硬合金、いずれ 12−
も微粒組織を有し、高強度および高靭性なもつことが明
らかである。As shown in Table 1, the same results as in Examples 1 to 3 were obtained in this case, and all of the WCC cemented carbide produced by the method 4.5 of the present invention had a fine grain structure. It is clear that it has high strength and high toughness.
実施例5
原料粉末として、実施例3で・製背したC03WQ C
4系化合物粉末とco3W、C系化合物粉末、および平
均粒径:]、3μrnを有する(Ta、 Nb) CN
粉末(TaC/NbN = 7/3、重用比) 、’J
ラI/C力M ンブラックを用い、これら粉末を、C
03W、C4系化合物粉末33%、C0AW3C系化合
物粉末=58%、(Ta、 Nb) CN粉末25%、
カーテンフラッフ:4%の割合に配合シフ、かつ焼結温
度を1340℃とする以外は実施例2におけると同一の
条件で本発明法6を実施した。この不発り」法6により
得られたWCC超超硬合金、CO含有債:16%、WC
粒子の平均粒径: 0.25μmを示し、WCとCOが
均一微細に分散し、その中にやや粗い(Ta、 Nb)
CN粒子が均一に分散した組織を有し、ボアは認めら
れないものであった。また、この合金は抗折力1370
kg/−を示した。Example 5 As raw material powder, C03WQ C manufactured in Example 3
4-based compound powder and co3W, C-based compound powder, and (Ta, Nb) CN with average particle size: ], 3 μrn
Powder (TaC/NbN = 7/3, heavy duty ratio), 'J
Using a line I/C force M, these powders were
03W, C4 compound powder 33%, C0AW3C compound powder = 58%, (Ta, Nb) CN powder 25%,
Curtain fluff: Method 6 of the present invention was carried out under the same conditions as in Example 2, except that the blending ratio was 4% and the sintering temperature was 1340°C. This unexploded WCC cemented carbide obtained by method 6, CO content: 16%, WC
Average particle size of particles: 0.25 μm, with WC and CO uniformly and finely dispersed, with slightly coarse particles (Ta, Nb)
It had a structure in which CN particles were uniformly dispersed, and no bores were observed. In addition, this alloy has a transverse rupture strength of 1370
kg/-.
これに対して、従来法6として、上記の(Ta、Nb)
・CN粉末のほかに、実施例4で用いたと同じWC粉末
とCO粉末を用いる以外は、上記の本発明法6と同一の
条件で行なった結果得られたWCC超超硬合金、WC粒
子の平均粒径: 0.8 ttmを示すが、抗折カニ
260に!9/mu す示すにすぎず、かつWCとCO
の分散が悪<、A−2程度の醪アが存在するものであっ
た。On the other hand, as conventional method 6, the above (Ta, Nb)
・WCC cemented carbide and WC particles obtained as a result of carrying out the process under the same conditions as the method 6 of the present invention described above, except that the same WC powder and CO powder used in Example 4 were used in addition to the CN powder. Average particle size: 0.8 ttm, but
To 260! 9/mu It is only an indication, and WC and CO
The dispersion was poor, and there was a mortar of about A-2.
上述のように、この発明の方法によれば、原料粉末とし
て、少なくともCo−W系化合物粉末およびCo −W
−C系化合物粉末と、炭素粉末な使用し、焼結時にW
CとCoとを分解生成させるので、得られたWCC超超
硬合金、WC粒子の平均粒径が約0.8μm以下の微粒
となるばかりでなく、WCとC。As described above, according to the method of the present invention, at least Co-W compound powder and Co-W compound powder are used as the raw material powder.
-C-based compound powder and carbon powder are used, and W is used during sintering.
Since C and Co are decomposed and produced, the obtained WCC cemented carbide not only becomes fine particles with an average particle size of about 0.8 μm or less, but also WC and C.
とが均一微細に分散した組織を有するようになり、かつ
ボアがほとんど存在しないから、高強度と高靭性乞具備
するようになるなど工業上有用な特性をもったWCC超
超硬合金製造することができるのである。To produce WCC cemented carbide that has industrially useful properties such as having a uniform and finely dispersed structure and having almost no bores, so it has high strength and high toughness. This is possible.
出願人 三菱金属株式会社 代理人富田和夫外1名Applicant: Mitsubishi Metals Corporation Agent Kazuo Tomita and 1 other person
Claims (2)
を製造するに際して、原料粉末として、Co−W系化合
物粉末およびCo−W−C系化合物粉末のうちの1種ま
たは2種以上と、炭素粉末からなる混合粉末を使用し、
焼結時に前記化合物を分解させて炭化タングステンとC
Oとを生成せしめることを特徴とする炭化タングステン
粒子が微粒にして、高強度および高靭性を有する炭化タ
ングステン基超硬合金の製造法。(1) When producing a tungsten carbide-based cemented carbide by a powder metallurgy method, one or more of Co-W-based compound powder and Co-W-C-based compound powder and carbon powder are used as raw material powders. Using a mixed powder consisting of
During sintering, the above compounds are decomposed to form tungsten carbide and C.
1. A method for producing a tungsten carbide-based cemented carbide having high strength and toughness by finely pulverizing tungsten carbide particles and producing O.
を製造するに際して、原料粉末として、C0−W系化合
物粉末およびCo−W−C系化合物粉末のうちの1種ま
たは2種以上と、炭素粉末と、周期 1− 律表の4a、5aおよび6a族の遷移金属の炭化物およ
び窒化物、並びにこれらの2種以−にの固溶体のうちの
1種または2種以」二の粉末からなる混合粉末を使用し
、焼結時に前記化合物を分解させて炭化タングステンと
COとを生成せしめることを特徴とする炭化タングステ
ン粒子が微粒にして、高強度および高靭性を有する炭化
タングステン基超硬合金の製造法。(2) When producing a tungsten carbide-based cemented carbide by a powder metallurgy method, one or more of C0-W compound powder and Co-W-C compound powder and carbon powder are used as raw material powders. and carbides and nitrides of transition metals of Groups 4a, 5a and 6a of the Periodic Table, and one or more solid solutions of these two or more. A method for producing a tungsten carbide-based cemented carbide having high strength and toughness, in which tungsten carbide particles are finely divided, and the compound is decomposed during sintering to generate tungsten carbide and CO. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58147571A JPS6039137A (en) | 1983-08-12 | 1983-08-12 | Manufacture of tungsten carbide-base sintered hard alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58147571A JPS6039137A (en) | 1983-08-12 | 1983-08-12 | Manufacture of tungsten carbide-base sintered hard alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6039137A true JPS6039137A (en) | 1985-02-28 |
JPS6245295B2 JPS6245295B2 (en) | 1987-09-25 |
Family
ID=15433363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58147571A Granted JPS6039137A (en) | 1983-08-12 | 1983-08-12 | Manufacture of tungsten carbide-base sintered hard alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6039137A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0559901A1 (en) * | 1991-09-02 | 1993-09-15 | Sumitomo Electric Industries, Ltd. | Hard alloy and production thereof |
EP0579376A1 (en) * | 1992-06-11 | 1994-01-19 | Novatek | Carbide/metal composite material and a process therefor |
WO1998040525A1 (en) * | 1997-03-10 | 1998-09-17 | Widia Gmbh | Hard metal or cermet sintered body and method for the production thereof |
-
1983
- 1983-08-12 JP JP58147571A patent/JPS6039137A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0559901A1 (en) * | 1991-09-02 | 1993-09-15 | Sumitomo Electric Industries, Ltd. | Hard alloy and production thereof |
EP0559901A4 (en) * | 1991-09-02 | 1994-03-17 | Sumitomo Electric Industries | Hard alloy and production thereof. |
EP0579376A1 (en) * | 1992-06-11 | 1994-01-19 | Novatek | Carbide/metal composite material and a process therefor |
WO1998040525A1 (en) * | 1997-03-10 | 1998-09-17 | Widia Gmbh | Hard metal or cermet sintered body and method for the production thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS6245295B2 (en) | 1987-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0559901B1 (en) | Hard alloy and production thereof | |
WO2010008004A1 (en) | Hard powder, method for producing hard powder and sintered hard alloy | |
US4013460A (en) | Process for preparing cemented tungsten carbide | |
JPS6256224B2 (en) | ||
JPH07508312A (en) | Extremely fine-grained sintered titanium-based carbonitride alloy with improved toughness and/or wear resistance | |
JPH11302767A (en) | Cemented carbide excellent in mechanical characteristic and its production | |
JPS6159391B2 (en) | ||
JPS6039137A (en) | Manufacture of tungsten carbide-base sintered hard alloy | |
JPS63297537A (en) | Nitrogen-containing tungsten carbide based sintered alloy | |
JPH07278719A (en) | Particulate plate crystal cemented carbide containing wc and its production | |
JPS6059195B2 (en) | Manufacturing method of hard sintered material with excellent wear resistance and toughness | |
JPH11181540A (en) | Hyperfine-grained cemented carbide | |
JP3605740B2 (en) | Carbide alloy for end mill | |
JP2802596B2 (en) | Method for producing plate-shaped WC-containing cemented carbide | |
JPH05147916A (en) | Production of fine tungsten-based carbide powder | |
JPS636618B2 (en) | ||
JP2502322B2 (en) | High toughness cermet | |
JP2004292865A (en) | Hard metal superior in fracture resistance and manufacturing method therefor | |
JPH10324943A (en) | Ultra-fine cemented carbide, and its manufacture | |
JP2002060802A (en) | Titanium carbonitride powder for hard material and its production method | |
JP2002029845A (en) | Super-hard sintered compact | |
JPH1161315A (en) | Wc-containing cemented carbide reinforced by dispersion in grain and its production | |
JPH11269573A (en) | Manufacture of cemented carbide containing plate crystal wc | |
JPH10259433A (en) | Production of hyperfine-grained tungsten carbide base sintered hard alloy having high strength | |
JP2710937B2 (en) | Cermet alloy |