JPS5837126A - Heat treatment for amorphous magnetic alloy - Google Patents

Heat treatment for amorphous magnetic alloy

Info

Publication number
JPS5837126A
JPS5837126A JP13657281A JP13657281A JPS5837126A JP S5837126 A JPS5837126 A JP S5837126A JP 13657281 A JP13657281 A JP 13657281A JP 13657281 A JP13657281 A JP 13657281A JP S5837126 A JPS5837126 A JP S5837126A
Authority
JP
Japan
Prior art keywords
temperature
temp
alloy
holding
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13657281A
Other languages
Japanese (ja)
Inventor
Shun Sato
駿 佐藤
Tsutomu Ozawa
小沢 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13657281A priority Critical patent/JPS5837126A/en
Publication of JPS5837126A publication Critical patent/JPS5837126A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys

Abstract

PURPOSE:To obtain an excellent magnetic alloy of low watt loss in subjecting an amorphous magnetic alloy to a heat treatment by providing >=1 times of forestage treatments for a constant time at the temp. lower than a max. temp. prior to holding said alloy at the max. temp. CONSTITUTION:When the temp. at which the crystallization of an alloy to be heat treated initiates is defined as Tx( deg.C), the holding temp. in the 1st stage is set higher than Tx- about 300 deg.C and lower than Tx- about 180 deg.C and the time thereof is set at about >=20min. The holding temp. in the final stage is set higher by about 30 deg.C than that in the 1st stage and lower by about 50 deg.C than Tx and the time is set at about >=1min. Here, the final high temp. annealing of the multistages heat treatments is for thorough relieving of the residual strains of the material and the temp. and time may be set according to the compsns. of the alloy. In the case of >=3 stages of annealing, it is preferable to set heat cycles so as to increase the holding temp. stepwise.

Description

【発明の詳細な説明】 本発明はアモルファス合金の熱処理方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for heat treating an amorphous alloy.

最近、結晶構造をもたない、いわゆる非結晶質(アモル
ファス)の合金を、液体状態から104〜104°に/
s@cという高速で急冷することによって連続したリゴ
ン状に製造することができるようにな′つた・ アモルファス合金は構造がランダムなため原理的に異方
性がなく、結晶粒界などの欠陥がないなどの特性がある
Recently, so-called non-crystalline (amorphous) alloys that do not have a crystalline structure have been developed from a liquid state to 104 to 104 degrees.
By rapid cooling at the high speed of s@c, it has become possible to manufacture a continuous ribbon shape.Amorphous alloys have a random structure, so in principle they have no anisotropy, and defects such as grain boundaries occur. There are characteristics such as no.

特に鉄を主成分とする鉄系アモルファス合金は上記のよ
うな特性があるため、すぐれた軟磁性を示す。また電気
比抵抗が高いため交流特性もよく、鉄損の少い鉄心材料
として注目されている。なかでも鉄または鉄を主成分と
する金属と半金属との合金は飽和磁束密度B8が比較的
高いので電力用トランス材料として期待されている。
In particular, iron-based amorphous alloys containing iron as a main component exhibit excellent soft magnetism because of the above-mentioned properties. In addition, due to its high electrical resistivity, it has good AC characteristics and is attracting attention as an iron core material with low iron loss. Among them, iron or an alloy of a metal containing iron as a main component and a semimetal has a relatively high saturation magnetic flux density B8, and is therefore expected to be used as a power transformer material.

一般に飽和磁束密度B8は合金の組成でほとんど決まっ
てしまう。第1表にその例を示す。
Generally, the saturation magnetic flux density B8 is almost determined by the composition of the alloy. Examples are shown in Table 1.

飽和磁束密度と並んで鉄心材料に要求される重要な特性
である鉄損は励磁電流によって失われる電力損失で、こ
れは小さいほど好ましいことは多言を要しない。
Iron loss, which is an important characteristic required of iron core materials along with saturation magnetic flux density, is power loss lost due to excitation current, and it goes without saying that the smaller the iron loss, the better.

ところで鉄損は同じ組成でも材料の状態に大きく依存す
る。例えば材料の表面状態、残留ひず本不純物あるいは
形状など種々の要因が作用する。
By the way, iron loss greatly depends on the state of the material even if the composition is the same. For example, various factors such as the surface condition of the material, residual strain, impurities, or shape come into play.

これらは本質的には磁区の配列あるいは磁壁の運動等に
関連している。
These are essentially related to the arrangement of magnetic domains or the movement of domain walls.

アモルファス合金は鋳造したままでは一般に残留ひずみ
が広く分布しているために、鉄損が太きい。鉄損を低減
するためにひずみ取り焼鈍がなされる。ひずみ取り焼鈍
は材料を結晶化温度より低い温度に一定の時間保持する
方法が一般的である。
Amorphous alloys generally have a wide distribution of residual strain when cast, resulting in large core losses. Strain relief annealing is performed to reduce iron loss. Strain relief annealing is generally a method in which the material is held at a temperature lower than the crystallization temperature for a certain period of time.

同時に磁界もしくは張力を付与しながら上記の焼鈍を行
なうと磁区の配列が適正化されよ)効果的であることも
周知である。
It is also well known that performing the above annealing while simultaneously applying a magnetic field or tension is effective in optimizing the alignment of the magnetic domains.

いずれにしても従来の熱処理は一段階の保定温度に材料
を加熱、保持し、かつ冷却するサイクルからなっていた
In any case, conventional heat treatment has consisted of a cycle of heating the material to a one-step holding temperature, holding it, and cooling it.

これに対して本発明の熱処理方法は最高温度に保持する
前に、それよシ低い温度で、一定の時間の前段処理を少
なくとも1回設けることを特徴とするもので、本発明の
方法を採用すると従来の一段階の保定温度で行う熱処理
によるよシも鉄損の低いすぐれた磁性が得られる。
In contrast, the heat treatment method of the present invention is characterized by providing at least one preliminary treatment for a certain period of time at a lower temperature before holding at the maximum temperature, and the method of the present invention is adopted. As a result, excellent magnetism with lower iron loss can be obtained than with conventional heat treatment performed at one stage of holding temperature.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明の対象とする材料は、合計が100at%となる
F@ e Ni * Coの少なくとも1種を70〜8
5at9L B a 81 e Ct P # Goの
少なくとも1種を15〜30 aiq11%さらに必要
に応じて、Cr * Mo1Nb  +  W e  
V  *  Mn  *  Sn  *  At  a
  Sb  e  Tm  a  Zr+Tiを10 
at%以下含有する、少なくとも90 vol 4以上
がアモルファスである合金であることが好ましい。
The material targeted by the present invention contains at least one type of F@eNi*Co with a total content of 100 at% of 70 to 8
5at9L B a 81 e Ct P # Go at 15 to 30 aiq11%, and if necessary, Cr * Mo1Nb + W e
V * Mn * Sn * At a
Sb e Tm a Zr+Ti 10
It is preferable to use an alloy in which at least 90 vol 4 or more is amorphous and contains at % or less.

これらの合金を熱処理する際に本発明は、次のような、
段階的に高くなる少なくとも2段階の温度に引き続き保
持することを特徴とするものである。
When heat treating these alloys, the present invention provides the following:
It is characterized in that the temperature is successively maintained at at least two stages of increasing temperature.

すなわち、熱処理される合金の結晶化開始温度をTx 
(U )とするとき、第一段の保持温度をTx−300
℃よ〕高(Tx−180℃よシ低い温度で20分以上、
最終段階の保持温度を第1段のそれより少なくとも30
℃高く、Txより少なくとも50’C低い温度で1分以
上保持する。また該熱処理を磁界または/および張力を
材料の長手方向に付与しながら行なうとさらに効果的で
ある。
That is, the crystallization initiation temperature of the alloy to be heat treated is Tx
(U), the holding temperature of the first stage is Tx-300
℃) High temperature (Tx -180℃ or lower temperature for more than 20 minutes,
The holding temperature of the final stage is at least 30°C lower than that of the first stage.
℃ higher and at least 50'C lower than Tx for at least 1 minute. Further, it is more effective to perform the heat treatment while applying a magnetic field and/or tension in the longitudinal direction of the material.

最高温度に保持する前に、よシ低い温度に保持する前段
処理を設ける効果を第1表に示す。前段処理を設は几効
果が単に焼鈍時間の延長による効果でないことは、前段
処理を省略して最高温度に保持する時間を延長しても鉄
損の改善にほとんど効果がないことから明らかである0 第1表 Wt4/lSoは周波数50Hz%磁束密度1.3TK
おける鉄損を示す 前段処理の温度と時間の鉄損におよぼす影響の例を第1
図に示す、F・788112B10の場合、最適処理条
件t!250〜350℃の温度範囲にあり1時間は20
分以上である。他の組成についても類似の傾向にあシ、
結晶化温度Txで整理すると適正前段処理条件はTx 
−3Q 0℃より高(Tx−180℃より低い温度で2
0分以上であった。
Table 1 shows the effect of providing a pre-treatment to maintain the temperature at a much lower temperature before maintaining it at the maximum temperature. It is clear that the effect of pre-treatment is not simply due to the extension of the annealing time, as even if the pre-treatment is omitted and the time of holding the steel at the maximum temperature is extended, it has almost no effect on improving iron loss. 0 Table 1 Wt4/lSo is frequency 50Hz% magnetic flux density 1.3TK
The first example of the influence of the temperature and time of the pre-treatment on the iron loss is shown in the first example.
In the case of F-788112B10 shown in the figure, the optimal processing condition t! The temperature range is 250 to 350℃, and 20℃ for 1 hour.
It's more than a minute. Similar trends are observed for other compositions.
When organized by crystallization temperature Tx, the appropriate pre-treatment conditions are Tx
-3Q Higher than 0℃ (Tx - 2 at lower temperature than -180℃
It was over 0 minutes.

本発明の多段熱処理の最後になされる高温焼鈍は、材料
に残留するひずみを完全に除去することを目的としてお
り、合金の組成に応じて、焼鈍温度、時間を設定すれば
よい。ただし一段目の温度より少なくとも30℃以上高
い温度でなされるべきである。また結晶化を避けるため
に結晶化温度より50℃以上低い温度を選ぶべきである
The high-temperature annealing performed at the end of the multi-stage heat treatment of the present invention is intended to completely remove strain remaining in the material, and the annealing temperature and time may be set depending on the composition of the alloy. However, the temperature should be at least 30°C higher than the temperature of the first stage. Further, in order to avoid crystallization, the temperature should be selected to be at least 50° C. lower than the crystallization temperature.

三段以上の多段焼鈍を行う場合は段階的に保持温度を高
めるように熱サイクルを設定することが好ましい。
When performing multi-stage annealing of three or more stages, it is preferable to set the thermal cycle so that the holding temperature is increased in stages.

また本発明の熱処理は材料の長手方向に磁界および/ま
たは張力を付与しながら行なうと効果的である。磁界お
よび張力は冷却中も150℃付近まで付与したtまの方
がよい。
Furthermore, it is effective to carry out the heat treatment of the present invention while applying a magnetic field and/or tension in the longitudinal direction of the material. It is better to apply the magnetic field and tension to around 150° C. even during cooling.

比較的低温に保持する前段熱処理を設ける本発明の方法
が、従来の一段熱処理に比べて、鉄損改善の効果が大き
い理由は明らかではないが、本発明者は次のように推察
している。非平衡状態にあるアモルファス構造の緩和過
程は1つでなく、温度条件によって最終状態は異なるは
ずである。本発明の比較的低温でなされる前段処理はア
モルファス状態を安定化する作用をし、引き続きなされ
る磁性改質のための高温処理をより効果的にしているも
のと考えられる・ つぎに実施例をあげて説明する。
Although it is not clear why the method of the present invention, which includes pre-stage heat treatment that is maintained at a relatively low temperature, is more effective in improving iron loss than conventional single-stage heat treatment, the inventor of the present invention speculates as follows. . There is more than one relaxation process for an amorphous structure in a non-equilibrium state, and the final state should differ depending on the temperature conditions. It is believed that the pre-treatment performed at a relatively low temperature in the present invention acts to stabilize the amorphous state, making the subsequent high-temperature treatment for magnetic modification more effective. Let me explain.

実施例I F@78Si121hOの組成を有する母合金を高周波
炉で溶解[2、周速20 WV/sscで回転するスチ
ール製ロールの外周に合金の溶湯をスリ、ト状ノズルを
介して大気中に噴出させ、巾25協厚さ約30μmのア
モルファスリーンを作製した。このりzンの長手方向に
300@の磁界をかけながら290℃で80分間焼鈍し
、引き続き380℃で30分焼鈍した後、磁界をかけた
まま150℃まで、約60分間で冷却した。焼鈍後の材
料の、単板測定器で測定した磁気特性は、次のようであ
った。
Example I A master alloy having a composition of F@78Si121hO was melted in a high-frequency furnace [2. The molten alloy was slipped on the outer periphery of a steel roll rotating at a circumferential speed of 20 WV/ssc, and then introduced into the atmosphere through a toroidal nozzle. Amorphous thin film having a width of 25 mm and a thickness of approximately 30 μm was prepared by ejecting the resin. This was annealed at 290° C. for 80 minutes while applying a magnetic field of 300 @ in the longitudinal direction of the z, followed by annealing at 380° C. for 30 minutes, and then cooled to 150° C. for about 60 minutes while the magnetic field was applied. The magnetic properties of the annealed material measured with a single plate measuring device were as follows.

W L3/’+Oo、o 68 wattABl   
     1.46T ただし、Wl、5/りoは50Hz、1.3Tにおける
鉄損、B1[磁界10・における磁束密度を示す。
W L3/'+Oo, o 68 wattABl
1.46T However, Wl,5/rio indicates the iron loss at 50Hz and 1.3T, and the magnetic flux density at B1 [magnetic field 10.

一方、比較として行なった、380℃で30分、および
60分焼鈍した同じ組成の材料の磁気特性はそれぞれW
l、s、4oは0.092waル勺および0.101穐
tVkgB1は1.44Tおよび1.46 Tであった
On the other hand, for comparison, the magnetic properties of materials with the same composition annealed at 380°C for 30 minutes and 60 minutes were
l, s, 4o were 0.092W and 0.101W, tVkgB1 was 1.44T and 1.46T.

前段処理は単に焼鈍時間の延長による効果でないことが
この比較例の結果より明らかである。
It is clear from the results of this comparative example that the pre-treatment is not simply an effect of extending the annealing time.

ま九一端を固定したりがンの他端に100gの重錘を吊
るし、す?ンに張力を付与しながら380℃で30分焼
鈍した。この場合磁界をかけないときと、かけたときの
磁気特性はそれぞれWl、s/baは0.081 wa
t%/IQFおよび0.062 wat%/ky、BI
Hl、45Tおよび1.44Tであ、った。
Fix one end of the gun and hang a 100g weight from the other end of the gun. Annealing was performed at 380° C. for 30 minutes while applying tension to the tube. In this case, the magnetic properties when no magnetic field is applied and when it is applied are Wl and s/ba are 0.081 wa, respectively.
t%/IQF and 0.062 wat%/ky, BI
Hl was 45T and 1.44T.

実施例2 F678.5817B13.501の組成を有する母合
金を実施例1と同じ方法で25■巾のアモルファスリが
ンを作製した。このす?ンを長手方向に4000の磁界
をかげながら250℃から350℃まで昇温速度1 ’
C/minで100分かけて昇温した。引続き380℃
で30分間焼鈍した後の磁気特性は次のようであった。
Example 2 A 25-inch wide amorphous resin was prepared using a master alloy having a composition of F678.5817B13.501 in the same manner as in Example 1. This? The temperature was increased from 250℃ to 350℃ at a rate of 1' while applying a magnetic field of 4000℃ in the longitudinal direction.
The temperature was increased over 100 minutes at a rate of C/min. Continue to 380℃
The magnetic properties after annealing for 30 minutes were as follows.

Wt5Ao    o、o 73 wat%AgB、 
    1.51T 比較として行なった、380℃で30分および60分焼
鈍し九同じ組成の材料の磁気特性はそれぞれ次のようで
あった。
Wt5Ao o, o 73 wt%AgB,
1.51T The magnetic properties of materials with the same composition annealed at 380° C. for 30 and 60 minutes were as follows, respectively.

Wts、4o   O,089および0.091 wa
tt/kgB1    1.5offiおよび1.52
Wts, 4o O,089 and 0.091 wa
tt/kgB1 1.5offi and 1.52
T

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、2段熱処理(2段目はいずれも380℃×3
0分、磁界300sをかけながら行なった)における前
段処理条件の影響を示す図面である。 ○:前処理なしVC比べて10%以上鉄損減少△:前処
理なしに比べて5〜10チ鉄損減少×:効果なし。
Figure 1 shows two-stage heat treatment (the second stage is 380℃ x 3)
10 is a drawing showing the influence of the pre-processing conditions during 0 minutes and while applying a magnetic field of 300 seconds. ○: Iron loss decreased by 10% or more compared to VC without pretreatment △: Iron loss decreased by 5 to 10 cm compared to no pretreatment ×: No effect.

Claims (4)

【特許請求の範囲】[Claims] (1)  アモルファス磁性合金を熱処理するにあたり
段階的に高くなる少くとも二水準の温度に所定時間保持
すること′fr特徴とするアモルファス磁性合金の熱処
理方法。
(1) A method for heat treating an amorphous magnetic alloy, which is characterized by holding the amorphous magnetic alloy at at least two progressively higher temperatures for a predetermined period of time.
(2)第一段階の保持温度をTx −3000より高く
、Tx〜180℃よシ低い温度で20分以上、厳終段階
の保持温度を第一段階の保持温度より少くとも30℃高
く、Txより少くとも50℃低い温度で1分以上熱処理
することを特徴とする特許請求の範囲m1項記載の方法
。(ここで、TxLti毎分10℃の速度で昇温すると
きの合金の結晶化開始温度(’C)である。)
(2) The holding temperature in the first stage is higher than Tx -3000 and lower than Tx~180°C for 20 minutes or more, and the holding temperature in the final stage is at least 30°C higher than the holding temperature in the first stage, Tx The method according to claim m1, characterized in that the heat treatment is performed at a temperature at least 50° C. lower for 1 minute or more. (Here, TxLti is the crystallization initiation temperature ('C) of the alloy when the temperature is raised at a rate of 10 °C per minute.)
(3)  アモルファス磁性合金を熱処理するにあたシ
、材料の長手方向に磁界または/および張力を付与しな
がら段階的に画くなる少くとも二水準の温度に所定時間
保持することを特徴とするアモルファス磁性合金の熱処
理方法。
(3) When heat treating an amorphous magnetic alloy, a magnetic field and/or tension is applied in the longitudinal direction of the material, and the temperature is maintained at at least two stepwise levels for a predetermined period of time. Heat treatment method for magnetic alloys.
(4)Ilx段階の保持温度k Tx −300℃より
篩く、Tx −180℃より低い温度で20分以上・最
。 終段階の保持温度を第一段階の保持温度より少くとも3
0℃高く、Txよシ少くとも50℃低い温度で1分以上
熱処理することを特徴とする特許請求の範囲第3項記載
の方法(ここでTxは毎分10℃の速度で昇温するとき
の合金の結晶化開始温度(C)である、)
(4) Holding temperature k at Ilx stage: Tx at a temperature lower than -300°C, Tx at a temperature lower than -180°C for 20 minutes or more. The holding temperature of the final stage is at least 3 times higher than the holding temperature of the first stage.
The method according to claim 3, characterized in that the heat treatment is performed at a temperature 0°C higher and at least 50°C lower than Tx for 1 minute or more (where Tx is heated at a rate of 10°C per minute). is the crystallization initiation temperature (C) of the alloy of
JP13657281A 1981-08-31 1981-08-31 Heat treatment for amorphous magnetic alloy Pending JPS5837126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13657281A JPS5837126A (en) 1981-08-31 1981-08-31 Heat treatment for amorphous magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13657281A JPS5837126A (en) 1981-08-31 1981-08-31 Heat treatment for amorphous magnetic alloy

Publications (1)

Publication Number Publication Date
JPS5837126A true JPS5837126A (en) 1983-03-04

Family

ID=15178390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13657281A Pending JPS5837126A (en) 1981-08-31 1981-08-31 Heat treatment for amorphous magnetic alloy

Country Status (1)

Country Link
JP (1) JPS5837126A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715906A (en) * 1986-03-13 1987-12-29 General Electric Company Isothermal hold method of hot working of amorphous alloys
CN102965478A (en) * 2012-12-07 2013-03-13 青岛云路新能源科技有限公司 Heat treatment method for iron-based amorphous strip
CN103555919A (en) * 2013-11-22 2014-02-05 江阴市晶磁电子有限公司 Normal pressure amorphous iron core heat treatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110764A (en) * 1979-02-20 1980-08-26 Matsushita Electric Ind Co Ltd Method of thermal treatment for amorphous alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110764A (en) * 1979-02-20 1980-08-26 Matsushita Electric Ind Co Ltd Method of thermal treatment for amorphous alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715906A (en) * 1986-03-13 1987-12-29 General Electric Company Isothermal hold method of hot working of amorphous alloys
CN102965478A (en) * 2012-12-07 2013-03-13 青岛云路新能源科技有限公司 Heat treatment method for iron-based amorphous strip
CN103555919A (en) * 2013-11-22 2014-02-05 江阴市晶磁电子有限公司 Normal pressure amorphous iron core heat treatment method

Similar Documents

Publication Publication Date Title
JPH0368108B2 (en)
JPH01110707A (en) Magnetic core
US4081298A (en) Heat treatment of iron-nickel-phosphorus-boron glassy metal alloys
JPH02297903A (en) Wound core made of fe-based fine crystal soft magnetic alloy and manufacture thereof
JPH01242755A (en) Fe-based magnetic alloy
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JPS6345444B2 (en)
JP2006045660A (en) Fe-BASED AMORPHOUS ALLOY THIN STRIP AND MAGNETIC CORE
JPS5837126A (en) Heat treatment for amorphous magnetic alloy
JPS5935431B2 (en) Heat treatment method for amorphous alloys
JPS6335688B2 (en)
JPS6360264A (en) Production of amorphous co alloy
JPS6054386B2 (en) Method for improving the magnetic properties of ribbon-shaped amorphous alloys
JP2024503576A (en) Method of manufacturing substantially equiatomic FECO alloy cold rolled strip or sheet, substantially equiatomic FECO alloy cold rolled strip or sheet, and magnetic components cut therefrom
JPS6286146A (en) High permeability amorphous alloy having high corrosion resistance, strength and wear resistance and method for modifying magnetic characteristic of said alloy
KR910002951B1 (en) Heat treatment process for amorphous alloy
KR960006020B1 (en) Method and device heat treatment of amorphous alloy
JPH05202452A (en) Method for heat-treating iron-base magnetic alloy
JPS61123119A (en) Co group magnetic core and heat treatment thereof
JPS60128211A (en) Production of low iron loss amorphous alloy
CN108950435B (en) Iron-based amorphous strip with high saturation magnetic induction and preparation method thereof
US1987468A (en) Magnetic material and method of treatment
JPS6218008A (en) Heat treatment for amorphous alloy core
JPS5996219A (en) Manufacture of rapidly cooled nondirectionally oriented thin silicon steel strip with superior magnetic characteristic