JPS6218008A - Heat treatment for amorphous alloy core - Google Patents

Heat treatment for amorphous alloy core

Info

Publication number
JPS6218008A
JPS6218008A JP60157462A JP15746285A JPS6218008A JP S6218008 A JPS6218008 A JP S6218008A JP 60157462 A JP60157462 A JP 60157462A JP 15746285 A JP15746285 A JP 15746285A JP S6218008 A JPS6218008 A JP S6218008A
Authority
JP
Japan
Prior art keywords
core
heat treatment
cooling
amorphous alloy
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60157462A
Other languages
Japanese (ja)
Inventor
Terushi Katsuyama
勝山 昭史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60157462A priority Critical patent/JPS6218008A/en
Publication of JPS6218008A publication Critical patent/JPS6218008A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a proper cooling rate and to give excellent magnetic characteristics to a core by a method wherein, after a heat treatment of the core using amorphous alloy, the core is taken out of the furnace, left to stand in the air, and is cooled. CONSTITUTION:In a heat treatment of the core obtainable by laminating or winding amorphous alloys, the temperature rise to the prescribed point and the holding at this temperature are executed in the furnace with an atmosphere of inert gas. In cooling, the core is taken out of the furnace, left to stand in the air, and is cooled. Even in the case of a large core, cooling is completed in a short time at the cooling rate set proper to allow the core to have good magnetic characteristics. By this way, the cooling is shortened in time to avoid adverse effects due to oxidation, thereby attaining an effective cooling rate. As a result, the magnetic characteristics of the core can be significantly improved.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は電気機器に用いられるアモルファス合金鉄心の
熱処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method of heat treating an amorphous alloy core used in electrical equipment.

〔従来技術とその問題点〕[Prior art and its problems]

アモルファスの合金磁性材料は従来の結晶質合金磁性材
料に比べて磁気特性が非常に優れているので、例えば変
圧器の鉄心などに適用したとき無負荷損を大巾に低減で
きるという利点があり、またアモルファス合金は型造方
法の点でもこの合金の溶湯を高速回転ロールに吹きつげ
て超急冷することにより薄帯として得られるから、従来
溶解。
Amorphous alloy magnetic materials have extremely superior magnetic properties compared to conventional crystalline alloy magnetic materials, so when applied to transformer cores, for example, they have the advantage of greatly reducing no-load loss. In addition, amorphous alloys can be made into thin strips by blowing the molten metal onto high-speed rotating rolls and cooling them extremely quickly, so they cannot be made by conventional melting.

鍛造、圧延などにより製造される結晶質合金に比べ、製
造工数が非常に少なく、省エネルギー的1こ優れたもの
であって、材料特性と製造法の両特徴を生かして実用化
に大きな期待が寄せられている。
Compared to crystalline alloys manufactured by forging, rolling, etc., it requires significantly fewer manufacturing steps and is superior in terms of energy savings, and there are great expectations for its practical application by taking advantage of both the material properties and manufacturing method. It is being

このようなアモルファス合金を変圧器などの鉄心に使用
するとき要求される高い磁束密度と小さな鉄損なと磁気
特性のほかに機械的性買や熱処理条件なども加味して総
合的に評価すると、例えばFe−B−8i系合金がその
一つとして知られており中でも組成比が92%Fe −
:(%B−5%Siのものなどが適している。このアモ
ルファス合金に良好な磁気特性を付与させるためには、
超急冷により得られたアモルファス合金をこ過当な熱処
理を施さなければならず、その熱処理条件は窒素ガスや
アルゴンガスなどの不活性ガス雰囲気中で400°Cに
2時間磁界中で保持して、その後の冷加はアモルファス
合金の酸化を防ぐために炉中冷却とし、冷却速度は5℃
、4とするのがよいことがねかっている。
When such an amorphous alloy is used in the core of a transformer, it is evaluated comprehensively by taking into account not only the high magnetic flux density and small iron loss, but also the magnetic properties such as mechanical properties and heat treatment conditions. For example, Fe-B-8i alloy is known as one of them, and among them, the composition ratio is 92% Fe -
:(%B-5%Si etc. are suitable. In order to impart good magnetic properties to this amorphous alloy,
The amorphous alloy obtained by ultra-quenching must be subjected to excessive heat treatment, and the heat treatment conditions are held at 400 ° C in a magnetic field for 2 hours in an inert gas atmosphere such as nitrogen gas or argon gas. Subsequent cooling is done in a furnace to prevent oxidation of the amorphous alloy, and the cooling rate is 5℃.
, 4 is a good idea.

しかしながら、この熱処理条件はアモルファス合金を用
いた重量l Kf程度以下の比較的小さな鉄心について
行なったときに良好な磁気特性が得られるものであって
、熱処理はアモルファス合金を多数枚積層したものにつ
いて行なうのが普通であるから、実際の変圧器鉄心の大
型のものについては熱容量が大きく、シたがって冷却速
度は当然小屋試料よりも遅くなる。
However, this heat treatment condition is such that good magnetic properties can be obtained when the heat treatment is performed on a relatively small core made of an amorphous alloy with a weight of about 1 Kf or less, and the heat treatment is performed on a core made of a large number of laminated layers of amorphous alloy. Since this is normal, actual large transformer cores have a large heat capacity, and therefore the cooling rate will naturally be slower than that of the shed sample.

例えば第2図はXt比で92%Fe−3%B−5%Si
のアモルファス合金を用いた比較的小さな巻鉄心の試料
を熱処理した場合の冷却速度と交流50Hz。
For example, Figure 2 shows the Xt ratio of 92%Fe-3%B-5%Si.
Cooling rate and AC 50Hz when heat treating a relatively small wound core sample using an amorphous alloy.

1.3テスラ(T)における鉄損との関係を示した線図
であり、その他の熱処理条件は窒素ガス雰囲気中で保持
温度400℃、保持時間2時間、印加磁界は円周方向に
直流800A/fnとしたものである。第2図から鉄損
は冷却速度が2″C4より遅くなると著しく大となるこ
とがわかる。例えば鉄心重量が0.59程度の小型鉄心
では冷却速度は4゛%であり、鉄損W 1.3150は
0.16wAという値が得られるのに対し、鉄心重量が
10 Kfのものは熱容量が大きいので冷却過程は炉中
冷却では中心部が表面部より冷却カ遅tt、l ”’4
 ドア’、CIQ 鉄損W 1.315G ハ0.25
 wAとなる。なお第2図は磁気特性として鉄損の場合
を示したが、壱のほか励磁電力や各種の直流磁気特性な
どについても鉄心の冷却速度との関係は、鉄損と同様冷
却速度が遅いと特性が感化することが確かめられている
。またこのFe−B−8i系アモルファス合金に限らず
、磁性材料として鉄心に用いられる他の合金系のアモル
ファス材料についても同様のことが言える。
This is a diagram showing the relationship with iron loss at 1.3 Tesla (T). Other heat treatment conditions were a holding temperature of 400°C in a nitrogen gas atmosphere, a holding time of 2 hours, and an applied magnetic field of 800 A DC in the circumferential direction. /fn. It can be seen from Fig. 2 that the iron loss becomes significantly larger when the cooling rate is slower than 2''C4.For example, in a small core with a core weight of about 0.59, the cooling rate is 4%, and the iron loss W1. 3150 can obtain a value of 0.16 wA, whereas the core weight of 10 Kf has a large heat capacity, so in the cooling process, the center part cools more slowly than the surface part in the furnace cooling process.
Door', CIQ Iron loss W 1.315G Ha 0.25
It becomes wA. Although Figure 2 shows the case of iron loss as a magnetic property, the relationship between the cooling rate of the iron core and the excitation power and various DC magnetic properties as well as iron loss is similar to that of iron loss when the cooling rate is slow. It has been confirmed that it affects people. Moreover, the same can be said not only for this Fe-B-8i-based amorphous alloy but also for other alloy-based amorphous materials used in iron cores as magnetic materials.

以上のようにアモルファス合金を用いた比較的重量の大
きな鉄心は従来の熱処理方法では十分に材料特性を発揮
させることができず、アモルファス合金の優秀性が有効
に活用されていないという欠点があった。従って大型鉄
心についても小型鉄心と同様に冷却速度を速めて磁気特
性を向上させる熱処理方法が必要である。
As mentioned above, conventional heat treatment methods cannot fully demonstrate the material properties of relatively heavy iron cores made of amorphous alloys, and the advantages of amorphous alloys have not been effectively utilized. . Therefore, a heat treatment method for increasing the cooling rate and improving magnetic properties is required for large cores as well as for small cores.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みてなされたものであり、その目
的はアモルファス合金を積層または巻回した鉄心を熱処
理するときに鉄心の大きさに拘らず適切な冷却速度が得
らル、優れた磁気特性を鉄心に付与させることが可能な
熱処理方法を提供することにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to obtain an appropriate cooling rate regardless of the size of the core when heat treating a core made of laminated or wound amorphous alloy, and to provide an excellent method. An object of the present invention is to provide a heat treatment method capable of imparting magnetic properties to an iron core.

〔発明の要点〕[Key points of the invention]

本発明はアモルファス合金を用いた鉄心を熱処理するに
際して、加熱保持後の冷却過程で、短時間であれば高温
状jぷの鉄心を大気に醪しても酸化の影響が小さいこと
に層目し、所定温度までの昇温とその温度における保持
は不活性ガス雰囲気の炉中で行ない、冷却時憂こは鉄心
を取り出して大気中に放置冷却し、大きな鉄心の場合に
も短時間に冷却を完了させ、適切な冷却速度とし、鉄心
に良好な磁気特性をもたせるようにしたものである。
The present invention focuses on the fact that when heat treating an iron core using an amorphous alloy, the effect of oxidation is small even if the iron core in a high temperature state is exposed to the atmosphere for a short period of time during the cooling process after heating and holding. The temperature is raised to a predetermined temperature and maintained at that temperature in a furnace with an inert gas atmosphere.When cooling, the core is taken out and left to cool in the atmosphere.Even large cores can be cooled in a short time. The cooling process was completed to achieve an appropriate cooling rate and to provide the core with good magnetic properties.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

アモルファス合金の2i量比で92%Fe −:(%1
3−5%5io)薄帯を用いて、重量約10 K9の巻
鉄心を裏作し熱処理を施した。熱処理条件で従来と共通
な点は窒素ガス雰囲気中で400℃に昇温し、2時間保
持したことおよび印加磁界を800A/fnとしたこと
であり、従来と異なるのは冷却速度と冷却時における写
囲気である。すなわち本発明では鉄心を加熱保持した後
、炉から取り出し大気中に放置冷却する。このようにす
ると鉄心の冷却速度は炉中冷却に比べてかなり速(なり
磁気特性も良くなる。
2i amount ratio of amorphous alloy is 92%Fe −: (%1
Using the 3-5%5io) thin ribbon, a wound core with a weight of about 10K9 was prepared and heat treated. The common points with the conventional heat treatment conditions are that the temperature was raised to 400°C in a nitrogen gas atmosphere and held for 2 hours, and the applied magnetic field was 800 A/fn. It's photogenic. That is, in the present invention, after the iron core is heated and maintained, it is taken out from the furnace and left to cool in the atmosphere. In this way, the cooling rate of the iron core is much faster (compared to cooling in a furnace), and the magnetic properties are also improved.

この結果を第1表に示したが第1表には比較のため前述
した従来法の0.5に4および10 K9の重31のア
モルファス合金鉄心についても再帰しである。
The results are shown in Table 1, which also includes the amorphous alloy cores of 0.5 to 4 and 10 K9 weight 31 of the conventional method described above for comparison.

第1表 第1表の歯1が本実施例、隘2.隆3が従来のものであ
り、これら3者を比べると、本発明の方法は従来の小型
鉄心の冷却速度に匹敵し、鉄損W1.315Gもほぼ同
等の値が得られ、適切な熱処理が行なわれていることが
わかる。本発明はこのように加熱後大気中で放冷するも
のであるが、冷却速Ifは4 ”’4となるから、冷却
速度が磁気特性に最も大きな影響を及ぼす300℃まで
の温度領域は僅か5分間を要するのみであり、この程度
の時間であれば、鉄心が大気に曝されても酸化を受ける
のは積層状態の鉄心の表面だけである。したがって鉄心
の内部は酸化されることなく健全性が維持されており、
鉄心全体の磁気特性は熱処理効果を十分付与することが
できる。これに対して昇温加熱するときは鉄心が大きく
なる程急速短時間の加熱保時は行ない難く、長時間を要
するようになり、このとき大気の雰囲気では鉄心の酸化
が進み磁気特性を劣化させる原因となるので、昇温時は
鉄心を不活性雰囲気中に置かなければならない。本発明
は冷却時のみは特に鉄心を大気中に放置しても酸化の影
響を無視することができるということを利用したもので
ある。
Table 1 Tooth 1 in Table 1 is the present example, and tooth 2. Ryu 3 is the conventional one, and when comparing these three methods, the method of the present invention is comparable to the cooling rate of the conventional small core, and the iron loss W1.315G is almost the same value, and appropriate heat treatment is not required. I can see what is being done. In the present invention, after heating, the material is allowed to cool in the atmosphere, but since the cooling rate If is 4''4, the temperature range up to 300°C where the cooling rate has the greatest effect on magnetic properties is small. It only takes 5 minutes, and within this amount of time, even if the core is exposed to the atmosphere, only the surface of the laminated core will be oxidized. Therefore, the inside of the core will not be oxidized and will remain healthy. gender is maintained,
The magnetic properties of the entire core can be sufficiently affected by heat treatment. On the other hand, when heating at elevated temperatures, the larger the iron core becomes, the more difficult it becomes to maintain rapid heating for a short period of time, and it takes a long time.At this time, oxidation of the iron core progresses in the atmosphere, degrading the magnetic properties. To prevent this, the iron core must be placed in an inert atmosphere when the temperature is raised. The present invention utilizes the fact that the influence of oxidation can be ignored even if the iron core is left in the atmosphere only during cooling.

第1図は第1表の本発明により熱処理したNn2の鉄心
の鉄損曲線を示した勝因であるが、比較のために第1表
の従来法による%3についても併記した。第1図は鉄心
の磁束密度と50Hz4こおける鉄損との関係を表わし
たものであり、曲線イは1′!11の鉄心1曲線口は克
2の鉄心の特性を示している。
Although FIG. 1 shows the core loss curve of the Nn2 core heat-treated according to the present invention in Table 1, %3 according to the conventional method in Table 1 is also shown for comparison. Figure 1 shows the relationship between the magnetic flux density of the iron core and the iron loss at 50Hz4, where curve A is 1'! The iron core 1 curve opening of No. 11 shows the characteristics of the iron core No. 2.

曲線イと曲線口の比較から本発明の鉄心の方が鉄損が非
常に小さく、熱処理方法が適切ζこ行なわれていること
がわかる。
From the comparison between curve A and curve A, it can be seen that the iron core of the present invention has much smaller iron loss and that the heat treatment method is appropriately performed.

以上のことはアモルファス合金の薄板を多数枚積み重ね
た積層型の鉄心についても巻き鉄心と全く同様の効果が
得られるものであり、また重輩1匂以下の小型鉄心も加
熱保持後の冷却を大気中放置して行なってもよく、その
場合冷却速度がやや速過ぎて鉄損が極く僅かに増すこと
もあるが、実用上は全く差し支えない程度の範囲である
The above is true for laminated cores made by stacking many thin plates of amorphous alloy, which have exactly the same effect as wound cores, and also for small cores with a thickness of less than 1 in. It may also be carried out by leaving it for a while, in which case the cooling rate may be a little too fast and the iron loss may increase very slightly, but this is within a range that does not cause any problem in practice.

なお本実施例ではFe−B−8i系のアモルファス合金
について述べたが、電気機器の鉄心として用いることが
できる他の合金系のアモルファス材料でも本発明の方法
が効果的であることは勿論である。
In this example, Fe-B-8i-based amorphous alloy was described, but it goes without saying that the method of the present invention is effective for other alloy-based amorphous materials that can be used as cores of electrical equipment. .

〔発明の効果〕〔Effect of the invention〕

磁性材料として有効なアモルファス合金は製造のままで
は磁気特性がまだ不十分であって、アモルファス合金を
電気機器用鉄心として用いるときは、鉄心に成形した後
、さらに熱処理を施すのが普通であるが、この熱処理は
従来鉄心に直流磁界を印加した状態で不活性ガス雰囲気
の加熱炉中に置き、所定温度に保持した後、炉中冷却し
ていたので、熱容量の大きい大型鉄心では冷却が遅れて
満足すべき磁気特性が得られなかったの(こ対し、本発
明は上記の一連の熱処理過程の中で冷却過程のみ鉄心を
炉外に取り出して放置し、大気中で冷却するようにした
ため、冷却を短時間で済ませることができ、酸化による
悪影響を及ぼすことなく、鉄損を低下させるのに有効な
冷却速度が得られる結果、鉄心の磁気特性を大巾に改善
することに成功したものである。
Amorphous alloys, which are effective as magnetic materials, still have insufficient magnetic properties as manufactured, so when amorphous alloys are used as cores for electrical equipment, they are usually subjected to further heat treatment after being formed into cores. Conventionally, this heat treatment was performed by placing the core in a heating furnace with an inert gas atmosphere while applying a DC magnetic field, maintaining it at a predetermined temperature, and then cooling it in the furnace. (On the other hand, in the present invention, the iron core was taken out of the furnace only during the cooling process in the above series of heat treatment processes and left to cool in the atmosphere. The cooling process can be completed in a short time, without the negative effects of oxidation, and by achieving a cooling rate that is effective in reducing iron loss, it has succeeded in significantly improving the magnetic properties of the iron core. .

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 1)直流磁界を印加したアモルファス合金鉄心を不活性
ガス雰囲気の加熱炉中で所定温度に加熱し所定時間保持
した後冷却する熱処理を行なうに当り、前記鉄心を前記
炉から取り出して大気中に放置し冷却することを特徴と
するアモルファス合金鉄心の熱処理方法。
1) When performing heat treatment in which an amorphous alloy iron core to which a DC magnetic field has been applied is heated to a predetermined temperature in a heating furnace in an inert gas atmosphere, held for a predetermined time, and then cooled, the iron core is taken out of the furnace and left in the atmosphere. A method for heat treatment of an amorphous alloy core, characterized by cooling the core.
JP60157462A 1985-07-17 1985-07-17 Heat treatment for amorphous alloy core Pending JPS6218008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60157462A JPS6218008A (en) 1985-07-17 1985-07-17 Heat treatment for amorphous alloy core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60157462A JPS6218008A (en) 1985-07-17 1985-07-17 Heat treatment for amorphous alloy core

Publications (1)

Publication Number Publication Date
JPS6218008A true JPS6218008A (en) 1987-01-27

Family

ID=15650188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60157462A Pending JPS6218008A (en) 1985-07-17 1985-07-17 Heat treatment for amorphous alloy core

Country Status (1)

Country Link
JP (1) JPS6218008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252144A (en) * 1991-11-04 1993-10-12 Allied Signal Inc. Heat treatment process and soft magnetic alloys produced thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252144A (en) * 1991-11-04 1993-10-12 Allied Signal Inc. Heat treatment process and soft magnetic alloys produced thereby

Similar Documents

Publication Publication Date Title
JP2698369B2 (en) Low frequency transformer alloy and low frequency transformer using the same
JPS6056203B2 (en) Method for manufacturing non-oriented silicon steel sheet with excellent magnetic properties in the rolling direction
US3243871A (en) Method of making ductile superconductors
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0651889B2 (en) Method for producing non-oriented silicon steel by ultra-high speed annealing
US3259526A (en) Method of heat treatment
US3833431A (en) Process for continuously annealed silicon steel using tension-producing glass
US2113537A (en) Method of rolling and treating silicon steel
JPS6218008A (en) Heat treatment for amorphous alloy core
US3144363A (en) Process for producing oriented silicon steel and the product thereof
US3932235A (en) Method of improving the core-loss characteristics of cube-on-edge oriented silicon-iron
US2227156A (en) Treatment of electrical apparatus
US4596613A (en) Method for treating cast amorphous metal strip material
JP2583357B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
CS212707B2 (en) Method of manufacturing electromagnetic silicon steel
JPS60183713A (en) Manufacture of iron core
US3106496A (en) Process for coating and annealing grain oriented silicon steels
JPH08295937A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
US3586545A (en) Method of making thin-gauge oriented electrical steel sheet
US2292191A (en) Ferromagnetic material
JPS5837126A (en) Heat treatment for amorphous magnetic alloy
JPS5954213A (en) Annealing method for laminated core
JP4300661B2 (en) Method for producing bi-directional silicon steel sheet with excellent magnetic properties
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
SU1251234A1 (en) Method of manufacturing magntic circuits of electric machines of permalloy