JPS583704A - Production of extra thick steel plate - Google Patents

Production of extra thick steel plate

Info

Publication number
JPS583704A
JPS583704A JP10255381A JP10255381A JPS583704A JP S583704 A JPS583704 A JP S583704A JP 10255381 A JP10255381 A JP 10255381A JP 10255381 A JP10255381 A JP 10255381A JP S583704 A JPS583704 A JP S583704A
Authority
JP
Japan
Prior art keywords
surface side
curved
ingot
thick steel
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10255381A
Other languages
Japanese (ja)
Inventor
Takeshi Nakamura
剛 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10255381A priority Critical patent/JPS583704A/en
Publication of JPS583704A publication Critical patent/JPS583704A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To facilitate press sticking in the parts which are not press-stuck such as porosities in the stage of hot rolling and to improve the productivity of extra thick steel plates by differentiating the cooling rates on the front and rear surfaces of an ingot in a spraying zone, and displacing the final solidifying region of the ingot in the thickness direction of said ingot. CONSTITUTION:In a spraying zone, an ingot 5 is cooled by decreasing the flow rate of cooling water on the curved outside surface side thereof and increasing the flow rte of cooling water on the curved inside surface side. Then, solidification progresses earlier on the inside surface side where the flow rate of cooling water is larger than on the outside surface side where said flow rate is smaller and this makes the coefft. of the solidification larger on the curved inside surface side than on the curved outside surface side, thereby making the curved inside surface side larger than the outside surface side. The final solidification region 6 inevitably moves to the curved outside surface side. If it is desired to move the region 6 to the curved inside surface side, the ingot is cooled reverse from the above. As a result, the compressive stress in the thickness direction in the stage of rolling increases and the internal defects such as nonpress-stuck porosities, etc. in the extra thick steel plate are improved considerably.

Description

【発明の詳細な説明】 この発明は、連続鋳造法により極厚鋼板を製造するにあ
たり、鋳片の最終凝固域すなわち中心偏析・プロシティ
−等の欠陥の発生し易い領域を鋳片の厚み方向□に変位
*−1することにより、厚板圧延時における最終凝固域
への圧下の浸透を容易にし、内部品質のすぐれた極厚鋼
板を得ることを目的とする極厚鋼板の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION When manufacturing extra-thick steel plates using a continuous casting method, the present invention aims to reduce the final solidification region of a slab, that is, the area where defects such as center segregation and procity are likely to occur, in the thickness direction of the slab. The present invention relates to a method for producing an extra-thick steel plate, which aims at obtaining an extra-thick steel plate with excellent internal quality by making it easier to penetrate the final solidification zone during rolling of the thick plate by displacing *-1 to □.

連続鋳造法により極厚鋼板用鋳片を製造すると、中心偏
析・ポロシティ−等の欠陥の発生し易い最終凝固域が鋳
片の板厚中心線上に生じ、極厚鋼板における主要な材質
欠陥となることが知られている。これは、最終凝固域が
鋳片の板厚中心線上にあるために、圧延による圧下浸透
が困難で圧着されないために起こるもので、かかる現象
は、板厚が大きくなる程著しい。こうした未圧着ポロシ
ティ−等の欠陥に対する改善策としては、■製鋼段階で
最終凝−城自体を減少させる方法、■圧延段階で最終凝
固域を圧着させる方法がある。
When slabs for extra-thick steel plates are manufactured using the continuous casting method, a final solidification region where defects such as center segregation and porosity are likely to occur occurs on the thickness center line of the slab, which is a major material defect in extra-thick steel plates. It is known. This occurs because the final solidification zone is located on the center line of the plate thickness of the slab, making it difficult to penetrate the slab through rolling, resulting in no compression bonding, and this phenomenon becomes more pronounced as the plate thickness increases. Measures to improve defects such as unbonded porosity include (1) a method of reducing the final solidification itself in the steelmaking stage, and (2) a method of compressing the final solidification region in the rolling stage.

■の方法としては、脱ガス処理により鋼中の脱水素を行
なう方法等があるが、連鋳片の最終凝固域は、冶金的要
因のみで決まる鋼塊の場合と異なり、連鋳機特有の機械
的要因にも影響される仁とが多いため、最終凝固域の発
生を抑制する仁とは極めて難しい。また、■の方法とし
ては、大径ロール番とよる強圧下圧延、大型鍛造プレス
による厚さ方向の圧縮応力を高める方法、同じく大型鍛
造プレスにより長時間加圧する方法等が知られているが
、大径ロールによる強圧下圧延では、圧延機自体のコス
ト並びに製造コストが高くつき経済的に問題があり、大
型鍛造プレスは高価で生産性が低いという問題があった
Methods for (2) include dehydrogenation in the steel through degassing treatment, but unlike the case of steel ingots, the final solidification region of continuous slabs is determined only by metallurgical factors, and is unique to continuous casting machines. Since many grains are also affected by mechanical factors, it is extremely difficult to find a grain that suppresses the occurrence of the final coagulation zone. In addition, as the method (2), there are known methods such as strong reduction rolling using a large diameter roll, increasing compressive stress in the thickness direction using a large forging press, and applying pressure for a long time using a large forging press. Strong reduction rolling using large-diameter rolls is economically problematic because the cost of the rolling mill itself and manufacturing costs are high, and large forging presses are expensive and have low productivity.

この発明は、かかる現状に鑑みてなされたものであり、
連鋳片より内部品質のすぐれた極厚鋼板を得ることがで
きる極厚鋼板の製造法を提案するものである。
This invention was made in view of the current situation,
This paper proposes a method for manufacturing extra-thick steel plates that can produce extra-thick steel plates with better internal quality than continuous cast slabs.

この発明の要旨は、連続鋳造法によ6極厚鋼板用鋳片を
製造するI、スプレー帯における鋳片表裏面の凝固進行
速度を異ならせて、最終凝固域を鋳片の厚み方向に変位
させたのち通常の熱間圧延を行なうことを特徴とするこ
とにある。
The gist of this invention is to manufacture slabs for 6 extra-thick steel plates by a continuous casting method, and to displace the final solidification zone in the thickness direction of the slab by varying the rate of solidification on the front and back surfaces of the slab in the spray zone. The method is characterized in that after the rolling process is carried out, normal hot rolling is carried out.

鋼塊や鋼片から極厚鋼板を製造する場合、圧延時の板厚
方向の圧縮応力は、圧延材の表面に近づく程増大し、ま
た強圧下圧延を実施した場合の板厚方向の圧縮応力も中
心部より表層側の方が増加量が大きいことが知られてい
る。そこで、この発明者らは、連鋳片の最終凝固域を表
層側へ変位させることにより、圧延段階での最終凝固域
の圧着効果を高め、強圧下による圧縮応力の増加と同一
の効果を得ようとするものである。
When manufacturing extra-thick steel plates from steel ingots or slabs, the compressive stress in the thickness direction during rolling increases as it approaches the surface of the rolled material, and the compressive stress in the thickness direction increases when heavy reduction rolling is performed. It is also known that the amount of increase is larger on the surface side than in the center. Therefore, the inventors increased the crimping effect of the final solidification zone in the rolling stage by displacing the final solidification zone of the continuous slab toward the surface layer, and obtained the same effect as the increase in compressive stress caused by strong rolling. This is what we are trying to do.

連続鋳造においては、鋳型内で凝固シェルが形成され、
スプレー帯で強制冷却されて凝固が進行するが、従来の
操業においては、例えば彎曲型連続鋳造の場合は鋳片の
彎曲内面側と彎曲外面側の冷却速度が同一であるため、
最終凝固域は、鋳片板厚のほぼ中心線上に位置する。こ
の発明者らはかかる点に着目し、連鋳片の最終凝固域を
表層側へ変位さ曾る方法として、スプレー帯における鋳
片の彎曲内面側と彎曲外面側の冷却速度を異ならせる方
法をとったのである。
In continuous casting, a solidified shell is formed in the mold,
Solidification progresses through forced cooling in the spray zone, but in conventional operations, for example, in the case of curved continuous casting, the cooling rate on the curved inner surface and the curved outer surface of the slab is the same.
The final solidification zone is located approximately on the center line of the thickness of the slab. The inventors focused on this point and developed a method of varying the cooling rate on the curved inner surface side and the curved outer surface side of the slab in the spray zone, as a method of displacing the final solidification zone of the continuous slab toward the surface side. I took it.

この方法によれば、スプレー帯における鋳片の彎曲内面
側と彎曲外面側の凝固進行速度を異ならせることができ
るので、最終凝固域を鋳片の厚み方向に変位させること
が可能となり、腋最終凝固域を圧下の浸透し易い表層側
へ移動させることができるので熱間圧延時、中心偏析・
ポロシティ−等の未圧着部の圧着が容易となり、その結
果内部欠陥のないすぐれた極厚鋼板が得られる。
According to this method, it is possible to vary the rate of solidification progress on the curved inner surface side and the curved outer surface side of the slab in the spray zone, so it is possible to displace the final solidification region in the thickness direction of the slab, and the end Since the solidification zone can be moved to the surface layer side where it is easy to permeate during rolling, center segregation and
It becomes easy to press the uncrimped parts such as porosity, and as a result, an excellent extra-thick steel plate without internal defects can be obtained.

111図はこの発明法を実施するための具体例を示す冷
却パターンの一例である。!Il中、(りはモールド、
(りはスプレー帯、(11はガイドローラ、(4)は引
抜ローラ、園は鋳片、+11は最終凝固域をそれぞれ示
し、ξζでは鋳片の彎−内面側を強冷却、彎曲外画側を
弱冷却した場合の冷却パターンの一例を示した。
FIG. 111 is an example of a cooling pattern showing a specific example for carrying out the method of this invention. ! In Il, (Ri is mold,
(Ri is the spray band, (11 is the guide roller, (4) is the drawing roller, Sono is the slab, +11 is the final solidification area, respectively, ξζ is the curve of the slab - the inner side is strongly cooled, and the curved outside side is An example of a cooling pattern when weakly cooling is shown.

すなわち、スプレー“帯において、鋳片illの彎曲外
面側は、冷却水量を少すくシて冷却し、彎曲内面側は冷
却水量を多(して冷却する。その結果、彎曲部の内面側
と外面側の凝固シェルの處長遮度は、冷却水量の多い内
面側が冷却水量の少ない外面側より凝固が早(進行する
ため、すなわち彎曲内面側の凝固係数が彎−外面側より
大会(なるため、彎°曲内面側が外面側より大会<、従
って最終凝固域(・)は必然的に彎曲外面側へ移動する
ことkなる。最終凝固域を彎−内面側へ移動$着たい場
合は、上記と逆の手段で鋳片を冷却すればよい。
In other words, in the spray band, the curved outer surface of the slab is cooled with a small amount of cooling water, and the curved inner surface is cooled with a large amount of cooling water.As a result, the inner and outer surfaces of the curved section The length of the solidifying shell on the side is that the inner surface, where there is a large amount of cooling water, solidifies faster than the outer surface, where the amount of cooling water is small. The inner surface of the curve is closer to the outer surface, so the final solidification region (・) will inevitably move toward the outer surface of the curve.If you want to move the final solidification region toward the inner surface of the curve, do the above. The slab may be cooled by the opposite method.

仁のように、ξの発@11kによれば、スプレー帯をζ
おける鋳片の冷却適度に差異を与えて冷却することによ
抄最終凝固域を厚み方向に変位置−することがで伽るの
で、最終凝固域が表層Sに位置する鋳片を製造すること
が可能となり、その細事、圧延時の板厚方向の圧縮応力
が上昇し、プロシティ−等の欠陥の圧着に大きな効果゛
が期待で伽、従って、極厚鋼板における未圧着プロシテ
ィー等に起因する内部欠陥を大巾に改善し得る。
Like Jin, according to @11k of ξ, the spray zone is ζ
By cooling the slab with appropriate differences, it is possible to shift the position of the final solidification zone in the thickness direction, so it is possible to produce a slab in which the final solidification zone is located in the surface layer S. This makes it possible to increase the compressive stress in the thickness direction during rolling, which is expected to have a great effect on crimping defects such as procities. The resulting internal defects can be greatly improved.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

〔実施例〕〔Example〕

第1表に示す成分を有する鋼を2ストランドの彎曲型ス
ラブ連続鋳造機にて連続して、鋳込温度1535℃、引
“抜き速度0. B IIl/ mlnの条件で鋳込み
、断面寸法が2005wX1600■の鋳片を製造した
Steel having the components shown in Table 1 was continuously cast in a two-strand curved slab continuous casting machine at a casting temperature of 1535°C and a drawing speed of 0.B IIl/mln, with cross-sectional dimensions of 2005w x 1600mm. A slab of (2) was manufactured.

ξの際、第1ストランドの鋳片は、仁の発明の実施によ
り、第1図に示す各ゾーンをS2表に示す冷却パターン
で冷却し、鋳片の最終凝固域を彎曲外画側に変位させた
。その時の、条位置での凝固シェル厚みの変化は第3表
に示すとお−であった。
At the time of ξ, the slab of the first strand is cooled by the cooling pattern shown in Table S2 in each zone shown in Fig. 1 by implementing Jin's invention, and the final solidification area of the slab is displaced toward the outside of the curve. I let it happen. At that time, the changes in the solidified shell thickness depending on the strip position were as shown in Table 3.

なお、凝固シェルの厚みは、鋳片に鋲を打込んで測定し
た。他方の第2ストランドの鋳片は、通常の方法で凝I
llさ蓋た。
The thickness of the solidified shell was measured by driving a stud into the slab. The other second strand slab is solidified in the usual manner.
It was covered.

このようにして得られた鋳片を寸法、200■×160
0■X3500■に切断後所定の温度に加熱後1回のパ
ス圧電の圧下率を10〜30%にてフOsl厚、80鱈
厚の厚鋼板を通常の熱間圧電方法で製造し、超音波探傷
により各厚鋼板を検査した結果、第2ストランドで製造
した従来法による鋳片においては、未圧着ポロシティ−
に起因する欠陥が発生していたのに対し、第1ストラン
ドで製造した本発明法による鋳片においては、未圧着ポ
ロシティ−に起因する欠陥は皆無であった。これは、鋳
片の最終凝固域が表層JIK変位したことにより、圧延
時に圧下の浸透がはかられてセンターポロシティ−が圧
着されたことによるも0と推察できる。
The dimensions of the slab obtained in this way are 200 x 160
After cutting to 0 x 3500 x and heating to a predetermined temperature, a thick steel plate with a piezoelectric rolling reduction of 10 to 30% in one pass was produced using a normal hot piezoelectric method. As a result of inspecting each thick steel plate using sonic flaw detection, it was found that unbonded porosity was found in slabs produced by the conventional method using the second strand.
However, in the slab manufactured by the method of the present invention using the first strand, there were no defects caused by unbonded porosity. This can be inferred to be due to the fact that the final solidification zone of the slab underwent surface JIK displacement, which prevented penetration of the reduction during rolling and crimped the center porosity.

第1表1 @*酸成 分12表  冷却パターンTable 1 1 @*Acid formation Minute 12 Table Cooling Pattern

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例を示す説明図である。 l−モールド、2−スプレー帯、3−・ガイドローラ、
4−引抜ローラ、5−鋳片、6−最終凝固域。
The drawings are explanatory diagrams showing one embodiment of the present invention. l-mold, 2-spray band, 3-guide roller,
4-drawing roller, 5-slab, 6-final solidification zone.

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造法によ外極厚鋼板用鋳片を製造する際、スプレ
ー帯における鋳片表裏面の凝固冷却速度を異ならせて、
最終凝固域を鋳片の厚み方向に変位させたのち通常の熱
間圧延を行なうことを特徴とする極厚鋼板の製造法。
When manufacturing slabs for extra-thick steel plates using the continuous casting method, the solidification cooling rate of the front and back surfaces of the slab in the spray zone is varied.
A method for producing extra-thick steel plates, which comprises displacing the final solidification zone in the thickness direction of the slab and then performing normal hot rolling.
JP10255381A 1981-06-30 1981-06-30 Production of extra thick steel plate Pending JPS583704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10255381A JPS583704A (en) 1981-06-30 1981-06-30 Production of extra thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10255381A JPS583704A (en) 1981-06-30 1981-06-30 Production of extra thick steel plate

Publications (1)

Publication Number Publication Date
JPS583704A true JPS583704A (en) 1983-01-10

Family

ID=14330428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10255381A Pending JPS583704A (en) 1981-06-30 1981-06-30 Production of extra thick steel plate

Country Status (1)

Country Link
JP (1) JPS583704A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910896A (en) * 1972-05-19 1974-01-30
JPS50102526A (en) * 1974-01-17 1975-08-13
JPS5252126A (en) * 1975-10-24 1977-04-26 Nippon Kokan Kk Method of continuous casting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910896A (en) * 1972-05-19 1974-01-30
JPS50102526A (en) * 1974-01-17 1975-08-13
JPS5252126A (en) * 1975-10-24 1977-04-26 Nippon Kokan Kk Method of continuous casting

Similar Documents

Publication Publication Date Title
US20210262056A1 (en) Device and method for manufacturing metal clad strips continuously
US3606785A (en) Apparatus and method for eliminating or reducing the internal flaws of semifinished products,especially at cast ingots,blocks,blooms,slabs,billets or the like
JP3104635B2 (en) Manufacturing method of round billet slab by continuous casting
JPS583704A (en) Production of extra thick steel plate
JP2983152B2 (en) Continuous casting method and continuous casting equipment
JP3092543B2 (en) Manufacturing method of round billet slab by continuous casting
JP3149818B2 (en) Manufacturing method of round billet slab by continuous casting
JP3394730B2 (en) Continuous casting method of steel slab
JPH11320060A (en) Method for continuous light reduction rolling for cast slab of billet and equipment therefor
JPH07251244A (en) Method for preventing porosity of cast slab in twin roll type continuous casting method
JPS60162560A (en) Continuous casting method of steel
JPH091292A (en) Method for continuously casting thin cast slab
JPS5997747A (en) Production of ultrathin slab by continuous casting method
JPS63108955A (en) Continuous casting method
JPS63171255A (en) Non-solidified rolling method
JPH10175049A (en) Production of continuous cast billet for seamless steel pipe
JP3402250B2 (en) Manufacturing method of round billet slab by continuous casting
JPH09136145A (en) Method for working recessed parts on peripheral surface for continuously casting cast strip
JP3533831B2 (en) Method for producing round billet for producing Cr-containing seamless steel pipe with good workability
JP4259424B2 (en) Method for producing high chromium steel large section billet
JPS63171254A (en) Non-solidified rolling method
JPH11254002A (en) Production of round steel from large cross sectional stainless steel cast bloom as blank
JPH07100594A (en) Twin roll type continuous casting method and apparatus thereof
JPS6127151A (en) Continuous casting method and direct rolling method
JPH0424139B2 (en)