JPS5836663B2 - Method for manufacturing magnetic ferronitskel alloy - Google Patents

Method for manufacturing magnetic ferronitskel alloy

Info

Publication number
JPS5836663B2
JPS5836663B2 JP11259379A JP11259379A JPS5836663B2 JP S5836663 B2 JPS5836663 B2 JP S5836663B2 JP 11259379 A JP11259379 A JP 11259379A JP 11259379 A JP11259379 A JP 11259379A JP S5836663 B2 JPS5836663 B2 JP S5836663B2
Authority
JP
Japan
Prior art keywords
weight
ferronickel
alloy
magnetic
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11259379A
Other languages
Japanese (ja)
Other versions
JPS5638447A (en
Inventor
靖弘 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11259379A priority Critical patent/JPS5836663B2/en
Publication of JPS5638447A publication Critical patent/JPS5638447A/en
Publication of JPS5836663B2 publication Critical patent/JPS5836663B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 本発明は安価で且つマグネットによる吸着が可能な磁性
フエロニッケル合金の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a magnetic ferronickel alloy that is inexpensive and capable of being attracted by a magnet.

フエロニッケル合金はステンレス鋼や特殊鋼の原料及び
或分調整用として用いられており、通常フエロニッケル
製錬法によって製造される。
Ferronickel alloys are used as raw materials for stainless steels and special steels, and to some extent for their preparation, and are usually produced by the ferronickel smelting method.

そのフエロニッケル製錬法はガーニエライト鉱などのニ
ッケル含有酸化鉱を電気炉、熔鉱炉、ロータリーキルン
等で熔融又は半熔融して炭素質還元剤6こより還元する
方法によって行なわれており、通常の操業においてはN
i + O o含有率18重量%(Coは通常Niの
1/20以下である)以上の粗フエロニッケルが得られ
るよう調整されている。
The ferronickel smelting method is carried out by melting or semi-melting nickel-containing oxide ore such as garnierite ore in an electric furnace, melting furnace, rotary kiln, etc. and reducing it with 6 carbonaceous reducing agents. In the operation of
It is adjusted to obtain crude ferronickel with an i + O o content of 18% by weight or more (Co is usually 1/20 or less of Ni).

然し、このようにして製造された粗フエロニッケルはS
.,0,Si ,Mn ,P,Orなどの不純物を含む
ので、更に脱硫、脱炭、脱珪などの処理を行なった後、
水砕ショット又はインゴット状のフエロニッケル合金と
されている。
However, the crude ferronickel produced in this way is S
.. Since it contains impurities such as , 0, Si, Mn, P, and Or, after further treatments such as desulfurization, decarburization, and desiliconization,
It is a ferronickel alloy in the form of granulated shot or ingots.

従来はこのような処理により不純物を充分除去した低炭
素フエロニッケル(00.02重量%以下)が主として
使用されて来たが、近年ステンレス鋼製錬法をはじめ各
種の特殊鋼製錬法において、熔融炉、周辺機器等の技術
革新が行なわれ、原料及び或分調整用のフエロニッケル
合金も低炭素フエロニッケルから炭素を0.25〜3.
0重量%含有する高炭素フエロニッケルが用いられるよ
うになった(ちなみに炭素含有率が低炭素と高炭素の中
間である0,02〜0.25重量%のものは中炭素フエ
ロニッケルと称する)。
In the past, low carbon ferronickel (00.02% by weight or less) from which impurities were sufficiently removed through such treatment was mainly used, but in recent years it has been used in various special steel smelting methods including stainless steel smelting methods. Technological innovations have been made in melting furnaces, peripheral equipment, etc., and ferronickel alloys for raw materials and to some extent adjustments have been changed from low carbon ferronickel to carbon 0.25 to 3.
High carbon ferronickel containing 0% by weight has come to be used (by the way, those with a carbon content of 0.02 to 0.25% by weight, which is between low carbon and high carbon, are called medium carbon ferronickel. ).

その理由として、高炭素フエ口ニッケルは粗フエロニッ
ケルを単に脱硫処理するだけで得られ、場合によっては
更に簡単な脱珪処理をすることもあるが、低炭素フエロ
ニッケルに比べて精製処理が簡略で済むため低コストで
製造できるからである。
The reason for this is that high-carbon ferronickel can be obtained by simply desulfurizing crude ferronickel, and in some cases even requires a simpler desiliconization process; This is because it is simple and can be manufactured at low cost.

然し、従来用いられている低炭素フ工ロニッケルは磁性
があるため鉄スクラップと同様にマグネットに吸着して
移動、装入することができるが、通常生産される高炭素
フエロニッケルは、一般に磁性が弱く、このようなマグ
ネットによる移送手段が適用できない欠点があった。
However, conventionally used low-carbon ferronickel is magnetic, so it can be attracted to a magnet and moved and charged in the same way as iron scrap, but normally produced high-carbon ferronickel is generally magnetic. This has the disadvantage that such a magnetic transfer means cannot be applied.

このため安価で且つ低炭素フエ口ニッケルと同等程度の
磁性を有するフエ口ニッケル合金が望まれていた。
For this reason, there has been a desire for an inexpensive nickel alloy that is low in carbon and has magnetic properties comparable to that of nickel.

本発明はこのような要請から為されたもので、通常の移
動用マグネットで吸着可能な磁性フエロニッケル合金の
製造法を提供するものである。
The present invention was made in response to such a request, and provides a method for manufacturing a magnetic ferronickel alloy that can be attracted by a normal moving magnet.

この目的を達或するため、本発明はショット状の磁性フ
エ口ニッケル合金を得る場合は、Niが18〜29重量
%で、Siが0.5重量%以下の場合、Cが6.15
0.213Xx重量%以上(但しXはNi%)で且つ
少なくとも0.1重量%以上の熔融フエロニッケル合金
を水砕するか、又Siが0.5重量%以上の場合はNi
が18〜29重量%、Cが6.15−0.213Xx+
0.5X(y 0.5)重量%以上〔但しXはNi%
、yはSi%〕で且つ少なくとも0.1重量%以上の熔
融フエロニッケル合金を水砕するようにしたものである
To achieve this objective, the present invention provides shot-shaped magnetic nickel alloys in which Ni is 18 to 29% by weight, Si is 0.5% by weight or less, and C is 6.15% by weight.
A molten ferronickel alloy containing at least 0.213
is 18-29% by weight, C is 6.15-0.213Xx+
0.5X (y 0.5) weight% or more [where X is Ni%
, y is Si%], and the molten ferronickel alloy containing at least 0.1% by weight is pulverized.

更にインゴット状の磁性フエロニッケル合金を得る場合
は、Ni 18〜29重量%でSiが0.5重量%以下
のとき、Cが64 5−0.21 3Xx重量%以上(
促しXはNi%)で且つ少なくとも0.1重量%以上の
熔融フエロニッケルを、又Siが0.5重量%以上のと
きはCが6.1 5−0.2 1 3Xx+0.5X(
y−0.5)重量%以上(但しXはNi%、yはSi%
)で且つ少なくとも0.1重量%以上の熔融フエ口ニッ
ケル合金を鋳型に注入後、その合金の温度が1200℃
から800℃までを50℃/分以上の冷却速度で急冷す
るよう6こしたものである。
Furthermore, when obtaining an ingot-shaped magnetic ferronickel alloy, when Ni is 18-29% by weight and Si is 0.5% by weight or less, C is 64 5-0.21 3Xx% by weight or more (
When the amount of Si is 0.5% by weight or more, C is 6.1 5-0.2 1 3Xx + 0.5X (
y-0.5) weight% or more (X is Ni%, y is Si%
) and at least 0.1% by weight of the molten nickel alloy is poured into the mold, and the temperature of the alloy is 1200°C.
to 800°C at a cooling rate of 50°C/min or more.

以下本発明を詳細に説明する。The present invention will be explained in detail below.

先づNi含有率が種々異なる低炭素フエ口ニッケルを出
発原料とし、これらに炭素源を種々の割合で添加して熔
融し、水砕してフエ口ニッケル合金ショットとした。
First, low-carbon nickels with various Ni contents were used as starting materials, and a carbon source was added to them in various proportions, melted, and pulverized to obtain nickel alloy shots.

得られた多数種のフエロニッケル合金ショットについて
Ni及びC含有率を分析すると共に磁性の強さを測定し
た。
The Ni and C contents of the various types of ferronickel alloy shots obtained were analyzed, and the magnetic strength was measured.

Ni及びC含有率を軸とする座標にNi及びC含有率毎
の磁性の強弱をプロットしたところ、第1図に示すよう
にN i 1 8〜29重量%の範囲においてC含有率
が0.6 2 7−0.0 1 8 1 Xx重量%(
但しXはNi%)以上の領域Bでは磁性が弱く、これ以
下の領域Aでは急激に磁性が強くなることが判明した。
When the strength of magnetism for each Ni and C content is plotted on coordinates with the Ni and C contents as axes, as shown in FIG. 6 2 7-0.0 1 8 1 Xx weight% (
However, it was found that the magnetism is weak in the region B where X is Ni%) or more, and the magnetism suddenly becomes stronger in the region A where it is less than this.

父上記方法で得られたショットについてX線回折で調査
した結果、Cが0.6 2 7−0.0 1 8 1×
X重量%以上の領域Bではオーステナイト、これ以下の
領域Aではマルテンサイトになっていることが分った。
As a result of examining the shot obtained by the above method by X-ray diffraction, C was 0.6 2 7-0.0 1 8 1×
It was found that region B containing X weight % or more is austenite, and region A below this is martensite.

この実験結果から通常の低炭素フエ口ニッケルは炭素0
.02重量%以下であるから水砕処理によってマルテン
サイト変態し、強い磁性を示すことが裏付けられた。
From this experimental result, ordinary low-carbon nickel has zero carbon.
.. Since the content was 0.02% by weight or less, it was confirmed that martensitic transformation occurred during water pulverization treatment and strong magnetism was exhibited.

一方通常得られる高炭素フエ口ニッケルはNi18〜2
3重量%、炭素1.0〜2.5重量%であるため、水砕
してもマルテンサイト変態せず領域Bの弱磁性のオース
テナイトになることが確かめられた。
On the other hand, the commonly obtained high carbon ferrite nickel is Ni18~2
3% by weight and 1.0 to 2.5% by weight of carbon, it was confirmed that even when pulverized, it did not undergo martensitic transformation and became weakly magnetic austenite in region B.

ところがこの高炭素フエロニッケルに炭素源を添加して
熔融、水砕すると驚くべきことに、低炭素フエロニッケ
ルショットと同等程度の強磁性のフエロニッケルショッ
トが得られたのである。
However, when a carbon source was added to this high-carbon ferronickel shot, it was melted and pulverized, and surprisingly, ferronickel shot with ferromagnetic properties comparable to low-carbon ferronickel shot was obtained.

そこでNi含有率が種々異なる高炭素フエロニッケルを
出発原料とし、これら6こ炭素源を種々の割合で添加し
て溶融し、水砕してフエ口ニッケル合金ショットとし、
得られた多数種のショットについて合金戊分を分析する
と共Cこ磁性の強さを測定した。
Therefore, high carbon ferronickel with various Ni content is used as a starting material, these 6 carbon sources are added in various proportions, melted, and pulverized to make ferronickel alloy shot.
The various kinds of shots obtained were analyzed for alloy fraction and the strength of carbon magnetism was measured.

その結果をNi及びC含有率座標にプロットしたところ
、Siが0.5重量%以下のとき第1図に示すようにN
i 1 8〜29重量%の範囲においてCが6.15
0.213Xx重量%以上(但しXはNi%)の領域C
で強磁性となることが判明した。
When the results were plotted on the Ni and C content coordinates, it was found that when Si was 0.5% by weight or less, N
i 1 C is 6.15 in the range of 8 to 29% by weight
Region C of 0.213Xx weight% or more (X is Ni%)
It turns out that it becomes ferromagnetic.

又この強磁性領域CのショットについてX線回折したと
ころ、オーステナイトであった。
Further, when X-ray diffraction was performed on the shot of this ferromagnetic region C, it was found to be austenite.

この現象Gこついては未だ充分解明されていないが、鉄
−ニッケル状態図{こはNi含有率30重量%以上に磁
性オーヌテナイトの存在することが示されており、この
磁性範囲が炭素の含有により低Ni側6こ移行するので
はないかと推測される。
Although the reason behind this phenomenon G has not yet been fully elucidated, the iron-nickel phase diagram {this shows that magnetic autenite exists at a Ni content of 30% by weight or more, and this magnetic range is lowered by the inclusion of carbon. It is speculated that 6 points will be transferred to the Ni side.

なお粗フエロニッケル中に通常CoはNiの1/20程
度含まれるが、Coは磁性{こ殆んど影響しない。
Coarse ferronickel normally contains about 1/20 of Co as Ni, but Co has almost no effect on magnetism.

また不純物のOr,Mnは通常それぞれ2.5重量%以
下、0.5重量%以下であり、この程度であれば磁性へ
の影響は殆んどない。
Further, the impurities Or and Mn are usually 2.5% by weight or less and 0.5% by weight or less, respectively, and these levels have almost no effect on magnetism.

然し、Siは0.5重量%以上の時に影響がある。However, Si has an influence when it is 0.5% by weight or more.

上記実験によればSiを0.5重量%以上含有すると弱
磁性領域Bと強磁性領域Cの境界線6.1 5−0.2
1 3 XX(但し、XはNi%)は高炭素側(こ平
行移動し、その移動幅は0.5 X ( y−0.5
)重量%(但しyはSi%)である。
According to the above experiment, when Si is contained at 0.5% by weight or more, the boundary between weakly magnetic region B and ferromagnetic region C is 6.1 5-0.2
1 3 XX (where X is Ni%) moves in parallel to the high carbon side (this movement width is 0.5 X (y-0.5
) weight% (y is Si%).

そしてCが0.1重量%以下になると前記したようにマ
ルテンサイト変態する。
When C becomes 0.1% by weight or less, martensitic transformation occurs as described above.

そこで、磁性のフエ口ニッケルショットを得るlこは、
その組或と水砕操作が必要であるが、先ずフエ口ニッケ
ル合金は水砕前の熔融状態で上記の組戒になっているこ
とが必要である。
Therefore, to obtain a magnetic nickel shot,
Assembling and pulverization are necessary, but first, the nickel alloy must be in the above-mentioned molten state before pulverization.

或分の調整にはNiスクラップ、酸化ニッケルなどのN
i源及び黒鉛粉などの炭素含有物質を用いるとよい。
For a certain amount of adjustment, use Ni scrap, nickel oxide, etc.
It is preferable to use carbon-containing substances such as i-source and graphite powder.

又フエロニッケル製錬の操業条件を選んで産出する粗フ
エロニッケルの或分が脱硫、部分脱珪後、上記組戒範囲
に入るようにしてもよい。
Alternatively, the operating conditions of ferronickel smelting may be selected so that a portion of the crude ferronickel produced falls within the above-mentioned range after desulfurization and partial desiliconization.

次に、熔融フエ口ニッケル合金を水砕するには、溶湯を
滴状にして水中に落下させるか、攪拌水中に溶湯に流入
するか、又溶湯を多量の水流中に流入する公知の水砕手
段が適用できる。
Next, in order to pulverize the molten iron nickel alloy, the molten metal can be dropped into water in the form of droplets, the molten metal can be poured into stirring water, or the molten metal can be pulverized by the known method of pulverization, in which the molten metal is poured into a large amount of water. means can be applied.

以上の説明はショット状のフエ口ニッケル合金lこつい
て述べたが、同様の方法でインゴット状の磁性フエロニ
ッケル合金が得られる。
Although the above description is based on a shot-shaped ferro-nickel alloy, an ingot-shaped magnetic ferro-nickel alloy can be obtained by a similar method.

即ち、上記組或に調整された熔融フエロニッケル合金の
鋳型に注入した後、1200℃から800℃までを50
℃/分以上の冷却速度で急冷すれば磁性の強いフエ口ニ
ッケル合金が得られる。
That is, after pouring the molten ferronickel alloy prepared into the above-mentioned mold into a mold, it was heated from 1200°C to 800°C for 50°C.
If the material is rapidly cooled at a cooling rate of 0.degree. C./min or higher, a highly magnetic Fekuchi nickel alloy can be obtained.

然し、1150゜Cから急冷すると磁性の弱いものしか
得られない。
However, if it is rapidly cooled from 1150°C, only weak magnetism can be obtained.

なお1200℃から800℃までの急冷でもほぼ満足す
べきものが得られるが、できれば600℃までを急冷す
るのが望ましい。
Although almost satisfactory results can be obtained by rapid cooling from 1200°C to 800°C, it is desirable to rapidly cool to 600°C if possible.

又冷却速度は大きい程良く、好ましい冷却速度は70℃
/分以上である。
Also, the higher the cooling rate, the better; the preferred cooling rate is 70°C.
/minute or more.

このような冷却速度を実現するには水冷鋳型を用いたり
、溶湯が凝固後、水を噴射するか、冷風を吹き付けるな
どの手段を適用するとよい。
To achieve such a cooling rate, it is preferable to use a water-cooled mold, or to apply means such as jetting water or blowing cold air after the molten metal has solidified.

このように本発明方法は、特別な工程を必要とせず、熔
融フエ口ニッケル合金の戊分を所要の組戒範囲に調整す
るのみで従来の水砕工程によって容易に磁性フエロニッ
ケルショットを得ることができ、又インゴットの場合も
冷却方法を若干強化するだけで済むため、低炭素フエロ
ニッケルに比べて製造コストが安価であり、所期の目的
を充分満足するものである。
As described above, the method of the present invention does not require any special process, and can easily obtain magnetic ferronickel shot through the conventional water crushing process by simply adjusting the fraction of the molten ferro-nickel alloy to the required range. In addition, in the case of ingots, only a slight reinforcement of the cooling method is required, so the manufacturing cost is lower than that of low carbon ferronickel, and the intended purpose is fully satisfied.

次4こ、比較例と本発明の実施例について述べる。Next, comparative examples and examples of the present invention will be described.

比較例−1 ガーニエライト鉱を電気炉で還元熔解して得た粗フエロ
ニッケル溶湯をCaC2で脱硫し、更番こ酸素吹精によ
って一部脱珪脱炭したSi含有率の低い高炭素フエ口ニ
ッケル溶湯1ロット・約15トンを取鍋に移し、水深2
.5mの水槽に2. 5 m9/分の水と共に流入し、
約15分で水砕した。
Comparative Example-1 Crude ferronickel molten metal obtained by reducing and melting garnierite ore in an electric furnace was desulfurized with CaC2, and a high carbon ferrite with a low Si content was obtained by desulfurizing it with CaC2 and partially desiliconizing and decarburizing it by oxygen blowing. Transfer 1 lot of molten nickel, approximately 15 tons, to a ladle and boil to a depth of 2.
.. 2. in a 5m aquarium. It flows in with water at 5 m9/min,
The water was crushed in about 15 minutes.

溶湯温度は約1450℃であった。The molten metal temperature was about 1450°C.

又水砕フエロニッケルショットは水槽から連続的に取り
出され、乾燥される。
Also, the granulated ferronickel shot is continuously taken out from the water tank and dried.

このようにして得られたフエロニッケルショットの2ロ
ット分について、その分析値及び磁性の強さを第1表に
示す。
Table 1 shows the analytical values and magnetic strength of two lots of ferronickel shot thus obtained.

なお、磁性の強さの測定は磁束密度可変の電磁石を用い
、10gのフエ口ニッケルが電磁石に吸着するときの磁
束密度c単位ガウス)で示す。
The magnetic strength is measured using an electromagnet with a variable magnetic flux density, and is expressed in terms of the magnetic flux density c (gauss) when 10 g of nickel is attracted to the electromagnet.

従って数値が小さい程磁性が強いことを意味する。Therefore, the smaller the number, the stronger the magnetism.

マルテンサイト組織の低炭素フエ口ニッケルではこの値
は90〜110ガウス程度である。
This value is about 90 to 110 Gauss for low-carbon Feikuchi nickel with a martensitic structure.

第1表のNi品位から強磁性領域となるための品位を6
.1 5−0.2 1 3 Xx (但しXはNi%)
から算出すると実験1,2について各々1.57,1.
61%であり、さらに各々Si品位が0.68,0.7
0%であるので、6.1 5−0.2 1 3Xx+0
.5 X ( y−0.5 ) (但しXはNi%、y
はSi%)を用いて強磁性領域となるためのC品位を算
出すると各々1.6 6 , 1.7 1%となり、実
験1,2ともC品位が低く弱磁性のオーステナイトであ
ることが解り、表の磁束密度に対応する。
From the Ni grade in Table 1, the grade to become a ferromagnetic region is 6.
.. 1 5-0.2 1 3 Xx (X is Ni%)
Calculated from 1.57 and 1.57 for Experiments 1 and 2, respectively.
61%, and the Si grade is 0.68 and 0.7, respectively.
Since it is 0%, 6.1 5-0.2 1 3Xx+0
.. 5 X (y-0.5) (X is Ni%, y
When calculating the C grade to become a ferromagnetic region using Si%), it becomes 1.6 6 and 1.7 1%, respectively, and it is understood that in both experiments 1 and 2, the C grade is low and weakly magnetic austenite. , corresponding to the magnetic flux density in the table.

実施例−1 比較例−1のフエロニッケルショット各10時6こ黒鉛
電極粉各々40.9を調合し、1500℃で熔解後、小
型の水砕設備で水砕した。
Example-1 Comparative Example-1: 10:6 ferronickel shots and 40.9 g each of graphite electrode powder were prepared, melted at 1500°C, and then pulverized using a small granulation equipment.

得られた水砕ショットの分析値及び磁性の強さを第2表
に示す。
Table 2 shows the analytical values and magnetic strength of the obtained granulated water shot.

即ち原料ロツド実験,%1 , 2にCを添加し、本発
明のNi品位とC品位の組或範囲とすること{こよって
マルテンサイトなみの高磁性フエ口ニッケルショットが
得られた。
That is, in the raw material rod experiment, C was added to %1 and 2% to obtain a certain range of the Ni grade and C grade of the present invention (thus, a highly magnetic nickel shot similar to martensite was obtained.

実施例−2 比較例−1のフエ口ニッケルショット各10時にNiス
クラップを各々300.!i’調合し、1500℃で熔
解後水砕した。
Example-2 Ni scrap was added at 300 ml each for 10 ml of the nickel shot of Comparative Example 1. ! i' was prepared, melted at 1500°C, and then pulverized.

得られた水砕ショットの分析値及び磁性の強さを第3表
Gこ示す。
Table 3 G shows the analytical values and magnetic strength of the obtained granulated water shot.

即ち、原料ロット実験扉1,2にNiを添加し、本発明
のNi品位とC品位の組戊範囲とすることによってマル
テンサイトなみの高磁性フエ口ニッケルショットが得ら
れた。
That is, by adding Ni to the raw material lot experiment doors 1 and 2 and setting the range of the Ni grade and C grade of the present invention, a high-magnetic nickel shot comparable to martensite was obtained.

比較例−2 電気炉産出の粗フエロニッケル溶湯を低周波誘導炉で脱
硫して得た高8iの高炭素フエ口ニッケル溶湯を130
0℃で取鍋に移し、実施例−1と同様に水砕した。
Comparative Example-2 High 8i high carbon ferronickel molten metal obtained by desulfurizing crude ferronickel molten metal produced in an electric furnace in a low frequency induction furnace was
The mixture was transferred to a ladle at 0°C and pulverized in the same manner as in Example-1.

得られたショットの分析値及び磁性の強さを第4表に示
す。
Table 4 shows the analytical values and magnetic strength of the obtained shots.

即ち強磁性領域を示す6.1 5−0.2 1 3 X
x十〇.5 X ( y−o.5) (但しXはNi%
、yはSi%)から算出したC品位は3.43%であり
Ni品位とともにC品位が低く弱磁性のオーヌテナイト
であることが推定された。
That is, 6.1 5-0.2 1 3 X indicating the ferromagnetic region
x 10. 5 X (y-o.5) (X is Ni%
, y is Si%), the C grade was 3.43%, and the C grade was low as well as the Ni grade, and it was estimated that it was a weakly magnetic onutenite.

実施例−3 比較例−2のフエ口ニッケルショット10KpにNiス
クラップ400gを調合し、1400℃で熔解後、その
一部を水砕し、残部は約500Fのインゴットになるよ
うに4個の鋳型にそれぞれ注入した。
Example-3 400g of Ni scrap was mixed with 10Kp of Hue mouth nickel shot of Comparative Example-2, melted at 1400℃, part of it was pulverized, and the rest was made into 4 molds to form ingots of about 500F. were injected into each.

溶湯を注入した鋳型は保温炉に入れて1200℃に保持
しておき、順次取り出して各種の冷却処理を施した。
The molds into which the molten metal was poured were placed in a heat insulating furnace and maintained at 1200°C, and then taken out one after another and subjected to various cooling treatments.

冷却処理は1200℃で注水、1200℃からsoo’
cまでをioo℃/分、50℃/分で冷却の3種類とし
、比較のため1200℃から800℃までを40℃/分
で冷却する実験も行なった。
Cooling treatment is water injection at 1200℃, soo' from 1200℃
There were three types of cooling: ioo° C./min up to c and 50° C./min. For comparison, an experiment was also conducted in which cooling was performed from 1200° C. to 800° C. at 40° C./min.

なお800℃まで冷却した後は室温で放冷した。Note that after cooling to 800°C, it was left to cool at room temperature.

これらの処理後の磁性の強さを第5表に示す。Table 5 shows the magnetic strength after these treatments.

得られたショット及びインゴットの分析値はNi24.
3,C2.09,Si2.24重量%であった。
The analysis values of the obtained shot and ingot were Ni24.
3, C2.09, and Si 2.24% by weight.

この表から本発明のNi品位、C品位になるように溶湯
の組或範囲を調整し、且つ水砕乃至1200゜Cから8
00℃までを50℃/分以上の冷却速度で冷却すればマ
ルテンサイトなみの高磁性のフエ口ニッケルショット乃
至インゴットが得られることが解る。
From this table, adjust the range of the molten metal so that the Ni grade and C grade of the present invention are achieved, and
It can be seen that by cooling down to 00° C. at a cooling rate of 50° C./min or more, a highly magnetic nickel shot or ingot similar to martensite can be obtained.

実施例−4 本発明のNi品位、C品位になるように数種のガーニエ
ライト鉱をN i / F e比が高くなるように調合
し、無煙炭を調合してロータリーキルンで蝦焼の後、電
気炉で還元熔解した。
Example 4 Several types of garnierite ores were blended so that the Ni and C grades of the present invention were obtained, and the Ni/Fe ratio was high. Anthracite was blended and burned in a rotary kiln. It was reduced and melted in a furnace.

電気炉産出の粗フエロニッケルを低周波誘導炉で脱硫の
後、取鍋に移し、実施例−1と同様の方法で水砕した。
Crude ferronickel produced in an electric furnace was desulfurized in a low frequency induction furnace, then transferred to a ladle and granulated in the same manner as in Example-1.

得られたフエロニッケルショットの分析値及び磁性の強
さを第6表に示す。
Table 6 shows the analytical values and magnetic strength of the obtained ferronickel shot.

即ち、低炭素フエロニッケルなみの高磁性の高炭素フエ
口ニッケルが得られることが解る。
In other words, it can be seen that high-carbon nickel with high magnetism comparable to that of low-carbon ferronickel can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はNi及びC含有率と磁性の強さの関係を示すグ
ラフである。
FIG. 1 is a graph showing the relationship between Ni and C contents and magnetic strength.

Claims (1)

【特許請求の範囲】 INi18〜29重量%、Si0.5重量%以下、C6
.1 5−0.2 1 3Xx重量%以上(但しXはN
i%)で且つ少なくともO O. 1重量%以上の熔融
フエロニッケル合金を水砕することを特徴とすル磁性フ
エロニッケル合金の製造法。 2 Ni18〜29重量%、Si0.5重量%以上、
06.15−0.213Xx+0.5X(y 0.5
)重量%以上(但しXはNi%、yはSi%)で且つ少
なくともc o. i重量%以上の熔融フエロニッケル
合金を水砕することを特徴とする磁性フエ口ニッケル合
金の製造方法。 3 Ni18〜29重量%、Si0.5重量%以下、
06.15 0.213Xx重量%以上(但しXはN
i%)で且つ少なくとも0 0. 1重量%以上の熔融
フエロニッケル合金を鋳型に注入し、該合金の温度が1
200℃以上から600℃〜SOO℃までを50℃/分
以上の冷却速度で急冷することを特徴とする磁性フエロ
ニッケル合金の製造方法。 4Ni18〜29重量%、Si0.5重量%以上、’0
6.15−0.213XxO.5 ( y 0.5
)重量%以上(但しXはNi%、yはSi%)で且つ少
なくともCO.1重量%以上の熔融フエロニッケル合金
を鋳型に注入し、該合金の温度が1200℃以上から6
00℃〜800℃までを50゜C/分以上の冷却速度で
急冷することを特徴とする磁性フエ口ニッケル合金の製
造方法。
[Claims] INi 18-29% by weight, Si 0.5% by weight or less, C6
.. 1 5-0.2 1 3Xx weight% or more (X is N
i%) and at least O O. A method for producing a magnetic ferronickel alloy, which comprises pulverizing a molten ferronickel alloy containing 1% by weight or more. 2 Ni 18-29% by weight, Si 0.5% by weight or more,
06.15-0.213Xx+0.5X(y 0.5
) weight% or more (where X is Ni% and y is Si%) and at least co. 1. A method for producing a magnetic ferro-nickel alloy, which comprises pulverizing a molten ferro-nickel alloy in an amount of i% by weight or more. 3 Ni 18-29% by weight, Si 0.5% by weight or less,
06.15 0.213Xx weight% or more (X is N
i%) and at least 0 0. A molten ferronickel alloy of 1% by weight or more is poured into a mold, and the temperature of the alloy is 1%.
A method for producing a magnetic ferronickel alloy, characterized by rapidly cooling from 200°C or higher to 600°C to SOO°C at a cooling rate of 50°C/min or higher. 4Ni 18-29% by weight, Si 0.5% by weight or more, '0
6.15-0.213XxO. 5 (y 0.5
) weight % or more (where X is Ni% and y is Si%) and at least CO. A molten ferronickel alloy of 1% by weight or more is poured into a mold, and the temperature of the alloy is increased from 1200°C or higher to 6.
1. A method for producing a magnetic nickel alloy, characterized by rapidly cooling from 00°C to 800°C at a cooling rate of 50°C/min or more.
JP11259379A 1979-09-03 1979-09-03 Method for manufacturing magnetic ferronitskel alloy Expired JPS5836663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11259379A JPS5836663B2 (en) 1979-09-03 1979-09-03 Method for manufacturing magnetic ferronitskel alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11259379A JPS5836663B2 (en) 1979-09-03 1979-09-03 Method for manufacturing magnetic ferronitskel alloy

Publications (2)

Publication Number Publication Date
JPS5638447A JPS5638447A (en) 1981-04-13
JPS5836663B2 true JPS5836663B2 (en) 1983-08-10

Family

ID=14590614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11259379A Expired JPS5836663B2 (en) 1979-09-03 1979-09-03 Method for manufacturing magnetic ferronitskel alloy

Country Status (1)

Country Link
JP (1) JPS5836663B2 (en)

Also Published As

Publication number Publication date
JPS5638447A (en) 1981-04-13

Similar Documents

Publication Publication Date Title
KR100501465B1 (en) Method for grain refining of steel, grain refining alloy for steel and method for producing grain refining alloy
US6296720B1 (en) Rare earth/iron/boron-based permanent magnet alloy composition
Kiviö et al. Addition of dispersoid titanium oxide inclusions in steel and their influence on grain refinement
CN108342640A (en) A kind of high-hardenability pinion steel and its manufacturing method
CA3026480A1 (en) Cast iron inoculant and method for production of cast iron inoculant
CN109988964A (en) Ductile cast iron material, preparation method and application
CN104593663B (en) A kind of wear-resistant white cast iron and preparation method thereof
CN111020406A (en) Low-nickel all-austenite nonmagnetic stainless steel and manufacturing method and application thereof
JPS5836663B2 (en) Method for manufacturing magnetic ferronitskel alloy
CN106987779B (en) A kind of metallurgical method of high-strength tenacity crankshaft steel Intragranular Acicular Ferrite
CN100451155C (en) High-purity ferroboron
CA1125056A (en) Low alloy white cast iron
JPH02213421A (en) Production of soft-magnetic steel stock
JPS6133896B2 (en)
JP4107801B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
CN113948265B (en) Iron-based amorphous soft magnetic alloy powder and preparation method thereof
US6866696B1 (en) Additive for production of irons and steels
JP4256617B2 (en) High purity ferroboron, master alloy for iron-based amorphous alloy, and method for producing iron-based amorphous alloy
US2111005A (en) Hard magnetic steel and methods of making such steel
CN108193125A (en) A kind of TGC600 spheroidal graphite cast-iron and preparation method thereof
CN115786804B (en) Low-Cr soft magnetic stainless steel and control method of structure thereof
CN112652481B (en) Processing technology of iron-chromium-cobalt semi-hard magnetic
CN113355609B (en) Modified high-boron iron-based wear-resistant alloy and preparation method thereof
Boutorabi et al. Ductile aluminium cast irons
CN106987776B (en) A kind of nickel chromium triangle phosphorus series high-performance non-oriented electrical steel