JPS5835927A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5835927A
JPS5835927A JP13515981A JP13515981A JPS5835927A JP S5835927 A JPS5835927 A JP S5835927A JP 13515981 A JP13515981 A JP 13515981A JP 13515981 A JP13515981 A JP 13515981A JP S5835927 A JPS5835927 A JP S5835927A
Authority
JP
Japan
Prior art keywords
conductors
crucible
insulating film
evaporated
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13515981A
Other languages
Japanese (ja)
Inventor
Shuji Tabuchi
田「淵」 修司
Akira Abiru
阿比留 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13515981A priority Critical patent/JPS5835927A/en
Publication of JPS5835927A publication Critical patent/JPS5835927A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To enhance the evaporating speed, while eliminating contamination, and to make as suitable for automation when an insulating film of a semiconductor device is to be formed by a method wherein a crucible is arranged under a substrate to constitute the device, high melting point conductors are put therein, the conductors are heated by electromagnetic induction, and an insulating material coming in contact therewith is made to be evaporated and to be adhered on the substrate. CONSTITUTION:Tungsten blocks of the high melting point conductors are filled up in the bottom part of the crucible 1 consisting of pyrolytic boron nitride and are made as the heating conductors 2, and the evaporating matter 3 of SiO2, etc., to form the insulating film is filled thereon. Then a wafer 5 to be evaporated is arranged at the upper part of the crucible 1 interposing the prescribed interval between them, and a high-frequency current of 35-55kHz is made to flow in a work coil 4 wound around the outside circumference of the crucible 1 holding the circumference thereof at the vacuum of 10<-6>-10<-7>Torr. Accordingly eddy currents are made to be generated in the conductors 2, the matter 3 is made to be evaporated by Joule heat thereof, and the insulating film is adhered on the surface of the facing wafer 5.

Description

【発明の詳細な説明】 本発明は半導体装置製造工札中の絶縁膜の形成方法に関
す。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming an insulating film in a semiconductor device manufacturing ticket.

半導体装置の絶縁膜の形成には目的9条件によって種々
の方法が適用されている。
Various methods are applied to forming an insulating film of a semiconductor device depending on the objective (9) conditions.

例えば、シリコン基板上に形成されるフィールド酸化層
の形成には一般に熱酸化法が適用され、またMO8型電
界効果トランジスタのゲート酸化膜を形成する場合にも
膜厚、耐電圧等の特性を均一に制御するために祉熱酸化
法が最も適しているが、熱酸化法は適用が当然限定され
る0適用範囲の広いCV D (Chemiea/ V
apour Depo−sitlon )法を絶縁膜の
形成に適用すゐ場合には、成長しようとする絶縁膜の融
点よシかなり低い堆積温度で種々の絶縁膜が得られるこ
と、後に述ぺ4他の方法に比較して形成される絶縁膜の
純度が高く、特性も安定であること等の利点を有するが
、形成される膜の均一性、JI成長速度の遅いことなど
の問題点がある。
For example, a thermal oxidation method is generally used to form a field oxide layer formed on a silicon substrate, and also when forming a gate oxide film for an MO8 field effect transistor, properties such as film thickness and withstand voltage are uniform. However, the thermal oxidation method is naturally limited in its application and has a wide range of application.
When the apour depo-sitlon method is applied to the formation of insulating films, various insulating films can be obtained at deposition temperatures considerably lower than the melting point of the insulating film to be grown. This method has advantages such as higher purity and stable characteristics of the insulating film formed compared to the conventional method, but there are problems such as uniformity of the formed film and slow JI growth rate.

又、スパッタリング法も堆積温度が低いこと、ターゲッ
ト材料を変えることによって容易に各種の絶縁膜が形成
できることを利点とするが、CVD法に比較して形成さ
れた膜の純度が劣ム更にス速度が極めて遅く、高周波ス
パッタリングは直流スパッタリングよシは成長速度が速
いものの、なお速度不足である0 次KE−Bガン(FJectron Beam Gun
 )法による場合には、形成された絶縁膜のストイキオ
メトリ−の悪さ、製品に対する放射線損傷等の問題があ
り、半導体装置の製造方法として適当でない。
The sputtering method also has the advantage of low deposition temperature and the ability to easily form various insulating films by changing the target material, but compared to the CVD method, the purity of the formed film is lower, and the speed is lower. Although high-frequency sputtering has a faster growth rate than DC sputtering, it still lacks the growth rate.
) method has problems such as poor stoichiometry of the formed insulating film and radiation damage to the product, and is not suitable as a method for manufacturing semiconductor devices.

更にタンタル、モリブデン等の高融点金属よシなるボー
ト状等のヒータを使用した抵抗加熱蒸着法は、蒸着源の
容量の制限を受は易く、更にヒータを形成する金属の蒸
発を伴うことが多いQまた、810等の高速度蒸着が可
能で大容量の抵抗加熱蒸着法として、Drumhe#e
rの方法等があるが、電流が大きくまたタンタル等の抵
抗体金属のれ 蒸発、混入の危険性を免かない。
Furthermore, resistance heating evaporation methods that use boat-shaped heaters made of high-melting point metals such as tantalum and molybdenum are likely to be subject to limitations in the capacity of the evaporation source, and are often accompanied by evaporation of the metal forming the heater. QAlso, as a resistance heating vapor deposition method that allows high-speed vapor deposition such as 810 and large capacity, Drumhe#e
There are methods such as r, but the current is large and there is a risk of evaporation and contamination of resistor metal such as tantalum.

他方において、半導体装置製造にあたって各工程が一連
のラインに編成され、かつ作業者に起因する作業ミス、
ハンドリング傷、コンタミネーシ璽ン、微小異物等に起
因する歩留シの低下を防止し、半導体装置%に高集積度
のIceを高品質に、経済的に生産するために製造工程
の自動化が推進されている。しかるに前記CVD法或い
はスパッタリング法等は膜形成方法工程所要時間等の点
で自動化或いはライン編成に対する適応性が乏しく大き
い制約となる。
On the other hand, in semiconductor device manufacturing, each process is organized into a series of lines, and work errors caused by workers,
Automation of the manufacturing process is being promoted in order to prevent yield declines caused by handling scratches, contamination marks, minute foreign objects, etc., and to economically produce high-quality ICE with high integration density for semiconductor devices. has been done. However, the CVD method, sputtering method, etc. have a large limitation due to poor adaptability to automation or line organization in terms of the time required for the film forming method.

本発明は、半導体装置の絶Ii&膜形成に関して、既知
の製造方法の前記問題点に対処し特に自動化或いはライ
ン編成に対する適応性に富む製造方法を得ることを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to address the above-mentioned problems of known manufacturing methods with respect to Ii & film formation for semiconductor devices, and to provide a manufacturing method that is especially adaptable to automation or line organization.

本発明の前記目的は、タングステン等の高融点導体を電
磁誘導によシ加熱し、これに接する絶縁物材料を蒸発さ
せて目的とする面に付着させることにより達成される。
The above object of the present invention is achieved by heating a high melting point conductor such as tungsten by electromagnetic induction, and evaporating the insulating material in contact with the conductor to adhere it to the target surface.

本発明を実施例によシ図面を参照して具体的に説明する
The present invention will be specifically described by way of embodiments with reference to the drawings.

図面は本発明の実施例を示す断面図である。図中1はす
るつは”であって、本実施例においてはするつぼ”1は
直径約35m、深さ約5Qi+i、肉厚的0.5111
でP B N (P)’rotic Boron N1
tr1de )よシなる。このするつは′1の底部にタ
ングステンのブロックを充填して加熱導体2とした0し
かる後に絶縁膜を形成すべき蒸発物質3を加熱導体2上
に充填したが、本実施例においてはや質3は一酸化シリ
コン(S10)である0この状態のするつは”1をワー
クコイル4内に置き、被蒸着ウエノ・5をするつぼ”1
上150乃至300m程度の距離に保持して、周囲を1
0 乃至10torrの真空に保持シ、ワークコイル4
に周波数35乃至55 kHz 5JftWの電力を印
加して、約1分間の蒸着を実施して、厚さ約1.0/1
fFlのsiogt形成した。
The drawings are cross-sectional views showing embodiments of the present invention. In the figure, 1 is a crucible, and in this example, the crucible 1 has a diameter of about 35 m, a depth of about 5 Qi+i, and a wall thickness of 0.5111 m.
P B N (P)'rotic Boron N1
tr1de) yosi naru. In this method, a tungsten block was filled at the bottom of the heating conductor 2.The heating conductor 2 was then filled with an evaporated substance 3 to form an insulating film. 3 is silicon monoxide (S10) 0 In this state, place 1 in the work coil 4 and place the wafer 5 to be deposited in the crucible.
Keep it at a distance of about 150 to 300 meters above, and
Maintain a vacuum of 0 to 10 torr, work coil 4
By applying a power of 5 JftW at a frequency of 35 to 55 kHz, deposition was carried out for about 1 minute, and the thickness was about 1.0/1.
siogt of fFl was formed.

本発明の加熱はワークコイル4の電流からの電磁誘導に
よって加熱導体2に渦電流が発生し、渦電流によるジュ
ール熱により温度が上昇した加熱導体2によって蒸発物
質3が加熱されて蒸発するに到るものである0 この過程において、”るつは”1及び加熱導体2は充分
な耐熱性をもつことが必要でありて、本処理中に蒸発し
、或いは蒸発物質3に溶解し、又はこれと化学変化を生
ずるものであってはならない。本発明においては加熱導
体2の形状が前記Dramheller法その他の抵抗
加熱法の如く特殊のカロ工を必要としないために、モリ
ブデン或いはタンタルよシ高融点のタングステンを使用
すること〃五可能である0 また蒸発物質3の形状はさほど制約されない力(、蒸発
作用を均一に行なわせるためには蒸発物質は粉末状態、
特に#100以下の微細な粒状であることが望ましい。
In the heating of the present invention, an eddy current is generated in the heating conductor 2 by electromagnetic induction from the current of the work coil 4, and the evaporative substance 3 is heated by the heating conductor 2 whose temperature has increased due to Joule heat caused by the eddy current until it evaporates. 0 In this process, it is necessary for the "rutsuwa" 1 and the heating conductor 2 to have sufficient heat resistance, so that they do not evaporate or dissolve in the evaporated substance 3 during this process. It must not cause any chemical change. In the present invention, since the shape of the heating conductor 2 does not require special heat treatment as in the Dramheller method and other resistance heating methods, it is possible to use tungsten, which has a higher melting point than molybdenum or tantalum. In addition, the shape of the evaporated substance 3 is not restricted so much (in order to perform the evaporation action uniformly, the evaporated substance must be in a powder state,
In particular, fine particles of #100 or less are desirable.

また本実施例においても蒸発物質3は予め20乃至3Q
d程度を充填すること〃;可能テアッテ、前記のボート
状抵抗体による力oMM着法に比較して容量が大きいが
、更に蒸着処理中に自動供給することも容易でおる0 本実施例によるSiOの蒸着速度は1乃至5μ炉/−で
あって、前記CVD法或いはスパッタリング法の20 
am /−程直に比較して50〜250倍の速度である
。更に被蒸着ウエノ・5を連続して供給することも容易
であって、他の工程との連結に適応性がある0 また、必要に応じて被蒸着ウエノS5を蒸着中に回転さ
せること等も容易であって、形成される絶縁膜の均一性
を確保することが可能である0なお、前記スパッタ法或
いはE−Bガン法の女口くイオン或いは電子線等の衝突
を利用しない力・ら製品に対する損傷も発生し離い0 本発Ij110方法によって得られ九SiO絶縁膜社、
例えば厚さ150nmにおいて、100乃至150vの
電圧に耐えて、P S G (Phosphor 51
4cat@G&ms)と同等以上でtb#)、又、シリ
コン、二酸化シリコン(SlO鵞)t  P S G或
いはアルミニウムなどとの密着性にも優れておシ、密度
も高<、810!に比較して亀裂を生じないために、層
間絶縁膜或いは被榎絶縁膜には特に好適である0 本発明は以上説明した如く、高融点導体特にタングステ
ン管電磁誘導により加熱し、これに接する絶縁物材料t
−蒸発させて目的とする面に付着させることによシ、半
導体装置の絶縁膜を形成するものであって、蒸着速度は
早く、製品に対する損傷も発生し難く、かつ自動化或い
はライン輸成に対する適応性に富む製造方法を与えるも
のである0また本発明の方法によって得られる810絶
縁膜は耐電圧が高く、密着性に優れ、亀裂も生じないた
めに層関或い紘被覆絶縁腺に適している。
Also in this embodiment, the evaporated substance 3 is 20 to 3Q in advance.
Although the capacity is larger than that of the force oMM deposition method using the boat-shaped resistor described above, it is also easy to automatically supply SiO during the vapor deposition process. The deposition rate of
am/- is 50 to 250 times faster than directly. Furthermore, it is easy to continuously supply the wafer to be evaporated 5, and it is adaptable to connection with other processes.In addition, the wafer to be evaporated can be rotated during evaporation as necessary. It is easy to use, and it is possible to ensure the uniformity of the insulating film formed. Note that the sputtering method or the E-B gun method does not use force or radiation that does not use collisions of ions or electron beams. No damage to the product occurs and no separation is obtained by the present Ij110 method.
For example, at a thickness of 150 nm, PSG (Phosphor 51
It has excellent adhesion to silicon, silicon dioxide (SlO), tPSG, or aluminum, and has a high density. It is particularly suitable for interlayer insulating films or insulating films because cracks do not occur compared to tungsten tubes. material t
- It forms an insulating film for semiconductor devices by evaporating it and depositing it on the target surface.The evaporation speed is fast, there is less damage to the product, and it is suitable for automation or line transfer. In addition, the 810 insulating film obtained by the method of the present invention has a high withstand voltage, excellent adhesion, and does not cause cracks, making it suitable for layer insulation or galvanized insulation glands. There is.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示す断面図でおる。 図において、1はるつば、2は加熱導体、3は蒸発物質
、4はワークコイル、5は被蒸着ウェハを示す。 5 4
The drawings are cross-sectional views showing embodiments of the present invention. In the figure, 1 is a melting pot, 2 is a heating conductor, 3 is an evaporation material, 4 is a work coil, and 5 is a wafer to be evaporated. 5 4

Claims (2)

【特許請求の範囲】[Claims] (1)高融点導体を電磁誘導により加熱し、該導体に接
する絶縁物を蒸発せしめて、基板上に絶縁膜を形成する
ことft%徴とする半導体装置の製造方法。
(1) A method for manufacturing a semiconductor device, which comprises heating a high melting point conductor by electromagnetic induction to evaporate an insulator in contact with the conductor to form an insulating film on a substrate.
(2)前記絶縁物が一酸化シリコンであることを特徴と
する特許請求の範囲第1項記載の半導体装置の製造方法
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the insulator is silicon monoxide.
JP13515981A 1981-08-28 1981-08-28 Manufacture of semiconductor device Pending JPS5835927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13515981A JPS5835927A (en) 1981-08-28 1981-08-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13515981A JPS5835927A (en) 1981-08-28 1981-08-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5835927A true JPS5835927A (en) 1983-03-02

Family

ID=15145193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13515981A Pending JPS5835927A (en) 1981-08-28 1981-08-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5835927A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780596A (en) * 1986-05-15 1988-10-25 Kabushiki Kaisha Toshiba Hot-air circulation cooking oven
EP1354979A1 (en) * 2000-08-10 2003-10-22 Nippon Steel Chemical Co., Ltd. Method and device for producing organic el elements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780596A (en) * 1986-05-15 1988-10-25 Kabushiki Kaisha Toshiba Hot-air circulation cooking oven
EP1354979A1 (en) * 2000-08-10 2003-10-22 Nippon Steel Chemical Co., Ltd. Method and device for producing organic el elements
EP1354979A4 (en) * 2000-08-10 2008-03-26 Nippon Steel Chemical Co Method and device for producing organic el elements

Similar Documents

Publication Publication Date Title
US3540926A (en) Nitride insulating films deposited by reactive evaporation
US2540623A (en) Method of forming dielectric coatings
JPS6032973B2 (en) Method for manufacturing semiconductor memory devices
US3514320A (en) Method of forming single crystal films by nonepitaxial growth
US3392056A (en) Method of making single crystal films and the product resulting therefrom
JPH04286151A (en) Formation of polycrystalline silicon film
JPS5835927A (en) Manufacture of semiconductor device
US3537891A (en) Resistor films of transition metal nitrides and method of forming
US3463715A (en) Method of cathodically sputtering a layer of silicon having a reduced resistivity
JP4435523B2 (en) Deposition method
TW594853B (en) The manufacturing method of diamond film and diamond film
JPS5856249B2 (en) Method for manufacturing thin films by plasma reaction
US2812411A (en) Means for vapor deposition of metals
JPS6130028B2 (en)
JPS6046539B2 (en) Method for manufacturing silicon crystal film
JPS621756Y2 (en)
JP2985472B2 (en) Method of forming silicon film
JPS63266801A (en) Manufacture of thin film thermistor
JPS6316464B2 (en)
US20210164091A1 (en) METHOD FOR FORMING A FILM OF AN OXIDE OF In, Ga, AND Zn
Cartwright Cathode Sputtering
JPS62298119A (en) Semiconductor device
US3481778A (en) Method of forming a superconducting metallic film
JPH10122924A (en) Method of treating surface of alumina base, and alumina base
JPS58110047A (en) Manufacture of semiconductor device