JPH04286151A - Formation of polycrystalline silicon film - Google Patents

Formation of polycrystalline silicon film

Info

Publication number
JPH04286151A
JPH04286151A JP3073693A JP7369391A JPH04286151A JP H04286151 A JPH04286151 A JP H04286151A JP 3073693 A JP3073693 A JP 3073693A JP 7369391 A JP7369391 A JP 7369391A JP H04286151 A JPH04286151 A JP H04286151A
Authority
JP
Japan
Prior art keywords
vacuum
amorphous silicon
film
polycrystalline silicon
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3073693A
Other languages
Japanese (ja)
Other versions
JP2679433B2 (en
Inventor
Akira Sakai
朗 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3073693A priority Critical patent/JP2679433B2/en
Publication of JPH04286151A publication Critical patent/JPH04286151A/en
Application granted granted Critical
Publication of JP2679433B2 publication Critical patent/JP2679433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form a polycrystalline silicon film having a large surface area under a wide forming condition by forming an amorphous silicon layer on a board in vacuum, then ion sputtering the surface in vacuum, then heating it in vacuum, and crystallizing it. CONSTITUTION:An amorphous silicon film 12 formed with an oxide film 11 on a surface of an amorphous insulating film 14 is sputtered with ions 13 in the same vacuum tank immediately before it is heated in vacuum, a spontaneous oxide film on the surface is physically removed, and a clean surface is again formed. A polycrystalline silicon 15 having an extremely fast diffusion speed of silicon atoms on the clean surface, nucleus formation and nucleus grown occurring on the amorphous silicon surface and semispherical crystalline grains on the surface is formed. That is, the steps of forming and heating the amorphous silicon layer in vacuum can be performed in independent steps without limiting to continuous steps.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体デバイスにおける
キャパシタの電極等に用いる多結晶シリコンの形成方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming polycrystalline silicon used for capacitor electrodes and the like in semiconductor devices.

【0002】0002

【従来の技術】近年、DRAMの高集積化に伴いセルサ
イズは縮小し、キャパシタの面積は小さくなる傾向にあ
る。そこで、十分な容量を確保するため、容量部面積が
大きく、耐α線特性や容量部間の干渉が少ないスタック
トキャパシタやトレンチキャパシタが用いられている。 しかし、64MbitのDRAMではセル面積は2μm
2以下になると見込まれており、これらの構造を用いた
としても、容量絶縁膜として厚さ50オングストローム
という極めて薄い酸化膜が要求される。そこで、容量部
の面積を増やすことで容量膜厚を現状維持する方法が提
案されている。渡辺らは特願平2−72462号明細書
で、LPCVDにおける多結晶シリコン形成温度をある
温度範囲で行うと、アモルファス領域からポリシリコン
に変化する境界で、表面に半円球状のグレインが稠密に
成長し、表面積は他の温度で成長した多結晶シリコンの
約2倍になることを示している。また、辰巳は特願平2
−24915号明細書で、同様な表面の半円球状グレイ
ンが、真空中のアモルファスシリコンの形成と基板の加
熱によって得られることを示している。これらの多結晶
シリコンをスタックトキャパシタの電極に適用すること
により、厚さ100オングストロームの酸化膜で十分な
容量と低いリーク電流値を得ている。
2. Description of the Related Art In recent years, as DRAMs become more highly integrated, the cell size tends to decrease and the area of the capacitor tends to decrease. Therefore, in order to ensure sufficient capacitance, stacked capacitors and trench capacitors are used, which have a large capacitive area, have α-ray resistance, and have little interference between capacitive parts. However, in a 64Mbit DRAM, the cell area is 2μm.
2 or less, and even if these structures are used, an extremely thin oxide film of 50 angstroms in thickness is required as the capacitor insulating film. Therefore, a method has been proposed in which the current capacitive film thickness is maintained by increasing the area of the capacitive part. Watanabe et al., in Japanese Patent Application No. 2-72462, state that when polycrystalline silicon is formed at a certain temperature range in LPCVD, semicircular spherical grains are densely formed on the surface at the boundary where the amorphous region changes to polysilicon. The results show that the surface area is approximately twice that of polycrystalline silicon grown at other temperatures. Also, Tatsumi is a Tokugan Hei 2
No. 24,915 shows that similar surface hemispherical grains can be obtained by forming amorphous silicon in vacuum and heating the substrate. By applying these polycrystalline silicon to the electrodes of a stacked capacitor, sufficient capacitance and a low leakage current value can be obtained with an oxide film having a thickness of 100 angstroms.

【0003】0003

【発明が解決しようとする課題】しかしながら、渡辺ら
の方法によると、半円球状のグレインが表面上に出現す
る条件は、成長温度が545℃から555℃の僅か10
℃の範囲であり、生産に用いる場合、LPCVDの温度
管理が非常に難しいという問題点があった。また、辰巳
の方法においても、アモルファスシリコン層の形成後、
基板の加熱前の行程で、基板を大気中に放置することが
できず、生産に用いる場合、アモルファスシリコン層の
形成と基板の加熱を、真空槽内で連続的に行わなければ
ならないという制約があった。
[Problems to be Solved by the Invention] However, according to the method of Watanabe et al., the conditions for the appearance of semicircular spherical grains on the surface are only 10% at a growth temperature of 545°C to 555°C.
℃ range, and when used for production, there was a problem that temperature control for LPCVD was extremely difficult. Also, in Tatsumi's method, after forming the amorphous silicon layer,
In the process before heating the substrate, the substrate cannot be left in the atmosphere, and when used for production, there is a constraint that the formation of the amorphous silicon layer and heating of the substrate must be performed continuously in a vacuum chamber. there were.

【0004】本発明の目的は、このような従来の欠点を
除去し、広い形成条件で表面積の大きな多結晶シリコン
膜を形成する方法を提供することにある。
An object of the present invention is to provide a method for eliminating such conventional drawbacks and forming a polycrystalline silicon film with a large surface area under a wide range of formation conditions.

【0005】[0005]

【課題を解決するための手段】本発明の多結晶シリコン
膜の形成方法は、真空中で基板上にアモルファスシリコ
ン層を形成した後、その表面を真空中でイオンスパッタ
リングし、引き続き真空中で加熱し、多結晶化すること
を特徴とする。
[Means for Solving the Problems] The method for forming a polycrystalline silicon film of the present invention involves forming an amorphous silicon layer on a substrate in vacuum, then ion sputtering the surface of the layer in vacuum, and then heating it in vacuum. It is characterized by being polycrystalline.

【0006】[0006]

【作用】本発明の原理について説明する。基板上に形成
されたアモルファスシリコン膜を大気中に放置すると、
大気中の酸素によって膜の表面に自然酸化膜が形成され
る。また、表面の汚染不純物をブランソン洗浄液によっ
て除去する際、同様に表面に酸化膜が形成される。この
ようなアモルファスシリコン膜を真空中で加熱しても、
その表面の酸化膜はアモルファスシリコンの結晶化温度
では蒸発しない。そのため、表面のシリコン原子は拡散
することができず、結果的に辰巳の方法で示すようなア
モルファスシリコン表面での核形成および核成長が起こ
らず、半円球構造は現れない。このように、多結晶シリ
コン膜の表面の形態はアモルファスシリコン表面の清浄
性に大きく依存している。
[Operation] The principle of the present invention will be explained. When an amorphous silicon film formed on a substrate is left in the atmosphere,
A natural oxide film is formed on the surface of the film due to oxygen in the atmosphere. Further, when removing contaminating impurities on the surface using Branson cleaning solution, an oxide film is similarly formed on the surface. Even if such an amorphous silicon film is heated in a vacuum,
The oxide film on the surface does not evaporate at the crystallization temperature of amorphous silicon. Therefore, silicon atoms on the surface cannot diffuse, and as a result, nucleation and growth on the amorphous silicon surface as shown in Tatsumi's method do not occur, and a hemispherical structure does not appear. In this way, the surface morphology of the polycrystalline silicon film largely depends on the cleanliness of the amorphous silicon surface.

【0007】これに対し本発明者は、基板上にアモルフ
ァスシリコン膜を形成した後、一旦大気中に取り出され
た基板を再度真空中に戻し、真空中でアモルファスシリ
コン膜の表面をイオンスパッタリングした後、基板を加
熱することを試みた。その結果、アモルファスシリコン
膜は半円球状のグレインを持つ多結晶シリコンになるこ
とを見出した。
On the other hand, the inventor of the present invention formed an amorphous silicon film on a substrate, then returned the substrate to the atmosphere once again in a vacuum, and performed ion sputtering on the surface of the amorphous silicon film in a vacuum. , tried heating the substrate. As a result, they found that the amorphous silicon film becomes polycrystalline silicon with semicircular grains.

【0008】これは、以下の原理に基づいている。すな
わち、図1(a)に示すように、アモルファス絶縁膜1
4上の、表面に酸化膜11が形成されたアモルファスシ
リコン膜12を、真空中で加熱する直前に、同一の真空
槽内において、イオン13でスパッタリングし、物理的
に表面の自然酸化膜を除去し、再度清浄表面を形成する
ことに基づいている。清浄表面上におけるシリコン原子
の拡散速度は極めて速く、アモルファスシリコン表面に
おいて核形成および核成長が起き、図1(b)のような
、表面に半円球状の結晶粒を持った多結晶シリコン15
が形成される。
[0008] This is based on the following principle. That is, as shown in FIG. 1(a), an amorphous insulating film 1
Immediately before heating the amorphous silicon film 12 on which the oxide film 11 is formed on the surface in the vacuum chamber, sputtering is performed with ions 13 in the same vacuum chamber to physically remove the natural oxide film on the surface. It is based on creating a clean surface again. The diffusion rate of silicon atoms on a clean surface is extremely fast, and nucleation and growth occur on the amorphous silicon surface, resulting in polycrystalline silicon 15 with semicircular spherical crystal grains on the surface as shown in Figure 1(b).
is formed.

【0009】[0009]

【実施例】本発明の実施例について具体的に説明する。 ここでは、40ccの電子銃を備えたMBE装置を用い
てアモルファスシリコン層の形成および基板の加熱を行
った。試料ウエハは、表面上に熱酸化によって厚さ20
00オングストロームの酸化膜を形成した4インチのn
型シリコン(001)基板を用いた。基板温度室温にて
、電子銃式シリコン蒸着器から7オングストローム/s
のシリコン分子線を照射し、酸化膜上に厚さ2000オ
ングストロームのアモルファスシリコン層を形成した。 その基板を大気中に取り出し15時間放置した後、再度
真空槽内において、加速電圧3kVのイオン銃でアルゴ
ンイオンを20秒間表面に照射し、その後引き続き同一
の真空槽で、650℃で10分間加熱し、アモルファス
シリコン層を多結晶化させた。
[Example] Examples of the present invention will be explained in detail. Here, an MBE apparatus equipped with a 40 cc electron gun was used to form an amorphous silicon layer and heat the substrate. The sample wafer was heated to a thickness of 20 mm by thermal oxidation on the surface.
4 inch n with 0.00 angstrom oxide film
A type silicon (001) substrate was used. 7 angstroms/s from electron gun silicon evaporator at room temperature substrate temperature
2000 angstrom thick amorphous silicon layer was formed on the oxide film. After taking the substrate out into the atmosphere and leaving it for 15 hours, it was placed in the vacuum chamber again and the surface was irradiated with argon ions for 20 seconds using an ion gun with an accelerating voltage of 3 kV, and then heated for 10 minutes at 650°C in the same vacuum chamber. Then, the amorphous silicon layer was made polycrystalline.

【0010】上記サンプルが結晶化したかどうかの判断
は、高速反射電子線回折によるその場観察で行った。形
成したサンプルは、断面透過電子顕微鏡観察によって評
価した。
[0010] Whether or not the above sample was crystallized was determined by in-situ observation using high-speed reflection electron diffraction. The formed samples were evaluated by cross-sectional transmission electron microscopy.

【0011】上記サンプルの断面透過電子顕微鏡観察の
結果、サンプル表面は半円球状の凹凸構造を呈しており
、本発明の効果を確認した。
[0011] As a result of cross-sectional transmission electron microscopy observation of the above sample, the sample surface exhibited a hemispherical uneven structure, confirming the effect of the present invention.

【0012】さらに、このようにして形成した多結晶シ
リコン上に厚さ100オングストロームの酸化膜を形成
し、キャパシタを作製してその容量を測定した。図2は
アモルファスシリコン堆積後の加熱温度と容量の関係を
、本発明に従って形成した場合と、加熱前に大気中に出
して本発明に従わず真空中で加熱し形成した場合、さら
には辰巳の方法に従って形成した場合とを比較したもの
である。本発明に従って形成した多結晶シリコン膜では
、基板の加熱によって、加熱温度の広い範囲にわたり、
辰巳の方法と同程度の約2倍の容量が得られた。これは
、本発明に従って多結晶化したサンプルにおいて、多結
晶化が終了するまで大気中にさらさなかったアモルファ
スシリコン表面の清浄性と同程度の清浄性が、保存され
ていたことを意味している。一方、一度大気に出し、本
発明に従わなかったサンプルの場合は、基板を加熱して
も容量は増えず、ほぼアモルファスシリコン形成直後と
同じである。これにより、本発明が、一度大気中に放置
したアモルファスシリコン膜に対しても、そのキャパシ
タの容量を増加させるために極めて有効であることが確
認できた。
Further, an oxide film having a thickness of 100 angstroms was formed on the polycrystalline silicon thus formed, a capacitor was manufactured, and its capacitance was measured. Figure 2 shows the relationship between the heating temperature and capacitance after amorphous silicon is deposited, when it is formed according to the present invention, when it is exposed to the atmosphere before heating and then heated in a vacuum without according to the present invention, and when it is formed in Tatsumi. This is a comparison with the case formed according to the method. In the polycrystalline silicon film formed according to the present invention, heating of the substrate can be performed over a wide range of heating temperatures.
Approximately twice the capacity was obtained as with Tatsumi's method. This means that the cleanliness of the amorphous silicon surface, which was not exposed to the atmosphere until after polycrystallization, was preserved in the sample polycrystallized according to the present invention. . On the other hand, in the case of a sample that was once exposed to the atmosphere and not according to the present invention, the capacitance did not increase even if the substrate was heated, and the capacitance remained almost the same as that immediately after the formation of amorphous silicon. This confirmed that the present invention is extremely effective for increasing the capacitance of an amorphous silicon film once left in the atmosphere.

【0013】なお、本発明では、シリコンウエハを対象
としたが、本発明の方法は表面にのみシリコンが存在す
るSOS(Silicon  on  Sapphir
e)基板や、さらに一般にSOI(Silicon  
on  Insulator)基板等においても当然利
用できる。また、本実施例ではMBE装置内で電子銃式
シリコン蒸着装置を用いてアモルファスシリコン層の形
成を行ったが、ガスソースMBE,LPCVD,スパッ
ターで形成したアモルファスシリコン層でも同様の効果
が確認された。さらに今回は、アモルファスシリコン層
表面の酸化膜として、自然酸化膜の場合について述べた
が、それ以外に熱酸化膜,ブランソン酸化膜,およびプ
ラズマ酸素による酸化膜でも同様な効果が確認された。
[0013]Although the present invention is directed to silicon wafers, the method of the present invention is applicable to silicon wafers (SOS) where silicon exists only on the surface.
e) Substrates and more generally SOI (Silicon)
Of course, it can also be used for on insulator (on insulator) boards and the like. Furthermore, in this example, an amorphous silicon layer was formed using an electron gun type silicon vapor deposition device within an MBE device, but similar effects were confirmed with amorphous silicon layers formed by gas source MBE, LPCVD, and sputtering. . Furthermore, this time we have described the case of a natural oxide film as the oxide film on the surface of the amorphous silicon layer, but similar effects were also confirmed with thermal oxide films, Branson oxide films, and oxide films produced by plasma oxygen.

【0014】[0014]

【発明の効果】以上詳細に述べた通り、本発明によれば
、一旦大気中に放置したアモルファスシリコン膜に対し
ても、その表面に半円球状の凹凸を形成することができ
る。すなわち、特定の温度条件によらず、かつ真空中で
のアモルファスシリコン層の形成と加熱を連続的な行程
に限定することなく、独立な行程として遂行することが
可能となる。それによって、広い作製条件下で、容量の
大きいキャパシタの蓄電電極を作製することができる。
As described above in detail, according to the present invention, semicircular spherical irregularities can be formed on the surface of an amorphous silicon film once left in the atmosphere. That is, it becomes possible to perform the formation and heating of the amorphous silicon layer in vacuum as independent steps without depending on specific temperature conditions and without limiting them to continuous steps. Thereby, a storage electrode of a capacitor with a large capacity can be manufactured under a wide range of manufacturing conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の概念を説明するための図である。FIG. 1 is a diagram for explaining the concept of the present invention.

【図2】アモルファスシリコン堆積後の加熱温度と容量
との関係を各形成条件において比較した図である。
FIG. 2 is a diagram comparing the relationship between heating temperature after amorphous silicon deposition and capacitance under various formation conditions.

【符号の説明】[Explanation of symbols]

11  酸化膜 12  アモルファスシリコン膜 13  イオン 14  アモルファス絶縁膜 15  多結晶シリコン 11 Oxide film 12 Amorphous silicon film 13 Ion 14 Amorphous insulation film 15 Polycrystalline silicon

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】真空中で基板上にアモルファスシリコン層
を形成した後、その表面を真空中でイオンスパッタリン
グし、引き続き真空中で加熱し、多結晶化することを特
徴とする多結晶シリコン膜の形成方法。
1. A polycrystalline silicon film characterized in that after an amorphous silicon layer is formed on a substrate in vacuum, the surface thereof is subjected to ion sputtering in vacuum, and then heated in vacuum to polycrystallize it. Formation method.
JP3073693A 1991-03-14 1991-03-14 Method for forming polycrystalline silicon film Expired - Lifetime JP2679433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3073693A JP2679433B2 (en) 1991-03-14 1991-03-14 Method for forming polycrystalline silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3073693A JP2679433B2 (en) 1991-03-14 1991-03-14 Method for forming polycrystalline silicon film

Publications (2)

Publication Number Publication Date
JPH04286151A true JPH04286151A (en) 1992-10-12
JP2679433B2 JP2679433B2 (en) 1997-11-19

Family

ID=13525558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3073693A Expired - Lifetime JP2679433B2 (en) 1991-03-14 1991-03-14 Method for forming polycrystalline silicon film

Country Status (1)

Country Link
JP (1) JP2679433B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2296380A (en) * 1994-12-20 1996-06-26 Hyundai Electronics Ind A method of making a capacitor in a semiconductor device
US5821152A (en) * 1997-05-21 1998-10-13 Samsung Electronics Co., Ltd. Methods of forming hemispherical grained silicon electrodes including multiple temperature steps
US5854095A (en) * 1996-08-28 1998-12-29 Samsung Electronics Co., Ltd. Dual source gas methods for forming integrated circuit capacitor electrodes
US5885867A (en) * 1997-12-03 1999-03-23 Samsung Electronics Co., Ltd. Methods of forming hemispherical grained silicon layers including anti-nucleation gases
US5943584A (en) * 1996-11-22 1999-08-24 Samsung Electronics Co., Ltd. Annealing methods of doping electrode surfaces using dopant gases
US5960281A (en) * 1996-05-23 1999-09-28 Samsung Electronics Co., Ltd. Methods of fabricating microelectronic electrode structures using hemispherical grained (HSG) silicon
US5963805A (en) * 1996-06-28 1999-10-05 Samsung Electronics Co., Ltd. Method for forming integrated circuit capacitors including dual layer electrodes
US6004858A (en) * 1997-12-11 1999-12-21 Samsung Electronics Co., Ltd. Methods of forming hemispherical grained silicon (HSG-Si) capacitor structures including protective layers
US6077573A (en) * 1997-06-11 2000-06-20 Samsung Electronics Co., Ltd. Plasma enhanced chemical vapor deposition methods of forming hemispherical grained silicon layers
US6087226A (en) * 1998-03-26 2000-07-11 Samsung Electronics Co., Ltd. Methods of forming capacitors including electrodes with hemispherical grained silicon layers on sidewalls thereof and related structures
US6117692A (en) * 1997-01-14 2000-09-12 Kim; Young-Sun Calibrated methods of forming hemispherical grained silicon layers
US6159849A (en) * 1997-03-31 2000-12-12 Samsung Electronics Co., Ltd. Methods of forming nitride dielectric layers having reduced exposure to oxygen
US6168992B1 (en) 1998-03-30 2001-01-02 Samsung Electronics Co., Ltd. Methods for forming electrodes including sacrificial layers
US6194263B1 (en) 1995-10-10 2001-02-27 Samsung Electronics Co., Ltd. Methods for forming capacitor structures including etching pits
US6245632B1 (en) 1997-05-22 2001-06-12 Samsung Electronics Co., Ltd. Variable temperature methods of forming hemispherical grained silicon (HSG-Si) layers

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2296380A (en) * 1994-12-20 1996-06-26 Hyundai Electronics Ind A method of making a capacitor in a semiconductor device
US6403495B2 (en) 1995-10-10 2002-06-11 Samsung Electronics Co., Ltd. Capacitor fabricating method of semiconductor device
US6194263B1 (en) 1995-10-10 2001-02-27 Samsung Electronics Co., Ltd. Methods for forming capacitor structures including etching pits
US5960281A (en) * 1996-05-23 1999-09-28 Samsung Electronics Co., Ltd. Methods of fabricating microelectronic electrode structures using hemispherical grained (HSG) silicon
US5963805A (en) * 1996-06-28 1999-10-05 Samsung Electronics Co., Ltd. Method for forming integrated circuit capacitors including dual layer electrodes
US5854095A (en) * 1996-08-28 1998-12-29 Samsung Electronics Co., Ltd. Dual source gas methods for forming integrated circuit capacitor electrodes
US5943584A (en) * 1996-11-22 1999-08-24 Samsung Electronics Co., Ltd. Annealing methods of doping electrode surfaces using dopant gases
US6117692A (en) * 1997-01-14 2000-09-12 Kim; Young-Sun Calibrated methods of forming hemispherical grained silicon layers
US6159849A (en) * 1997-03-31 2000-12-12 Samsung Electronics Co., Ltd. Methods of forming nitride dielectric layers having reduced exposure to oxygen
US5821152A (en) * 1997-05-21 1998-10-13 Samsung Electronics Co., Ltd. Methods of forming hemispherical grained silicon electrodes including multiple temperature steps
US6245632B1 (en) 1997-05-22 2001-06-12 Samsung Electronics Co., Ltd. Variable temperature methods of forming hemispherical grained silicon (HSG-Si) layers
US6077573A (en) * 1997-06-11 2000-06-20 Samsung Electronics Co., Ltd. Plasma enhanced chemical vapor deposition methods of forming hemispherical grained silicon layers
US5885867A (en) * 1997-12-03 1999-03-23 Samsung Electronics Co., Ltd. Methods of forming hemispherical grained silicon layers including anti-nucleation gases
US6004858A (en) * 1997-12-11 1999-12-21 Samsung Electronics Co., Ltd. Methods of forming hemispherical grained silicon (HSG-Si) capacitor structures including protective layers
US6087226A (en) * 1998-03-26 2000-07-11 Samsung Electronics Co., Ltd. Methods of forming capacitors including electrodes with hemispherical grained silicon layers on sidewalls thereof and related structures
US6168992B1 (en) 1998-03-30 2001-01-02 Samsung Electronics Co., Ltd. Methods for forming electrodes including sacrificial layers

Also Published As

Publication number Publication date
JP2679433B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
EP0521644B1 (en) Method of manufacturing polysilicon film
US5973911A (en) Ferroelectric thin-film capacitor
US5663088A (en) Method of forming a Ta2 O5 dielectric layer with amorphous diffusion barrier layer and method of forming a capacitor having a Ta2 O5 dielectric layer and amorphous diffusion barrier layer
JP3649917B2 (en) Dielectric film for capacitors
JP2679433B2 (en) Method for forming polycrystalline silicon film
JP3169866B2 (en) Thin film capacitor and method of manufacturing the same
US5858852A (en) Fabrication process of a stack type semiconductor capacitive element
GB2362032A (en) Method for fabricating capacitors of a semiconductor device
US5960281A (en) Methods of fabricating microelectronic electrode structures using hemispherical grained (HSG) silicon
WO2001050509A1 (en) High dielectric constant material deposition to achieve high capacitance
JP3186077B2 (en) Method of forming polycrystalline silicon film
JP2666572B2 (en) Method for forming polycrystalline silicon film
JP3220864B2 (en) Method for manufacturing semiconductor device
KR100230361B1 (en) Uneven metal film and method for fabricating capacitor using this
JP2861343B2 (en) Semiconductor device and manufacturing method thereof
US20030042545A1 (en) Method of forming multi-layers for a thin film transistor (TFT) and the device formed thereby
JP2001217240A (en) SUBSTANCE EQUIPPED WITH Zr-Ge-Ti-O OR Hf-Ge-Ti-O DIELECTRIC MATERIAL, AND ITS MANUFACTURING METHOD
RU2113034C1 (en) Semiconductor device possessing double-layer silicide structure and its manufacturing technique
JP3108797B2 (en) Method for manufacturing high dielectric constant dielectric thin film
JP2000208440A (en) Forming method of platinum film for capacitor electrode of semiconductor device
KR100269278B1 (en) Method for manufacturing capacitor using ferroelectric thin film
KR100243275B1 (en) Capacitor of semiconductor device and manufacturing method thereof
KR100247474B1 (en) Method for forming pzt ferroelectric capacitor
JPH04196435A (en) Method of forming polycrystalline silicon
JP2590733B2 (en) Method for forming polycrystalline silicon film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 14