JPS63266801A - Manufacture of thin film thermistor - Google Patents

Manufacture of thin film thermistor

Info

Publication number
JPS63266801A
JPS63266801A JP10131387A JP10131387A JPS63266801A JP S63266801 A JPS63266801 A JP S63266801A JP 10131387 A JP10131387 A JP 10131387A JP 10131387 A JP10131387 A JP 10131387A JP S63266801 A JPS63266801 A JP S63266801A
Authority
JP
Japan
Prior art keywords
thin film
thermistor
substrate
materials
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10131387A
Other languages
Japanese (ja)
Inventor
Yoichiro Masuda
増田 陽一郎
Shigeru Miura
三浦 葆
Shuji Sakurai
桜井 修司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOIZUMI SEISAKUSHO KK
Original Assignee
OOIZUMI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOIZUMI SEISAKUSHO KK filed Critical OOIZUMI SEISAKUSHO KK
Priority to JP10131387A priority Critical patent/JPS63266801A/en
Publication of JPS63266801A publication Critical patent/JPS63266801A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reject crystallizations and O<-2> defects in a thin film and to obtain a thin film thermistor which is high in stability, accuracy, and reliability, by using specific thermistor materials consisting mainly of transition metals to form the thin film on a substrate which is heated at a constant temperature or above and performing heat treatment of this film. CONSTITUTION:Oxide, carbonate, oxalate of Mn, Co, Fe are used as starting materials of thermistor materials, and materials obtained by firing them or finely pulverizing them into 100mu or less are used as target materials. Their sputtering reaction products are stuck on a substrate which is made of glass, alumina, or the like and heated at 300 deg.C or above so as to form a thin film. Subsequently heat treatment of this film is performed in an atmosphere of an oxidizing gas to reject crystallizations and O<-2> defects in the thin film so that a thin film thermistor of high stability can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜感温サーミスタの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a thin film temperature-sensitive thermistor.

〔従来の技術〕[Conventional technology]

サーミスタはトランジスタ回路の温度補償、温度測定、
制御等の用途に広く用いられる半導体素子である。
Thermistors are used for temperature compensation, temperature measurement, and
It is a semiconductor device that is widely used for applications such as control.

従来のサーミスタはMn、Ni、Go、Fe等の遷移金
属酸化物を窯業的手法により電気炉内で1200〜13
00℃で焼結したセラミックスが主体であり、その焼結
条件、例えば最高焼成温度、保持時間、降温速度および
原料粉末の純度および粒度等により電気的特性が大きく
支配されるために特性の再現性に対しては原料の一整や
窯業的な製造工程におVlて充分な管理が要求される。
Conventional thermistors are manufactured using transition metal oxides such as Mn, Ni, Go, Fe, etc. in an electric furnace using a ceramic method.
Ceramics are mainly made of ceramics sintered at 00°C, and their electrical properties are largely controlled by their sintering conditions, such as maximum firing temperature, holding time, cooling rate, purity and particle size of raw material powder, and therefore the reproducibility of properties is poor. Therefore, sufficient control is required in the preparation of raw materials and in the ceramic manufacturing process.

またサーミスタの重要な電気的特性の一つである、抵抗
値は材質の比抵抗と形状に依存する。室温付近における
抵抗値はバルク形サーミスタのビート形では104〜1
07〔Ω〕、ディスク形では102〜104〔Ω〕程度
である。
Furthermore, the resistance value, which is one of the important electrical characteristics of a thermistor, depends on the specific resistance of the material and the shape. The resistance value near room temperature is 104 to 1 for the beat type bulk thermistor.
07 [Ω], and about 102 to 104 [Ω] for the disk type.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、宇宙開発やVLSI等の半導体素子の開発に
関“連して、薄膜技術が急速に進歩してきた。
Incidentally, thin film technology has rapidly advanced in connection with space exploration and the development of semiconductor devices such as VLSI.

この薄膜化技術を用いることによって、従来のノ(ルク
形サーミスタに比べて高精度で軽量なサーミスタが得ら
れ、従来の電子回路の温度補償、温度計測、制御、液面
検出、流量測定等のほか、赤外線検出による人工衛星の
姿勢制御、放射温度計等の高精度の計測制御への応用が
可能となる。薄膜サーミスタは、バルク形サーミスタと
は異なった製造方法であるのでバルクとは異なった電気
伝導メカニズムが考えられる。本実施例に用いた材料は
スピネル構造をもち、強磁性を示すので温度および光磁
気センサーとしての応用が期待される。
By using this thin film technology, it is possible to obtain a thermistor that is highly accurate and lightweight compared to conventional leak-type thermistors, and is useful for temperature compensation, temperature measurement, control, liquid level detection, flow rate measurement, etc. In addition, it can be applied to attitude control of artificial satellites using infrared detection, and high-precision measurement control of radiation thermometers, etc. Thin-film thermistors are manufactured using a different method than bulk-type thermistors, so they are different from bulk-type thermistors. An electric conduction mechanism is considered.The material used in this example has a spinel structure and exhibits ferromagnetism, so it is expected to be applied as a temperature and magneto-optical sensor.

薄膜サーミスタには厚膜形と薄膜形とがあり、厚膜形は
スクリーン印刷技術を用い、薄膜形はスパッタリングや
真空蒸着法を用いて製作される。
There are two types of thin film thermistors: thick film type and thin film type. The thick film type is manufactured using screen printing technology, and the thin film type is manufactured using sputtering or vacuum evaporation method.

一般に薄膜化することの利点は、薄膜化により熱容量が
小さくなるため、応答速度が速く、高精度であることの
ほか、信頼性も焼結によって作られたサーミスタより向
上することが知られている。
In general, the advantage of thinning a thermistor is that it has a smaller heat capacity, so it has faster response speed and higher accuracy, and is known to be more reliable than thermistors made by sintering. .

本発明の目的は高安定でより高精度、高信頼性の薄膜サ
ーミスタを提供することにある。
An object of the present invention is to provide a highly stable, highly accurate, and highly reliable thin film thermistor.

〔問題点を解決するための手段〕 本発明は遷移金属を主としたサーミスタ材料を出発原料
とし、その材料の焼結体又は100μ以下に微粉砕した
粉末をターゲットとして、300℃以上に加熱したガラ
ス、アルミナ等の基板上にスパッタリング反応生成物の
付着による薄膜を形成させ、その後、酸化性ガス雰囲気
中で熱処理を施して前記薄膜の結晶化とo−2欠陥を除
去する工程を行うことを特徴とする薄膜サーミスタの製
造方法である。
[Means for solving the problems] The present invention uses a thermistor material mainly composed of transition metals as a starting material, and targets a sintered body of the material or a powder pulverized to 100μ or less, which is heated to 300°C or higher. A thin film is formed by adhering a sputtering reaction product on a substrate such as glass or alumina, and then heat treatment is performed in an oxidizing gas atmosphere to crystallize the thin film and remove O-2 defects. This is a method for manufacturing a characteristic thin film thermistor.

[実施例〕 以下に本発明の実施例を示す。[Example〕 Examples of the present invention are shown below.

本発明においても基本的には従来同様に、Mn。In the present invention, Mn is basically the same as in the prior art.

Co、 Feの酸化物、炭酸塩、蓚酸塩をサーミスタ材
料の出発原料とし、その焼成体又は100μ以下に微粉
砕した材料をターゲット材料とし、スパッタ装置を用い
て基板上に前記遷移金属物質の薄膜を形成するものであ
る。薄膜を形成した基板をその後熱処理し、これに電極
を取付けてサーミスタを完成する。
Co, Fe oxides, carbonates, oxalates are used as starting materials for thermistor materials, their fired bodies or finely pulverized materials of 100μ or less are used as target materials, and a thin film of the transition metal substance is deposited on a substrate using a sputtering device. It forms the The substrate on which the thin film has been formed is then heat treated, and electrodes are attached to it to complete the thermistor.

以下に本発明による製造工程について、使用材料、装置
、製造条件を示す。
The materials used, equipment, and manufacturing conditions for the manufacturing process according to the present invention are shown below.

(a)  ターゲット材料 本発明に使用したターゲットの組成比はMn:Co:F
e=10:38.5:51.5[moQ%]よりなる組
成比である。
(a) Target material The composition ratio of the target used in the present invention is Mn:Co:F
The composition ratio is e=10:38.5:51.5 [moQ%].

ターゲットは1250℃で焼結後、アルミナ乳鉢で粉砕
し、100μ以下に粉砕し、その粉末を石英ガラスシャ
ーレ〔80φ〕に封入し、スパッタ装置内に設置した。
The target was sintered at 1250° C. and then ground in an alumina mortar to a size of 100 μm or less. The powder was sealed in a quartz glass Petri dish [80φ] and placed in a sputtering device.

使用した原料を理学電機製ガイガーミニフレックスによ
りX線回折を行った結果を第1図(b)に示した。また
理学電機製全自動工業用蛍光X線装置を用い元素分析し
た結果を第2図に示した。
The raw materials used were subjected to X-ray diffraction using a Geiger Miniflex manufactured by Rigaku Denki, and the results are shown in FIG. 1(b). Furthermore, the results of elemental analysis using a fully automatic industrial fluorescent X-ray apparatus manufactured by Rigaku Denki are shown in FIG.

(b)  スパッタ装置 ペルジャー内のArイオンを高周波により加速してター
ゲットに照射すると、ターゲット表面の原子および分子
は弾性および非弾性衝突する。その結果、ターゲット表
面の原子、分子は蒸発する。
(b) When Ar ions in the Pelger sputtering device are accelerated by high frequency and irradiated onto a target, atoms and molecules on the target surface collide elastically and inelastically. As a result, atoms and molecules on the target surface evaporate.

このスパッタ蒸発したターゲット物質を基板上に付着さ
せて薄膜を形成することがスパッタ蒸着である。スパッ
タ蒸着は高融点材料や合金など真空蒸着が困難な物質で
も薄膜化が可能であるという特徴がある。
Sputter deposition is the process of depositing this sputter-evaporated target material onto a substrate to form a thin film. Sputter deposition is characterized in that it is possible to form thin films even with materials that are difficult to vacuum evaporate, such as high melting point materials and alloys.

実施例では2極高周波スパッタ装置を用いた。In the examples, a two-pole high frequency sputtering device was used.

この場合、損失なく電力が導入されるように裏刷波電源
と電極間にインピーダンス整合回路を挿入した。またイ
ンピーダンス整合回路とターゲット電極との間には直列
にコンデンサを結合し、導電体のターゲットでも負電位
のバイアスが誘起されるようにした。この電位は、高周
波印加電圧の尖頭値(実行値の約J2倍)程度である。
In this case, an impedance matching circuit was inserted between the back-wave power source and the electrodes so that power could be introduced without loss. Furthermore, a capacitor was connected in series between the impedance matching circuit and the target electrode, so that a negative potential bias was induced even in the conductive target. This potential is approximately the peak value (approximately J2 times the actual value) of the high frequency applied voltage.

このスパッタ装置ではターゲットに流入するイオン電流
密度をiとすると t で与えられる。ここでCはプラズマとターゲット間の単
位静電容量、dV/dtはターゲット表面電位の時間変
化を示す。(1)式に示すようにdV/dtを大きくす
ること、いいかえればより高い周波数の電力を用いた方
がイオン電流が大きくなり効果的にスパッタが起こる。
In this sputtering apparatus, the density of the ion current flowing into the target is given by t, where i is the density of the ion current flowing into the target. Here, C is the unit capacitance between the plasma and the target, and dV/dt is the time change in the target surface potential. As shown in equation (1), by increasing dV/dt, in other words, by using power at a higher frequency, the ion current increases and sputtering occurs more effectively.

しかし周波数をあまり高くするとターゲットへの電力供
給が困難になるから通常は工業的に割当られている周波
数の13.56CM)Iz)が用いられる。高周波放電
では放電空間の電子は高周波電界により電極間を往復運
動する。その結果電子の衝突が効果的になり約1O−3
TOrrの低いガス圧でもスパッタが可能となる。
However, if the frequency is too high, it becomes difficult to supply power to the target, so the industrially assigned frequency of 13.56 CM) Iz) is usually used. In high-frequency discharge, electrons in the discharge space move back and forth between electrodes due to the high-frequency electric field. As a result, electron collision becomes effective and approximately 1O-3
Sputtering is possible even at a gas pressure as low as TOrr.

本発明に使用したスパッタ装置は日型アネルバ製5PF
−210である。
The sputtering equipment used in the present invention is 5PF manufactured by Nikkei Anelva.
-210.

その定格を以下に示す。Its rating is shown below.

周波数     13.56(MHz)出力1〔kII
l)MAx (c)  基板材料 薄膜の形成には、薄膜の形成条件とともに基板の選択が
重要である。この基板は大別してガラス、セラミックス
および単結晶の三種類に分類される。
Frequency 13.56 (MHz) Output 1 [kII
l) MAx (c) Substrate material In forming a thin film, the selection of the substrate as well as the conditions for forming the thin film are important. This substrate is roughly classified into three types: glass, ceramic, and single crystal.

ガラスおよびセラミックス基板は、非晶質あるいは多結
晶簿膜の形成に、単結晶基板は単結晶薄膜のエピタキシ
ャル成長に使用される。本発明では基板の熱的歪みを考
慮してアルミナ基板を使用した。表−1に本発明に使用
した基板およびサーミスタ材料の熱的特性をまとめて示
した。
Glass and ceramic substrates are used for forming amorphous or polycrystalline films, and single crystal substrates are used for epitaxial growth of single crystal thin films. In the present invention, an alumina substrate was used in consideration of thermal distortion of the substrate. Table 1 summarizes the thermal characteristics of the substrate and thermistor material used in the present invention.

(以下余白) 表−1各基板の特性 (d)  スパッタリング条件 スパッタ条件として最も重要視されるのは基板温度であ
るが、実施例では基板加熱ヒータを使用しなかったがプ
レスパツタの輻射熱により基板が300℃に昇温する時
間をみはからってスパッタを行った。
(Leaving space below) Table 1 Characteristics of each substrate (d) Sputtering conditions The most important sputtering condition is the substrate temperature, but in the example, a substrate heater was not used, but the radiant heat of the press sputtering caused the substrate to heat up. Sputtering was performed while taking time to raise the temperature to 300°C.

スパッタガスはスパッタ効率の良いArガスを使用した
Ar gas, which has good sputtering efficiency, was used as the sputtering gas.

表−2にスパッタリング条件を示す。Table 2 shows the sputtering conditions.

第3図は高周波入力600v一定としてスパッタリング
時間をパラメータとした時の付着量を示したものである
FIG. 3 shows the amount of adhesion when the high frequency input is constant at 600 V and the sputtering time is used as a parameter.

重址の測定はメトラ製天秤AE−163を使用した。The weight was measured using a balance AE-163 manufactured by Metra.

測定精度はI X 10−5gである。サーミスタの付
着量は0.54(mg/h)である。
The measurement accuracy is I x 10-5 g. The adhesion amount of the thermistor was 0.54 (mg/h).

(e)  熱処理条件 本発明に使用したターゲット材料は酸化物であるがスパ
ッタリングを行うにあたって、スパッタリングガスとし
てArガスを使用したので、薄膜は、0−2の欠陥が生
じているものと考えられる。 o”””ガスを電気炉に
0.5u/minの割合で流入し薄膜の結晶化と0−2
欠陥の除去をはかった。
(e) Heat treatment conditions Although the target material used in the present invention is an oxide, Ar gas was used as the sputtering gas during sputtering, so it is thought that the thin film had 0-2 defects. o""" gas was introduced into the electric furnace at a rate of 0.5 u/min to crystallize the thin film and
I tried to remove the defects.

ω 熱処理結果 熱処理を行った試料についてX線回折および蛍光X線分
析を行った。熱処理前の薄膜サーミスタはアモルファス
状態であり、X線回折では反射面からのピークは認めら
れなかったが熱処理を行うことにより第1図(a)に示
したように(311)面からのピークが現われた。(3
11)面から求めた格子定数a□は(2)式 よりa□=8.33人と求まった。
ω Heat treatment results X-ray diffraction and X-ray fluorescence analysis were performed on the heat-treated samples. The thin film thermistor before heat treatment was in an amorphous state, and no peak from the reflective surface was observed in X-ray diffraction, but after heat treatment, the peak from the (311) plane was observed as shown in Figure 1(a). appeared. (3
11) The lattice constant a□ obtained from the plane was found to be a□=8.33 from equation (2).

本焼成粉末チャートの(311)面から求めた格子定数
82=8.38(人)となりターゲット材料の組成と薄
膜の組成が等しいことを示している。熱処理を行うこと
により蛍光X線の強度が増加する傾向を第4図に示した
The lattice constant 82 obtained from the (311) plane of the main fired powder chart is 8.38 (human), indicating that the composition of the target material and the composition of the thin film are equal. FIG. 4 shows the tendency for the intensity of fluorescent X-rays to increase as a result of heat treatment.

(2)電極構造 電極構造は第5図(a)、(b)に示すような対向およ
び櫛型の電極構造とした。
(2) Electrode structure The electrode structure was an opposing and comb-shaped electrode structure as shown in FIGS. 5(a) and 5(b).

(3) 対向電極(第5図(a)) アルミナ基板1の全体に銀パラジウムをスクリーン印刷
法によって形成し、950℃50分間熱処理を施した。
(3) Counter electrode (FIG. 5(a)) Silver-palladium was formed on the entire alumina substrate 1 by screen printing, and heat-treated at 950° C. for 50 minutes.

焼成銀は住人金属製C−416焼成銀を使用した。焼成
後の下部電極2の厚みは約2(1(庫)である。この電
極2上に20X20 (mm”)のステンレス製マスク
を使用してサーミスタ薄膜3をスパッタした。上部電極
4としてAρを1fiX16 (mm”)のマスクを使
用し、真空蒸着させて対向電極とした。見かけ上の抵抗
値を増加させるために電極面積が1(mm2)になるよ
うにダイシングしたものを測定試料とした。
As the fired silver, C-416 fired silver made by Sumitomo Metal was used. The thickness of the lower electrode 2 after firing is approximately 2 (1). On this electrode 2, a thermistor thin film 3 was sputtered using a 20 x 20 (mm") stainless steel mask. As the upper electrode 4, Aρ was used. A counter electrode was formed by vacuum evaporation using a 1fiX16 (mm") mask. In order to increase the apparent resistance value, the measurement sample was diced so that the electrode area was 1 (mm2).

(ii)  櫛型電極(第5図(b))アルミナ基板1
1に直接サーミスタ薄膜12をスパッタ蒸着した試料の
上に、5X5[mm2〕間隔1(mm〕のステンレスマ
スクを用いてAfl電極13を真空蒸着して櫛型電極と
した。得られたサーミスタの特性について以下の試験を
行った。
(ii) Comb-shaped electrode (Fig. 5(b)) alumina substrate 1
On top of the sample on which the thermistor thin film 12 was directly sputter-deposited on the thermistor 1, an Afl electrode 13 was vacuum-deposited using a stainless steel mask of 5×5 [mm2] with an interval of 1 (mm) to form a comb-shaped electrode.Characteristics of the obtained thermistor The following tests were conducted regarding:

■ 薄膜サーミスタ抵抗の温度特性 薄膜サーミスタの抵抗の特性はジュール熱の影響を少な
くするために定電流法(20℃では0.1μA。
■ Temperature characteristics of thin film thermistor resistance The resistance characteristics of thin film thermistors are determined using the constant current method (0.1 μA at 20°C) to reduce the influence of Joule heat.

100℃では1μA一定とした)によって行った。第6
図は第5図(a)の薄膜サーミスタの抵抗の温度依存性
を示した。この特性から求めたB定数抵抗率ρおよび抵
抗Rを表−3に示した。
(1 μA constant at 100° C.). 6th
The figure shows the temperature dependence of the resistance of the thin film thermistor shown in FIG. 5(a). Table 3 shows the B constant resistivity ρ and resistance R determined from this characteristic.

表−3薄膜サーミスタのB定数 ×抵抗率ρはT=25℃の値 薄膜サーミスタは電極構造を変化することにより、抵抗
を約10−3〜108〔Ω〕の範囲に選ぶことができる
。ちなみに、バルク形サーミスタはビート形では104
〜107〔Ω〕、ディスク形では1〜10’Ωである。
Table 3: B constant x resistivity ρ of thin film thermistor T = 25°C The resistance of the thin film thermistor can be selected in the range of about 10 -3 to 108 [Ω] by changing the electrode structure. By the way, the bulk type thermistor is 104 in the beat type.
~107 [Ω], and 1 to 10'Ω for the disc type.

薄膜サーミスタにおける感温材料の抵抗率範囲の広さは
感熱材料の種類の選択を容易にしている。
The wide resistivity range of temperature sensitive materials in thin film thermistors makes it easy to select the type of heat sensitive material.

(i)  lit膜サーミスタのESCAによる観察と
組成変動の同定 第7図(a) 、 (b)に本発明方法により得られた
薄膜サーミスタの表面観察を示した。400W −6h
でスパッタした試料(第7図(a))は600V−6h
の試料(第7図(b))に比べて粒成長が良好であるこ
とがわがつた。第8図および表−4は薄膜サーミスタの
X線定量分析結果を示したものである。この結果がら出
発原料とスパッタした薄膜の組成について、Mnは、は
ぼ一定であるがFeとGoでは約9%の組成ずれが生じ
た。この組成の変動はB定数およびρの差を生じるがサ
ーミスタの温度特性の安定度に対してはバルクサーミス
タの測定からは問題のない範囲と考えられ、この組成は
非常に結晶化学的に安定なサーミスタ材料であることが
理解できる。
(i) Observation of lit film thermistor by ESCA and identification of compositional variations Figures 7(a) and (b) show surface observations of the thin film thermistor obtained by the method of the present invention. 400W -6h
The sample (Fig. 7(a)) sputtered with
It was found that the grain growth was better than that of the sample (Fig. 7(b)). FIG. 8 and Table 4 show the results of X-ray quantitative analysis of the thin film thermistor. As a result, regarding the composition of the starting material and the sputtered thin film, Mn was almost constant, but Fe and Go had a composition deviation of about 9%. Although this variation in composition causes a difference in the B constant and ρ, it is considered to be within a range that poses no problem for the stability of the thermistor's temperature characteristics based on bulk thermistor measurements, and this composition is extremely stable in terms of crystal chemistry. It can be understood that it is a thermistor material.

組成変動はB定数およびρの値に差を生じるがサーミス
タの温度特性の安定度に対しては(バルクサーミスタの
測定結果から)問題のない範囲と考えられる。この組成
は結晶化学的に安定なツーミスタ材料であるといえる。
Although the compositional fluctuation causes a difference in the B constant and the value of ρ, it is considered to be within a range that poses no problem for the stability of the temperature characteristics of the thermistor (based on the measurement results of the bulk thermistor). This composition can be said to be a crystal-chemically stable two-mister material.

表−4定量分析結果 〔発明の効果〕 以上のように本発明によるときには薄膜サーミスタの特
徴である精度、信頼性を高め、且つ高安定のサーミスタ
を提供できる効果を有するものである。
Table 4 Quantitative Analysis Results [Effects of the Invention] As described above, the present invention has the effect of increasing the accuracy and reliability, which are characteristics of thin film thermistors, and providing a highly stable thermistor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は本発明による薄膜サーミスタお
よびサーミスタ原料についてのガイガーミニフレックス
によるX線回折チャートを示す図、第2図はサーミスタ
原料についての蛍光X線による元素分析結果を示す図、
第3図はスパッタリング時間とサーミスタ付着量との関
係を示す図、第4図はサーミスタ原料と、熱処理前後の
サーミスタとについての蛍光X線の強度変化を示す図、
第5図(a)。 (b)は各々電極構造を示す図、第6図は薄膜サーミス
タの抵抗の温度依存性を示す図、第7図(a)、(b)
は本発明により得られた薄膜サーミスタの表面を顕微鏡
写真にて拡大した図、第8図は薄膜サーミスタのX線定
量分析結果を示す図である。 ■、11・・・アルミナ基板   2・・・下部電極3
.12・・パサーミスタ薄膜  4・・・上部電極13
・・・アルミ電極 特許出願人  株式会社 大泉製作所 同 上    増  1) 陽  −部=15− (α) 第5図 温良+X1O−3(’C) 抵抗一温度衣存性 第6図 手続補正書(方式)
Figures 1 (a) and (b) are diagrams showing X-ray diffraction charts using Geiger miniflex for the thin film thermistor and thermistor raw material according to the present invention, and Figure 2 shows the elemental analysis results of the thermistor raw material using fluorescent X-rays. figure,
FIG. 3 is a diagram showing the relationship between sputtering time and thermistor deposition amount, FIG. 4 is a diagram showing the intensity change of fluorescent X-rays for the thermistor raw material and the thermistor before and after heat treatment,
Figure 5(a). (b) is a diagram showing the electrode structure, Figure 6 is a diagram showing the temperature dependence of the resistance of a thin film thermistor, and Figures 7 (a) and (b).
8 is an enlarged microscopic photograph of the surface of the thin film thermistor obtained according to the present invention, and FIG. 8 is a diagram showing the results of X-ray quantitative analysis of the thin film thermistor. ■, 11... Alumina substrate 2... Lower electrode 3
.. 12... Passermister thin film 4... Upper electrode 13
...Aluminum electrode patent applicant Oizumi Seisakusho Co., Ltd. Same as above 1) Positive part = 15- (α) Figure 5 Temperature + X1O-3 ('C) Resistance - temperature stability Figure 6 Procedure amendment ( method)

Claims (1)

【特許請求の範囲】[Claims] (1)遷移金属を主としたサーミスタ材料を出発原料と
し、その材料の焼結体又は100μ以下に微粉砕した粉
末をターゲットとして、300℃以上に加熱したガラス
、アルミナ等の基板上にスパッタリング反応生成物の付
着による薄膜を形成させ、その後、酸化性ガス雰囲気中
で熱処理を施して前記薄膜の結晶化とO^−^2欠陥を
除去する工程を行うことを特徴とする薄膜サーミスタの
製造方法。
(1) Sputtering reaction using a thermistor material mainly made of transition metals as a starting material, using a sintered body of the material or a powder finely pulverized to less than 100μ as a target, on a substrate of glass, alumina, etc. heated to 300°C or higher. A method for producing a thin film thermistor, comprising forming a thin film by adhering a product, and then performing a heat treatment in an oxidizing gas atmosphere to crystallize the thin film and remove O^-^2 defects. .
JP10131387A 1987-04-24 1987-04-24 Manufacture of thin film thermistor Pending JPS63266801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10131387A JPS63266801A (en) 1987-04-24 1987-04-24 Manufacture of thin film thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10131387A JPS63266801A (en) 1987-04-24 1987-04-24 Manufacture of thin film thermistor

Publications (1)

Publication Number Publication Date
JPS63266801A true JPS63266801A (en) 1988-11-02

Family

ID=14297323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10131387A Pending JPS63266801A (en) 1987-04-24 1987-04-24 Manufacture of thin film thermistor

Country Status (1)

Country Link
JP (1) JPS63266801A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684794A1 (en) * 1991-12-06 1993-06-11 Mitsubishi Materials Corp Ltd PROCESS FOR FORMING A THERMISTOR THIN FILM.
US6368734B1 (en) 1998-11-06 2002-04-09 Murata Manufacturing Co., Ltd. NTC thermistors and NTC thermistor chips
JP2006032910A (en) * 2004-06-18 2006-02-02 Mitsubishi Materials Corp Thermistor thin film and its forming method
JP2006324520A (en) * 2005-05-19 2006-11-30 Mitsubishi Materials Corp Thermistor thin film and its manufacturing method
JP2008084991A (en) * 2006-09-26 2008-04-10 Mitsubishi Materials Corp Thermistor thin film and thin film thermistor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684794A1 (en) * 1991-12-06 1993-06-11 Mitsubishi Materials Corp Ltd PROCESS FOR FORMING A THERMISTOR THIN FILM.
US6368734B1 (en) 1998-11-06 2002-04-09 Murata Manufacturing Co., Ltd. NTC thermistors and NTC thermistor chips
JP2006032910A (en) * 2004-06-18 2006-02-02 Mitsubishi Materials Corp Thermistor thin film and its forming method
JP2006324520A (en) * 2005-05-19 2006-11-30 Mitsubishi Materials Corp Thermistor thin film and its manufacturing method
JP2008084991A (en) * 2006-09-26 2008-04-10 Mitsubishi Materials Corp Thermistor thin film and thin film thermistor device

Similar Documents

Publication Publication Date Title
US5977582A (en) Capacitor comprising improved TaOx -based dielectric
US4028657A (en) Deposited layer type thermometric resistance structure
US3749658A (en) Method of fabricating transparent conductors
JPH056766B2 (en)
JPS63266801A (en) Manufacture of thin film thermistor
US6154119A (en) TI--CR--AL--O thin film resistors
Siddall et al. Vacuum-deposited metal film resistors
JP5407969B2 (en) Conductive oxide and method for producing the same
CN111613400B (en) Normal-temperature NTC thermistor film and preparation method thereof
WEIRAUCH et al. Isothermal phase transitions in ceramic lead zirconate
Bunton et al. The preparation and electrical properties of thin chalcogenide semiconductor films
JP2000348905A (en) Thin-film thermistor element and manufacture of the same
JP5526904B2 (en) Conductive oxide sintered body and manufacturing method thereof
JP2002275624A (en) Sintered compact target for depositing transparent electrically conductive thin film, production method therefor and transparent electrically conductive thin film obtained therefrom
US6420826B1 (en) Flat panel display using Ti-Cr-Al-O thin film
Chia et al. The effect of Bi2O3 compensation during thermal treatment on the crystalline and electrical characteristics of bismuth titanate thin films
Lehmann et al. Radio frequency sputtering of CdSe films
Andersson et al. 2.24 Structural and electrical properties of discontinuous gold films on glass
CN114908324A (en) Preparation method of Pt thermal resistance film
Grishin et al. III. Vacuum applications
Schmitt et al. Transformation from the glassy state in sputtered amorphous films of the ferroelectric lead germanate Pb5Ge3O11
Maiwa et al. Preparation of Pb5Ge3O11 thin films by multiple cathode sputtering
JPS6276710A (en) Manufacture of magnetic thin film
JPH0473244B2 (en)
Kosevich III. Vacuum applications