JPS5835444B2 - Method and device for controlling resin temperature in a kneader - Google Patents

Method and device for controlling resin temperature in a kneader

Info

Publication number
JPS5835444B2
JPS5835444B2 JP53038767A JP3876778A JPS5835444B2 JP S5835444 B2 JPS5835444 B2 JP S5835444B2 JP 53038767 A JP53038767 A JP 53038767A JP 3876778 A JP3876778 A JP 3876778A JP S5835444 B2 JPS5835444 B2 JP S5835444B2
Authority
JP
Japan
Prior art keywords
temperature
gap
control
resin
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53038767A
Other languages
Japanese (ja)
Other versions
JPS54131662A (en
Inventor
豊 水谷
政照 辰段
正大 長原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP53038767A priority Critical patent/JPS5835444B2/en
Publication of JPS54131662A publication Critical patent/JPS54131662A/en
Publication of JPS5835444B2 publication Critical patent/JPS5835444B2/en
Expired legal-status Critical Current

Links

Classifications

    • B29C47/92

Description

【発明の詳細な説明】 本発明は混線機における溶融樹脂温度調節方法並びにそ
の装置に係り、特に熱可塑性の合成樹脂を混練する場合
に溶融樹脂温度を一定に調節するf、IBD i度調節
方法並ひに装置に関する惚πある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for controlling the temperature of molten resin in a mixer, and in particular, a method for controlling the temperature of molten resin to a constant level when kneading thermoplastic synthetic resin. Namihi has a passion for equipment.

混練機においてシリンダとスクリュ相互間に円錐絞り部
を備えてこの円錐絞り部を前後に動かしてその間隙の大
きさを調整して熱可塑性合成樹脂の混練度を変化させる
ことは周知であり、更にかかる混練機でそのシリンダ温
度を電気式或いは空気式の従来周知の温度調整装置で自
動調節を行うことは周知で又円錐絞り部の間隙の幅を調
節して混線効果を主としてせん断速度に依存せしめるス
クリュ回転による内部発熱により行うことは本発切者が
先に提案したところである。
It is well known that a kneading machine is provided with a conical constriction between the cylinder and the screw, and the degree of kneading of the thermoplastic synthetic resin is changed by moving this conical conical constriction back and forth to adjust the size of the gap. It is well known that in such a kneading machine, the cylinder temperature is automatically adjusted using a conventionally known electric or pneumatic temperature adjusting device, and the width of the gap between the conical constrictions is adjusted to make the crosstalk effect mainly dependent on the shear rate. The present inventor had previously proposed that this be done using internal heat generated by the rotation of the screw.

しかして前者のシリンダ温度を自動調節するものでは温
度修正信号が与えられてから溶融樹脂の温度変化をもた
らすまでの応答が遅く無駄時間が大でオーバーシュート
及びアンダーシュートが生じるなど所望の樹脂温度に適
切に調節できなかった。
However, in the former method, which automatically adjusts the cylinder temperature, the response from when a temperature correction signal is given to when the temperature of the molten resin changes is slow, and the wasted time is large, resulting in overshoot and undershoot. Couldn't adjust properly.

又後者の内部発熱つまり円錐部の間隙幅を調節するもの
では比較的容易に所望の樹脂温度かえられるが、これま
で適当な温度自動調節装置がないため、円錐部の間隙幅
を油圧装置によるスクリュ背圧手動調整を含む手動装置
にて設定することにより行われてきた。
The latter method, which adjusts the internal heat generation, that is, the gap width of the conical part, makes it relatively easy to change the desired resin temperature. This has been done by setting a manual device that includes manual backpressure adjustment.

しかし、原料樹脂の種類、スクリュ回転数、シリンダ温
度の変動等の外乱に対しては樹脂温度を一定に保持する
ことは困難であり試行錯誤的に間隙幅の手動設定を繰返
し所望の樹脂温度をうるように調節していたが応答時間
が遅いので温度と間隙幅の関係に対し経験とカンに頼っ
ていた。
However, it is difficult to maintain the resin temperature constant due to disturbances such as fluctuations in the type of raw resin, screw rotation speed, and cylinder temperature, so manual setting of the gap width is repeated through trial and error to achieve the desired resin temperature. Although the gap width was adjusted, the response time was slow, so I had to rely on my experience and intuition for the relationship between temperature and gap width.

このような点に鑑みて本発明ではシリンダとスクリュと
の相互間に円錐絞り部を有し、この円錐絞り部の間隙の
大きさを調整して合成樹脂の混練度を変化させる混練機
で且つ、特公昭47−42583号公報記載のような二
軸連続混練機に使用するもので設定温度と実測温度との
偏差をサンプリングし、このサンプリング値を一定時間
毎に累算して温度修正信号として設定間隙信号に加算し
、この加算信号をオンオフ信号として段階的にスクリュ
移動装置により間隙修正を行い、制御途中での一時的混
線状態の変動による異常険出での誤位置制御と誤位置制
御の繰返しによる長周期の温度変動を防止し一定温度の
溶融樹脂をうるようにしたものである。
In view of these points, the present invention provides a kneading machine that has a conical constriction section between the cylinder and the screw, and adjusts the size of the gap between the conical constriction sections to change the degree of kneading of the synthetic resin. , which is used in a two-screw continuous kneading machine as described in Japanese Patent Publication No. 47-42583, samples the deviation between the set temperature and the actual temperature, and accumulates this sampling value at regular intervals as a temperature correction signal. This signal is added to the set gap signal, and this added signal is used as an on/off signal to correct the gap in stages using a screw moving device, thereby preventing incorrect position control and incorrect position control in the event of an abnormal occurrence due to temporary fluctuations in crosstalk during control. This prevents long-term temperature fluctuations caused by repetition and allows molten resin to be kept at a constant temperature.

即ち本発明はシリンダとスクリュとの相互間に円錐絞り
部を有し、前記円錐絞り部の間隙の大きさを調整するこ
とにより、合成樹脂の混練度を変化させる混練機におい
て、設定温度と実測温度との偏差をサンプリングする工
程と、前記サンプリング工程におけるサンプリング値を
一定時間毎に累算する工程と、該累算する工程よりの累
算値を温度修正信号として設定間隙信号に加算し、その
加算信号をオンオフ信号として段階的にスクリュ移動装
置に与えて間隙修正を行う工程と、を備えることにより
制御途中での一時的混線状態の変動による異常検出での
誤位置制御と誤位置制御の繰返しによる長周期の温度変
動を防止し、一定温度の溶融樹脂をうろことを特徴とす
る混線機における樹脂温度調節方法である。
That is, the present invention provides a kneading machine that has a conical constriction between a cylinder and a screw, and changes the degree of kneading of synthetic resin by adjusting the size of the gap between the conical constriction. A step of sampling the deviation from the temperature, a step of accumulating the sampled values in the sampling step at regular intervals, and adding the accumulated value from the accumulating step to the set gap signal as a temperature correction signal. By providing the step of correcting the gap by giving the addition signal as an on/off signal to the screw moving device in stages, it is possible to repeat the incorrect position control and the incorrect position control when detecting an abnormality due to temporary fluctuations in the crosstalk state during control. This is a resin temperature control method in a crosstalk machine, which is characterized by preventing long-period temperature fluctuations caused by the molten resin and scaling the molten resin at a constant temperature.

又本発明はシリンダとスクリュとの相互間に円錐絞り部
を有し、前記円錐絞り部の間隙大きさを調整することに
より合成樹脂の混練度を変化させる混練機において、溶
融樹脂の実測温度を検出する樹脂温度検出器と、前記円
錐絞り部の間隙を変えるためのスクリュ移動装置と、前
記間隙位置を検出する位置検出器と、溶融樹脂の温度を
設定し円錐絞り部の間隙を予め予想設定する各設定器と
、そして温度調節装置とよりなり、更に該温度調節装置
は前記設定温度と実施温度との偏差温度を検出する偏差
検出部と、前記偏差温度を一定時間毎に累算するサンプ
リング調節部と、前記予め予想設定する設定間隙信号と
サンプリング調節部からの温度修正信号を突き合わす加
算部と、前記加算部からの指示信号と前記位置検出器か
らの実測間隙信号とを比較するフィードバックの調節部
と、前記フィードバック調節部からの間隙修正信号で前
記スクリュ移動装置を作動させるオンオフ調節部を備え
ることを特徴とする混練機における樹脂温度調節装置で
ある。
The present invention also provides a kneading machine that has a conical constriction between the cylinder and the screw and changes the degree of kneading of the synthetic resin by adjusting the gap size of the conical constriction. A resin temperature detector for detecting, a screw moving device for changing the gap of the conical constriction part, a position detector for detecting the position of the gap, and setting the temperature of the molten resin to predict the gap of the conical constriction part in advance. and a temperature control device, and the temperature control device further includes a deviation detection unit that detects a temperature deviation between the set temperature and the operating temperature, and a sampling device that accumulates the deviation temperature at regular time intervals. an adjusting section; an adding section that matches the pre-estimated setting gap signal with the temperature correction signal from the sampling adjusting section; and a feedback unit that compares the instruction signal from the adding section with the measured gap signal from the position detector. This is a resin temperature control device for a kneading machine, characterized by comprising: an adjustment section, and an on/off adjustment section that operates the screw moving device using a gap correction signal from the feedback adjustment section.

本発明を図の実施例による装置について説明すると、第
1図は主要部の概略構成図、第2図は回路系統図を示し
ている。
To explain the present invention with respect to the apparatus according to the illustrated embodiment, FIG. 1 shows a schematic configuration diagram of the main parts, and FIG. 2 shows a circuit system diagram.

先づ第1図で、1は混線機のシリンダ、2はスクリュ、
la、2aは2等シリンダ1とスクリュ2夫々に形成せ
しめた円錐絞り部、3は之等円錐絞り部?a、2a間の
間隙である。
First, in Figure 1, 1 is the cylinder of the crosstalk machine, 2 is the screw,
la and 2a are conical constrictions formed on the secondary cylinder 1 and screw 2, respectively, and 3 is the conical conical constriction. This is the gap between a and 2a.

又4はシリンダ1内部空間に挿入され溶融樹脂の実測温
度を検出する樹脂温度検出器、5はスクリュの位置をか
えて間隙3をかえるためのスクリュ移動装置で油圧構成
となっている。
Further, numeral 4 is a resin temperature detector inserted into the internal space of the cylinder 1 to detect the measured temperature of the molten resin, and 5 is a screw moving device for changing the gap 3 by changing the position of the screw, which has a hydraulic construction.

6は又スクリュの移動位置つまり間隙3の位置検出器、
7は温度調節装置である。
6 is also a position detector for the moving position of the screw, that is, the position of the gap 3;
7 is a temperature control device.

その他8は設定温度をとりだす温度設定器、ぎは設定間
隙をとりだす間隙設定器である。
8 is a temperature setting device that takes out the set temperature, and 8 is a gap setting device that takes out the setting gap.

従って設定温度と設定間隙が両段定器8.&′で予め計
算されてその出力が温度調節装置7に入れられ又樹脂温
度検出器4よりの実測温度と位置検出器6よりの実測間
隙幅が温度調節装置7に挿入されて、温度調節装置7の
出力が間隙修正信号としてスクリュ移動装置5を調節す
るのである。
Therefore, the set temperature and set gap are the two-stage regulator 8. &' is pre-calculated and its output is input into the temperature adjustment device 7, and the actual measured temperature from the resin temperature detector 4 and the actual measured gap width from the position detector 6 are inserted into the temperature adjustment device 7. The output of 7 adjusts the screw moving device 5 as a gap correction signal.

更に温度調節装置7の内容を示す回路構成図は第2図で
示される。
Furthermore, a circuit diagram showing the contents of the temperature control device 7 is shown in FIG.

第2図で温度調節装置7は偏差検出部9、サンプリング
調節部10、加算部11、フィードバック調節器12、
オンオフ調節器13であり、サンプリング調節部10と
加算部110間に自動制御スイッチ14が挿入されてお
り、樹脂温度検出器4には温度指示計15が位置検出器
6には間隙指示計16が必要に応じ設けられている。
In FIG. 2, the temperature adjustment device 7 includes a deviation detection section 9, a sampling adjustment section 10, an addition section 11, a feedback adjustment section 12,
This is an on/off controller 13, and an automatic control switch 14 is inserted between the sampling controller 10 and the adder 110. The resin temperature detector 4 has a temperature indicator 15, and the position detector 6 has a gap indicator 16. Provided as necessary.

又温度設定器8は偏差検出部9に間隙設定器ぎは加算部
11に位置検出器6はフィードバック調節器12にと夫
々出力される。
Further, the temperature setting device 8 is outputted to a deviation detection section 9, the gap setting device is outputted to an addition section 11, and the position detector 6 is outputted to a feedback adjustment device 12, respectively.

次に本発明装置の動作を説明する。Next, the operation of the device of the present invention will be explained.

熱可塑性合成樹脂を可塑化するにはスクリュを高速で回
転させスクリュの供給部にシリンダ1の投入口から合成
樹脂を供給する。
To plasticize the thermoplastic synthetic resin, the screw is rotated at high speed and the synthetic resin is fed from the inlet of the cylinder 1 to the feed section of the screw.

スクリュ2の供給部に供給された合成樹脂はスクリュの
供給部により前方に送られ、大きな圧力でスクリュ2の
円錐部1a、2aの間隙3を通り抜ける。
The synthetic resin supplied to the supply section of the screw 2 is sent forward by the supply section of the screw and passes through the gap 3 between the conical sections 1a and 2a of the screw 2 under great pressure.

その際に合成樹脂には大きなせん断力や摩擦力が作用し
て合成樹脂は内部発熱し急速に可塑化する。
At this time, large shearing forces and frictional forces act on the synthetic resin, causing the synthetic resin to generate internal heat and rapidly become plasticized.

このようにして可塑化した合成樹脂はスクリュ2の押出
部により押し出される。
The synthetic resin plasticized in this way is extruded by the extrusion section of the screw 2.

この間に偏差検出部9において、樹脂温度検出器4でス
クリュ先端の実測温度が検出され温度設定器8であらか
じめ設定された所望温度との偏差を検出する。
During this time, in the deviation detection section 9, the actual measured temperature at the tip of the screw is detected by the resin temperature detector 4, and the deviation from the desired temperature set in advance by the temperature setting device 8 is detected.

又この実測温度は、必要に応じて温度指示計15を取り
付けることにより、外部にて指示することもできる。
Moreover, this measured temperature can also be indicated externally by attaching a temperature indicator 15 if necessary.

サンプリング調節部10においては、この温度偏差を、
あらかじめ設定された一定時間毎にサンプリングする。
In the sampling adjustment section 10, this temperature deviation is
Sampling is performed at preset fixed time intervals.

又このサンプリングされる温度偏差は、運転直後や、温
度設定直後の設定温度と実測温度差が大きい場合には、
サンプリングせずに、通常運転にである一定の温度差に
て、温度コントロールが可能な範囲のみサンプリングす
る方が最良である。
In addition, this sampled temperature deviation may occur immediately after operation or when the difference between the set temperature and the actual measured temperature is large.
It is best to sample only the range where temperature control is possible, with a certain temperature difference during normal operation, without sampling.

このサンプル値は累算されて温度修正信号とされる。This sample value is accumulated into a temperature correction signal.

このサンプル値累算調節のため、温度調節装置7のオフ
セットを防ぐことができる。
Due to this sample value accumulation adjustment, offset of the temperature control device 7 can be prevented.

次にあらかじめ間隙設定器「で予想設定された、設定間
隙からの信号と温度修正信号を加算部11において加算
し、その加算信号を、オンオフ調節部13に送り、段階
的に間隙修正用のオンオフ信号をスクリュ移動装置5に
与える。
Next, the adder 11 adds the signal from the set gap and the temperature correction signal, which were predicted in advance with the gap setting device, and sends the added signal to the on/off controller 13, which turns the gap correction on and off in stages. A signal is given to the screw moving device 5.

加算部11において温度修正信号を、設定間隙からの信
号に加算する比率は比率調節により調整される。
The ratio at which the temperature correction signal is added to the signal from the set gap in the adder 11 is adjusted by ratio adjustment.

この比率調節により、間隙の位置調節と温度調節の比率
を、運転状況にあわせて加えることができる。
By adjusting the ratio, the ratio of gap position adjustment and temperature adjustment can be adjusted according to the operating conditions.

又この加算信号は、位置検出器6による実測間隙にてフ
ィードバック調節部12でフィードバック制御がとられ
ている。
Further, this addition signal is subjected to feedback control by a feedback adjustment section 12 at an actual gap measured by the position detector 6.

オンオフ調節部13は、調節設定点及び不感帯を可変に
することにより、間隙修正用のオンオフ信号の安定を計
っている。
The on/off adjustment section 13 stabilizes the on/off signal for gap correction by making the adjustment set point and dead zone variable.

連続制御にすると温度が低い場合連続して温度上昇信号
が発つせられ絞り部はどんどん絞られ樹脂温度は次第に
高くなる。
If continuous control is used, when the temperature is low, a temperature increase signal is issued continuously, the constriction portion is further constricted, and the resin temperature gradually increases.

しかし無駄時間が大きいため樹脂温度を最高に上げる絞
りになった後に温度が設定値に達するが樹脂温最高の絞
りのため樹脂温度は急スピードで上昇し設定値を大巾に
超過してしまう。
However, since the wasted time is large, the temperature reaches the set value after the throttling that raises the resin temperature to the maximum is reached, but since the throttling reaches the maximum resin temperature, the resin temperature rises rapidly and greatly exceeds the set value.

次にはこれと反対に絞り部開放となり樹脂温度は下り過
ぎるという往復現象を起し、又その温度巾も大きくなる
欠点がある。
Next, on the contrary, the constricted portion opens, causing a reciprocating phenomenon in which the resin temperature drops too much, and also has the disadvantage that the temperature range becomes large.

上記欠点を改善するため本願の様にサンプリング調節部
によるサンプリング制御とオンオフ制御を行なう。
In order to improve the above drawbacks, sampling control and on/off control are performed by a sampling adjustment section as in the present application.

オンオフ調節部を組込めば温度勾配が弛やかになり最終
的には温度曲線が設定値の上・下限内に納まる。
If an on/off adjustment section is incorporated, the temperature gradient will become gentler and the temperature curve will eventually fall within the upper and lower limits of the set value.

又、自動制御スイッチ14をサンプリング調節部10と
加算部110間に設けることにより、溶融樹脂の実測温
度を制御に加えず、間隙3の設定間隙と実測間隙のフィ
ードバック制御のみによる位置制御も可能となる。
Further, by providing the automatic control switch 14 between the sampling adjustment section 10 and the addition section 110, it is possible to perform position control only by feedback control of the set gap of the gap 3 and the measured gap without adding the actually measured temperature of the molten resin to the control. Become.

本温度調節装置7によれば、制御応答が遅い無駄時間支
配型プロセスに対して、累算サンプリング調節を行ない
段階的に制御出力を負荷に与えることにより、制御にお
けるオーバーシュート及びアンダシュートをおこさず、
プロセス系に臨界制動を与えることができた。
According to the present temperature control device 7, overshoot and undershoot in control are prevented by performing cumulative sampling adjustment and giving control output to the load in stages for dead time dominated processes with slow control response. ,
We were able to provide critical damping to the process system.

設定間隙信号と温度修正信号の比率を可変にすることに
より、プロセj系にあった無駄のない、迅速かつ正確な
温度制御が可能となる。
By making the ratio between the set gap signal and the temperature correction signal variable, efficient, quick and accurate temperature control suitable for the process system is possible.

又温度に関係な(間隙一定のみの制御も可能である。It is also possible to perform temperature-related control (only a constant gap).

従来の間隙一定、背圧一定、シリンダ温度一定などの誤
差の多い制御から脱皮できた。
We were able to break away from conventional controls that had many errors, such as constant gap, constant back pressure, and constant cylinder temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る温度制御系統図、第2図
は同第1図における温度調節装置の回路構成図である。 図で1はシリンダ、2はスクリュ、la、2aは円錐絞
り部、3は絞り部の間隙、4は樹脂温度検出器、5はス
クリュ移動装置、6は位置検出器、7は温度調節装置、
8は温度設定器、ぎは間隙設定器、9は偏差検出部、1
0はサンプリング調節部、 11は加算部、 12はフィードバック調節部、 13はオンオフ調節部。
FIG. 1 is a temperature control system diagram according to an embodiment of the present invention, and FIG. 2 is a circuit configuration diagram of the temperature control device in FIG. 1. In the figure, 1 is a cylinder, 2 is a screw, la and 2a are conical throttle parts, 3 is a gap between the throttle parts, 4 is a resin temperature detector, 5 is a screw moving device, 6 is a position detector, 7 is a temperature adjustment device,
8 is a temperature setting device, G is a gap setting device, 9 is a deviation detection section, 1
0 is a sampling adjustment section, 11 is an addition section, 12 is a feedback adjustment section, and 13 is an on/off adjustment section.

Claims (1)

【特許請求の範囲】 1 シリンダとスクリュとの相互間に円錐絞り部を有し
、前記円錐絞り部の間隙の大きさを調整することにより
、合成樹脂の混練度を変化させる混練機において、設定
温度と実測温度との偏差をサンプリングする工程と、前
記サンプリング工程におけるサンプリング値を一定時間
毎に累算する工程と、該累算する工程よりの累算値を温
度修正信号として設定間隙信号に加算し、その加算信号
をオンオフ信号として段階的にスクリュ移動装置に与え
て間隙修正を行う工程と、を備えることにより制御途中
での一時的混線状態の変動による異常検出での誤位置制
御と誤位置制御の繰返しによる長周期の温度変動を防止
し、一定温度の溶融樹脂をうろことを特徴とする混練機
における樹脂温度調節方法。 2 シリンダとスクリュとの相互間に円錐絞り部を有し
、前記円錐絞り部の間隙大きさを調整すると−とにまり
合成樹脂の混練度を変化させる混練機において、溶融樹
脂の実測温度を検出する樹脂温度検出器と、前記円錐絞
り部の間隙を変えるためのスクリュ移動装置と、前記間
隙位置を検出する位置検出器と、溶融樹脂の温度を設定
し円錐絞り部の間隙を予め予想設定する各設定器と、そ
して温度調節装置とよりなり、更に該温度調節装置は前
記設定温度と実施温度との偏差温度を検出する偏差検出
部と、前記偏差温度を一定時間毎に累算するサンプリン
グ調節部と、前記予め予想設定する設定間隙信号とサン
プリング調節部からの温度修正信号を突き合わす加算部
と、前記加算部からの指示信号と前記位置検出器からの
実測間隙信号とを比較するフィードバックの調節部と、
前記フィードバック調節部からの間隙修正信号で前記ス
クリュ移動装置を作動させるオンオフ調節部を備えるこ
とを特徴とする混線機における樹脂温度調節装置。 3 サンプリング調節部の出力を加算部に与えるその入
力側に自動制御スイッチを設けて、溶融樹脂の実測温度
を制御に加えず、間隙のフィードバック制御のみによる
位置制御をも可能ならしめるようにした特許請求の範囲
第2項記載の混練機における樹脂温度調節装置。
[Claims] 1. A kneading machine that has a conical constriction between a cylinder and a screw, and that changes the degree of kneading of synthetic resin by adjusting the size of the gap between the conical constriction. A step of sampling the deviation between the temperature and the measured temperature, a step of accumulating the sampled values in the sampling step at regular intervals, and adding the accumulated value from the accumulating step to the set gap signal as a temperature correction signal. and a step of correcting the gap by giving the added signal as an on/off signal to the screw moving device in stages, thereby preventing incorrect positioning control and incorrect positioning due to abnormality detection due to temporary fluctuations in crosstalk during control. A resin temperature adjustment method in a kneading machine that prevents long-term temperature fluctuations due to repeated control and scales molten resin at a constant temperature. 2. In a kneader that has a conical constriction between the cylinder and the screw, and adjusts the gap size of the conical constriction to change the degree of kneading of the synthetic resin, the actual temperature of the molten resin is detected. a screw moving device for changing the gap between the conical constrictions, a position detector for detecting the position of the gap, and a temperature detector for setting the temperature of the molten resin to predict the gap between the conical constrictions in advance. Each setting device is comprised of a temperature control device, and the temperature control device further includes a deviation detection unit that detects a temperature deviation between the set temperature and the operating temperature, and a sampling control unit that accumulates the deviation temperature at regular intervals. a feedback unit that compares the instruction signal from the addition unit with the measured gap signal from the position detector. an adjustment section;
A resin temperature control device in a crosstalk machine, comprising an on/off control section that operates the screw moving device using a gap correction signal from the feedback control section. 3. A patent that provides an automatic control switch on the input side that feeds the output of the sampling adjustment section to the addition section, making it possible to control the position only by feedback control of the gap without adding the actually measured temperature of the molten resin to the control. A resin temperature control device in a kneading machine according to claim 2.
JP53038767A 1978-04-04 1978-04-04 Method and device for controlling resin temperature in a kneader Expired JPS5835444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53038767A JPS5835444B2 (en) 1978-04-04 1978-04-04 Method and device for controlling resin temperature in a kneader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53038767A JPS5835444B2 (en) 1978-04-04 1978-04-04 Method and device for controlling resin temperature in a kneader

Publications (2)

Publication Number Publication Date
JPS54131662A JPS54131662A (en) 1979-10-12
JPS5835444B2 true JPS5835444B2 (en) 1983-08-02

Family

ID=12534432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53038767A Expired JPS5835444B2 (en) 1978-04-04 1978-04-04 Method and device for controlling resin temperature in a kneader

Country Status (1)

Country Link
JP (1) JPS5835444B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537724Y2 (en) * 1986-07-09 1993-09-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013102593B4 (en) * 2013-03-14 2019-05-23 Cavitatorsystems Gmbh Mediale Mischsysteme & Anlagen Method for adjusting the flow of a cavitation mixer for a hygienically produced fluid mixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537724Y2 (en) * 1986-07-09 1993-09-24

Also Published As

Publication number Publication date
JPS54131662A (en) 1979-10-12

Similar Documents

Publication Publication Date Title
US4430698A (en) Three-mode process control
DE602005003185T2 (en) Control of an injection molding machine
EP0429959B1 (en) Apparatus for controlling a heating temperature
US5551857A (en) Cylinder temperature controller for an injection molding machine
WO2018202773A1 (en) Control and regulation of the pressure of a cyclically operating injection moulding machine
US4804505A (en) Method of operating a screw extruder and screw extruders for carrying out said methods
JPS5835444B2 (en) Method and device for controlling resin temperature in a kneader
JPS5851126A (en) Method of controlling mold gate balance and apparatus therefor
DE69915173T2 (en) Method for controlling the drive of a screw in an injection molding machine
DE3833776A1 (en) Apparatus for the extrusion of a thermoplastic melt
JP2001265408A (en) Device and method for controlling temperature of heat system plant
JPH06285938A (en) Method and apparatus for controlling speed of injection molding machine
JP3881633B2 (en) Mold clamping control method of injection molding machine
JPS6331731A (en) Precision control of extruder or the like
JP3962355B2 (en) Mold clamping control method of injection molding machine
JP3244373B2 (en) Reservoir internal pressure adjusting device in injection molding machine
JPH0422130B2 (en)
JPH07205230A (en) Reservoir inner pressure regulating method for injection molding machine
JP2585103B2 (en) Injection molding method
JP2681090B2 (en) Speed control method of gear pump in extrusion molding apparatus
JPH01122425A (en) Control method of extruding machine
JPS61121921A (en) Control of metering speed of injection molding machine
GB2041273A (en) Producing extrusion profiles
JPH0566851B2 (en)
JPS61144327A (en) Back pressure controller of resin extruder