JPH0422130B2 - - Google Patents

Info

Publication number
JPH0422130B2
JPH0422130B2 JP1632086A JP1632086A JPH0422130B2 JP H0422130 B2 JPH0422130 B2 JP H0422130B2 JP 1632086 A JP1632086 A JP 1632086A JP 1632086 A JP1632086 A JP 1632086A JP H0422130 B2 JPH0422130 B2 JP H0422130B2
Authority
JP
Japan
Prior art keywords
pressure
injection
holding
control
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1632086A
Other languages
Japanese (ja)
Other versions
JPS62174126A (en
Inventor
Kazumitsu Oomori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiki Seisakusho KK
Original Assignee
Meiki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiki Seisakusho KK filed Critical Meiki Seisakusho KK
Priority to JP1632086A priority Critical patent/JPS62174126A/en
Publication of JPS62174126A publication Critical patent/JPS62174126A/en
Publication of JPH0422130B2 publication Critical patent/JPH0422130B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は射出成形機の射出圧力を制御する方法
に関し、特に、射出充填圧力から射出保持圧力へ
切換える際の油圧シヨツクをなくしてスムーズな
射出圧力を得るための射出成形機の射出圧力制御
方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for controlling the injection pressure of an injection molding machine, and in particular to a method for smooth injection by eliminating the hydraulic shock when switching from injection filling pressure to injection holding pressure. The present invention relates to an injection pressure control method for an injection molding machine to obtain pressure.

(従来の技術) 従来、適正な射出成形を行なうには、均一に可
塑化された所定量の溶融樹脂を金型構造に即した
適切な射出圧力と速度で金型に充填し、成形品が
冷却固化されるまで充填圧を正確に保ち適正な冷
却温度で適正時間冷却しなければならない。
(Prior art) Conventionally, in order to perform proper injection molding, a predetermined amount of uniformly plasticized molten resin is filled into the mold at an appropriate injection pressure and speed according to the mold structure, and the molded product is The filling pressure must be maintained accurately and cooling must be carried out at an appropriate cooling temperature for an appropriate amount of time until the product is cooled and solidified.

この適切な射出圧力、即ち良品保持圧力域は製
品デザインの複雑化とともに著しく狭くなつてお
り、時にはバリ、シヨートシヨツト、ウエルドラ
イン、ヒケ、収縮歪、ボイド、ソリ、白化、割れ
等の相反する不良現象が同時に現われ、どちらか
あるいはその両方を容認せざるを得ないケースも
少なくない。
This appropriate injection pressure, that is, the pressure range for maintaining good products, has become significantly narrower as product designs become more complex, and sometimes contradictory defective phenomena such as burrs, short shots, weld lines, sink marks, shrinkage distortion, voids, warping, whitening, and cracks occur. There are many cases where both appear at the same time, and we have no choice but to accept one or both.

このようなことから保圧時間内の自由なタイミ
ングで保持圧力を変えられるようにすることが必
要である。
For this reason, it is necessary to be able to change the holding pressure at any time within the holding pressure time.

そこで、クローズドループによる射出圧力の制
御は第4図に示すブロツクダイヤグラムに基づき
行なわれる。すなわち、射出油圧制御信号SVに
射出シリンダ油圧実測値信号PVを一致するよう
追従させるため、SV信号とPV信号との間に生じ
る定常偏差を0とするように、PID演算制御をす
る。
Therefore, the injection pressure is controlled in a closed loop based on the block diagram shown in FIG. That is, in order to make the injection cylinder oil pressure actual measurement value signal PV follow the injection oil pressure control signal SV so as to match it, PID calculation control is performed so that the steady deviation that occurs between the SV signal and the PV signal is set to zero.

PID動作は衆知のように、調整要素において、
制御動作信号とそれを微分した信号および積分し
た信号を適当な比率で加え合わせて調整信号とす
るものであり、ここでは、上記偏差を射出保持圧
力の制御時にON動作させる制御信号(HV)に
より、PID演算を行なうようにし、得られた出力
を射出油圧制御信号SVに加えて増巾させ、電磁
比例弁やサーボ弁等に制御信号を出力するように
なつている。
As is well known, in PID operation, in the adjustment element,
An adjustment signal is obtained by adding the control operation signal, its differentiated signal, and its integrated signal at an appropriate ratio.Here, the above deviation is controlled by a control signal (HV) that turns ON when controlling the injection holding pressure. , PID calculations are performed, the obtained output is added to the injection hydraulic pressure control signal SV, amplified, and a control signal is output to the electromagnetic proportional valve, servo valve, etc.

オープン制御は、第4図において、PID演算が
ない回路で行なわれ、一般に設定と制御値の間の
直線性が悪く作動油温等の外乱によつて制御値が
影響される。
Open control, as shown in FIG. 4, is performed by a circuit without PID calculation, and generally the linearity between the setting and the control value is poor and the control value is affected by disturbances such as hydraulic oil temperature.

第5図はオープンループ制御による射出油圧制
御信号SVと射出シリンダ油圧実測値信号PVにつ
いて射出開始Aから射出終了Bまでの時間に対す
る射出圧力Pを示している。
FIG. 5 shows the injection pressure P with respect to the time from injection start A to injection end B with respect to the injection oil pressure control signal SV and the injection cylinder oil pressure actual measurement value signal PV under open loop control.

ここで、C点は射出充填圧力から保持圧力に切
換わる時点を示し、区間X1が充填時間、区間X2
が保圧時間である。
Here, point C indicates the point at which the injection filling pressure switches to the holding pressure, section X 1 is the filling time, and section X 2
is the pressure holding time.

また、クローズドループ制御では電磁比例弁や
サーボ弁によつて制御された射出シリンダ油圧か
らのフイードバツク信号により射出シリンダの油
圧制御を保圧工程中において段階的に行ない、設
定した射出油圧制御信号SVに射出シリンダ油圧
実測値信号PVを追従させることができるように
なつている。
In addition, in closed-loop control, the injection cylinder oil pressure is controlled in stages during the pressure holding process based on feedback signals from the injection cylinder oil pressure controlled by an electromagnetic proportional valve or servo valve, and the set injection oil pressure control signal SV is controlled. The injection cylinder oil pressure actual measurement value signal PV can be tracked.

したがつて、一般にクローズドループ制御の方
がより好ましい。
Therefore, closed loop control is generally more preferred.

(発明が解決しようとする問題点) しかしながら上記のオープンループ制御におい
て、保圧切換時点Cで電磁リリーフ弁の設定圧力
は急激に降下するので、油圧シヨツクが発生す
る。そして、射出油圧制御信号SVに対して、射
出シリンダの動作状態に遅れが生じ、制御対象で
ある射出圧力は制御目標値に追従できないことか
ら厳しい成形条件における制御には問題がある。
(Problems to be Solved by the Invention) However, in the open loop control described above, the set pressure of the electromagnetic relief valve rapidly drops at the pressure holding switching time point C, so that a hydraulic shock occurs. Then, there is a delay in the operating state of the injection cylinder with respect to the injection oil pressure control signal SV, and the injection pressure that is the object of control cannot follow the control target value, which poses a problem in control under severe molding conditions.

また、クローズドループ制御においても、第6
図に示すように、各段階操作時に急激な設定射出
圧力の変化があるため、射出シリンダの動作油圧
がハンチング現象Phを生じやすいという問題が
あつた。
Also, in closed loop control, the sixth
As shown in the figure, since there is a sudden change in the set injection pressure during each step of operation, there was a problem in that the operating oil pressure of the injection cylinder was likely to cause a hunting phenomenon P h .

このハンチング現象が起こると、充填圧力(流
動圧力)から保持圧力に切換えたとき、通常油圧
シヨツクを生じ、ピーク(オーバーシユート)を
生じた場合は成形品にバリを生じやすく、アンダ
ーシユートを生じた場合は成形品はヒケ、シヨー
トシヨツト、ウエルドライン等の欠陥をもたらし
成形不良の原因となつていた。
When this hunting phenomenon occurs, a hydraulic shock usually occurs when switching from filling pressure (flowing pressure) to holding pressure, and if a peak (overshoot) occurs, the molded product is likely to have burrs and undershoot. When this occurs, the molded product suffers from defects such as sink marks, short shots, and weld lines, causing molding defects.

本発明は上記事情に鑑みてなされたもので、マ
イコンによる圧力制御によつて充填工程から保圧
工程への切換時にクローズドループの保圧制御で
あつても油圧シヨツクを生じさせないで、安定し
た成形品を得る射出成形機の射出圧力制御方法を
提供することにある。
The present invention was made in view of the above circumstances, and uses pressure control by a microcomputer to ensure stable molding without causing hydraulic shock even during closed-loop pressure holding control when switching from the filling process to the pressure holding process. An object of the present invention is to provide an injection pressure control method for an injection molding machine for obtaining a product.

(問題点を解決するための手段) 上記目的を達成するため、本発明の射出圧力制
御方法は、所定の圧力に設定された射出圧力によ
り金型内へ溶融成形材料を充填させ、この充填工
程から保圧工程に切換える時点でスクリユを前進
させる射出シリンダの油圧実測値を前記射出圧力
設定に一致させるとともに、保圧工程中、CPU
等の制御手段からそのサンプリング時間毎に出力
される射出油圧制御信号を順次傾斜した折線軌跡
をたどるリニアな変化で保圧時間の各制御区間毎
に設けた圧力設定器の設定値に向つて逐次圧力制
御し、前記油圧実測値を検出する圧力センサの出
力信号PVをフイードバツク信号としてクローズ
ドループ制御することを特徴としている。
(Means for Solving the Problems) In order to achieve the above object, the injection pressure control method of the present invention involves filling a mold with a molten molding material using an injection pressure set to a predetermined pressure, and in this filling process. At the time of switching from the pressure holding process to the pressure holding process, the actual measured hydraulic pressure of the injection cylinder that advances the screw should match the injection pressure setting, and during the pressure holding process, the CPU
The injection hydraulic pressure control signal outputted from the control means at each sampling time is sequentially linearly changed along an inclined broken line trajectory toward the set value of the pressure setting device provided for each control section of the pressure holding time. The pressure is controlled and closed loop control is performed using the output signal PV of the pressure sensor that detects the actual measured value of the oil pressure as a feedback signal.

(作用) このような構成としたことから、金型内に溶融
樹脂を充填する充填油圧は、射出充填工程中徐々
に上昇してゆき、保持圧切換時点に射出シリンダ
の設定射出圧力に一致して保持圧工程に切換るこ
とになる。この後、圧力センサにより検出される
実際の保持圧力が、保持時間の設定タイマにより
区分された各制御区間毎に、圧力設定器の圧力設
定値に向つてクローズドループ制御されることに
なる。
(Function) With this configuration, the filling oil pressure for filling the mold with molten resin gradually increases during the injection filling process, and matches the set injection pressure of the injection cylinder at the time of switching the holding pressure. Then, the process will be switched to the holding pressure process. Thereafter, the actual holding pressure detected by the pressure sensor is controlled in a closed loop toward the pressure setting value of the pressure setting device for each control period divided by the holding time setting timer.

そして、射出油圧制御信号がCPU等の制御手
段におけるサンプリング時間舞の非常に短い周期
で出力されることにより、保持圧力の油圧実測値
と設定圧力値の差を小さくして射出圧力制御する
ことが可能となる。
By outputting the injection hydraulic pressure control signal at a very short cycle of the sampling time of the control means such as the CPU, it is possible to control the injection pressure by reducing the difference between the actual hydraulic pressure value of the holding pressure and the set pressure value. It becomes possible.

したがつて、設定圧力と実際の保持圧力との圧
力差が大きいために起こる油圧シヨツクをなくし
て、安定した成形品を得ることができる。
Therefore, a stable molded product can be obtained by eliminating hydraulic shock caused by a large pressure difference between the set pressure and the actual holding pressure.

(実施例) 本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described based on the drawings.

第1図において、1は射出装置で、ホツパ2か
らの成形材料を油圧モータ3により回転するスク
リユ4で混練するとともに、加熱筒5で溶融し、
射出シリンダ6内へ油圧を提供することによりス
クリユ4を前進させ、溶融成形材料を金型内のキ
ヤビテイ(図示略)へ射出充填するようになつて
いる。
In FIG. 1, 1 is an injection device in which the molding material from a hopper 2 is kneaded by a screw 4 rotated by a hydraulic motor 3, and melted by a heating cylinder 5.
By providing hydraulic pressure into the injection cylinder 6, the screw 4 is advanced, and the molten molding material is injected and filled into a cavity (not shown) in the mold.

7は電磁比例弁又はサーボ弁等で、ポンプ8か
ら射出シリンダ6へ送る油液の流量をコントロー
ルする。9は電磁リリーフ弁で射出シリンダ6へ
の油圧を所定の圧力に設定するものである。
7 is an electromagnetic proportional valve, a servo valve, or the like, which controls the flow rate of the oil sent from the pump 8 to the injection cylinder 6. 9 is an electromagnetic relief valve that sets the oil pressure to the injection cylinder 6 to a predetermined pressure.

本実施例における射出圧力制御方法は、プロセ
ス制御用のCPU10を用いて、射出シリンダ6
に与えられる射出圧力を油圧機構20の操作によ
りコントロールするもので、特に射出充填完了後
の保圧工程をより細く圧力制御するとともに、圧
力設定器11の設定射出圧力の切換時に油圧シヨ
ツクが起らないようになされている。
The injection pressure control method in this embodiment uses the CPU 10 for process control to control the injection pressure at the injection cylinder 6.
The injection pressure given to the injection pressure is controlled by the operation of the hydraulic mechanism 20, and in particular, the pressure is controlled more precisely during the pressure holding process after the completion of injection and filling, and the hydraulic shock is prevented from occurring when changing the injection pressure setting of the pressure setting device 11. It is made so that there is no such thing.

したがつて、保圧の多段階制御を従来のように
それぞれの保圧制御区間を設定するタイマの時刻
毎に各圧力設定器の設定射出圧力に順次切換える
ものでなく、スクリユ4の動作油圧を圧力センサ
12で検出して、時々刻々の射出シリンダ6の油
圧実測値信号をCPU10に入力させ、CPU10
のサンプリング時間に基づき、上記入力信号を追
従するように、設定された射出油圧制御信号を
CPUから出力し、第2図に示すT時間の保圧工
程中、射出圧力の急激な立下りがない折線による
制御パターンによつて圧力制御を行なうものであ
る。
Therefore, multi-stage control of holding pressure is not performed by sequentially switching to the set injection pressure of each pressure setting device at each time of a timer that sets each holding pressure control period, as in the conventional method, but by changing the operating hydraulic pressure of the screw 4. The pressure sensor 12 detects the actual oil pressure of the injection cylinder 6 and inputs the signal to the CPU 10.
Based on the sampling time of , set injection hydraulic pressure control signal to follow the above input signal.
The pressure is controlled by output from the CPU and during the pressure holding process of time T shown in FIG. 2, using a control pattern based on a broken line in which there is no sudden drop in the injection pressure.

その具体的な方法は、まず射出充填工程中はオ
ープンループ制御とし、射出開始時(A)に電磁リリ
ーフ弁9を射出するに必要な適当な圧力に設定さ
れ、この射出圧力aは射出ストローク中のある特
定位置まで保持される。これにより充填圧力は第
2図中破線PVで示す曲線を描いて増圧される。
The specific method is to first use open loop control during the injection filling process, and at the start of injection (A), the electromagnetic relief valve 9 is set to an appropriate pressure necessary for injection, and this injection pressure a is maintained during the injection stroke. is held up to a certain position. As a result, the filling pressure is increased along the curve shown by the broken line PV in FIG.

次に充填途中のあるスクリユストロークで射出
油圧を電磁リリーフ弁9でもう少し低い圧力bに
切換える。この制御信号は保圧切換の油圧設定値
から約20Kg/cm2高くした値とする。
Next, at a certain screw stroke during filling, the injection hydraulic pressure is switched to a slightly lower pressure b using the electromagnetic relief valve 9. This control signal is set to a value approximately 20 kg/cm 2 higher than the oil pressure setting value for pressure holding switching.

この射出圧力a,bによる圧力制御により、射
出シリンダの油圧実測値PV(充填工程中は充填圧
力)は上昇して、保圧切換の油圧設定値に達した
時点で射出充填を完了し保持圧力に切換える。
Due to the pressure control using the injection pressures a and b, the actual measured oil pressure value PV of the injection cylinder (filling pressure during the filling process) increases, and when it reaches the oil pressure setting value for pressure holding switch, injection filling is completed and the holding pressure Switch to

この保圧切換え(保圧制御開始)時点は、タイ
マ13がタイムアツプしたとき、又はスクリユ位
置検出用リミツトスイツチLS1の作動によりスク
リユ4が保圧切換位置に到達したことを示す信号
によつて射出圧力bをその時点の射出シリンダの
油圧実測値PVに一致させ、それ以降保圧工程中
はクローズドループ制御とする。
This holding pressure switching (starting of holding pressure control) is determined when the timer 13 times up or by a signal indicating that the screw 4 has reached the holding pressure switching position due to the operation of the screw position detection limit switch LS1 . b is made to match the actual measured oil pressure value PV of the injection cylinder at that time, and thereafter closed loop control is performed during the pressure holding process.

なお、実施例では保圧切換え時点までに射出圧
力をaからbに低下させているが、このようなこ
とをせず射出圧力aのまま保圧切換を行なつても
よい。さらに、充填工程中はオープンループ制御
とし、保圧工程中はクローズドループ制御とした
が、これも本発明に沿つた圧力制御ができればい
ずれの方式であつてもよい。
In the embodiment, the injection pressure is lowered from a to b by the time the holding pressure is changed, but the holding pressure may be changed without changing the injection pressure a. Furthermore, although open loop control was used during the filling process and closed loop control was used during the pressure holding process, any system may be used as long as pressure control can be performed in accordance with the present invention.

次に、保圧工程(X)は、第2図においてc〜
gまでの区間であり、保持圧力制御を行なう時間
設定Tのタイマ13をn等分したものが各区間c
ないしgとなる。
Next, the pressure holding step (X) is performed from c to c in FIG.
g, and each section is obtained by dividing the timer 13 with time setting T for holding pressure control into n equal parts.
or g.

最初の区間cは保持圧力切換え時の射出シリン
ダ油圧の実測値から保圧第1設定値Dに向けて
T/n時間かけて直線を引いた設定値であり、
CPU10による演算処理により得られる。
The first section c is a set value obtained by drawing a straight line from the actual value of the injection cylinder oil pressure at the time of switching the holding pressure to the first holding pressure setting value D over T/n time,
It is obtained through arithmetic processing by the CPU 10.

以下、保圧第2設定値E以降(n−1)個の設
定値を直線で結んだ折線に沿つて逐次保圧制定値
を得るわけであるが、この勾配圧力設定信号を作
るための演算方式を説明する。
Below, the holding pressure set value is obtained sequentially along a broken line connecting (n-1) set values after the holding pressure second set value E with a straight line.The calculation for creating this gradient pressure setting signal is Explain the method.

第3図に示す第1制御区間T1T2の時間はタイ
マ13のTIM1で設定される。この時間tはあら
かじめ操作パネルで設定してあるので、データと
してCPU10に入力されている。この時間tを
CPU10のサンプリング時間(スキヤン時間)
TSで割つた値t/TSは、第1制御区間における
演算処理の回数Nとなる。即ちN=t/TS また、射出保持圧力に切換わつた時点(T1
で、そのときの射出シリンダ油圧が圧力センサ1
2により計測され、その圧力値をP1とすると、
時間T1から時間T2までの各サンプリング毎の圧
力設定値の変化量ΔPは ΔP=P2−P1/TIM1×TS となる。したがつて、T1からある時間t(但しt
≦TIM1)経過後の圧力Ptは Pt=P1+ΔP×N =P1+P2−P1/TIM1×TS×t/TS =P1+P2−P1/TIM1t …… となる。よつて式によれば任意の時間t経過後
の圧力Ptが線分1 2上にあることがわかる。
The time of the first control section T 1 T 2 shown in FIG. 3 is set by TIM 1 of the timer 13. Since this time t has been set in advance on the operation panel, it is input to the CPU 10 as data. This time t
CPU10 sampling time (scan time)
The value t/T S divided by T S becomes the number N of arithmetic processing in the first control section. That is, N=t/T S Also, the time point when switching to injection holding pressure (T 1 )
Then, the injection cylinder oil pressure at that time is measured by pressure sensor 1.
2, and if the pressure value is P 1 , then
The amount of change ΔP in the pressure setting value for each sampling from time T 1 to time T 2 is ΔP=P 2 −P 1 /TIM 1 × TS . Therefore, a certain time t (however, t
≦TIM 1 ) The pressure P t after elapsed time is P t = P 1 + ΔP × N = P 1 + P 2 − P 1 /TIM 1 × T S × t/T S = P 1 + P 2 − P 1 / TIM 1 t ... It becomes. Therefore, according to the formula, it can be seen that the pressure P t after an arbitrary time t has passed is on the line segment 1 2 .

したがつて、保圧時の射出シリンダの油圧実測
値信号PVは、各圧力設定器により設定された射
出油圧制御信号SVに追従するように折線パター
ン制御でCPUのサンプリング時間に基づいて
時々刻々変化することになり、ハンチング現象の
発生を防止して油圧シヨツクをなくすことが可能
となる。
Therefore, the actual measured oil pressure signal PV of the injection cylinder during pressure holding changes moment by moment based on the sampling time of the CPU using polygonal pattern control so as to follow the injection oil pressure control signal SV set by each pressure setting device. This makes it possible to prevent the hunting phenomenon and eliminate the need for a hydraulic shock.

本実施例によれば、射出油圧制御信号SVを
CPUから出力するための設定方法は、保圧時間
Tを設定するタイマ13と各保圧制御区間の保圧
を設定するn個の圧力設定器11で行なうもので
あるから、従来よのうに各保圧制御区間毎にタイ
マを使用しその設定値を作業者が操作する必要が
なく、単に保圧時間Tをn等分することにより保
圧制御区間を設定することができるので、作業者
の条件設定の簡素化を図ることができる。
According to this embodiment, the injection hydraulic pressure control signal SV is
The setting method for outputting from the CPU is performed using a timer 13 that sets the pressure holding time T and n pressure setting devices 11 that set pressure holding in each pressure holding control section. There is no need for the operator to use a timer for each pressure-holding control period and operate the set value, and the pressure-holding control period can be set by simply dividing the pressure-holding time T into n equal parts. Condition settings can be simplified.

このようなことから、たとえば第2図では、n
=5で保圧設定値をD、E、F、G、Hとしてお
り、充填圧力から保持圧力に切換つた時点Cから
n/T時間かけてDに向い、以下n/T時間の周
期でE、F、G、Hへと結ぶ射出油圧制御信号が
CPUから出力されクローブドループで制御する
ことができる。
For this reason, for example, in Figure 2, n
= 5, the holding pressure set values are D, E, F, G, H, and from the point C when switching from filling pressure to holding pressure, it takes n/T time to move to D, and thereafter, E at a cycle of n/T time. , F, G, H, the injection hydraulic pressure control signal is
It is output from the CPU and can be controlled with a clove droop.

(発明の効果) 以上説明したことから明らかなように、本発明
は射出圧力制御において、充填圧力から保持圧力
に切換わる時点で射出圧力設定を射出シリンダの
油圧実測値に一致させ、かつ保圧時間中はCPU
等の制御手段によりそのサンプリング時間毎に出
力する射出油圧制御信号を各制御区間毎に設定し
た圧力設定器の設定値に向つて折線軌跡をたどつ
て制御されるので、油圧シヨツクをなくして安定
した成形品の精度維持を図ることができ、しかも
保持圧力の制御をきめ細かく確実に行なうことが
できる。
(Effects of the Invention) As is clear from the above explanation, the present invention, in injection pressure control, matches the injection pressure setting to the actual measured oil pressure value of the injection cylinder at the time of switching from filling pressure to holding pressure, and maintains pressure. CPU during time
The injection hydraulic pressure control signal output at each sampling time is controlled by the control means such as the following, following a broken line trajectory toward the set value of the pressure setting device set for each control section, so the hydraulic shock is eliminated and stability is achieved. The precision of the molded product can be maintained, and the holding pressure can be finely and reliably controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る実施例の構成を示す概略
説明図、第2図は本実施例における射出工程の時
間に対する射出圧力の変化を示す圧力制御図、第
3図は本実施例の圧力制御方法を説明する演算式
を導き出すための図である。第4図は通常の射出
圧力制御の方法を示すブロツクダイヤグラム、第
5図は従来例のオープンループによる制御を示す
圧力変化図、第6図は従来例のクローズドループ
による制御を示す圧力変化図である。 4……スクリユ、6……射出シリンダ、10…
…CPU、11……圧力設定器、12……圧力セ
ンサ、SV……射出油圧制御信号、PV……射出シ
リンダの油圧実測値信号。
Fig. 1 is a schematic explanatory diagram showing the configuration of an embodiment according to the present invention, Fig. 2 is a pressure control diagram showing changes in injection pressure with respect to time of the injection process in this embodiment, and Fig. 3 is a pressure control diagram of the embodiment. FIG. 3 is a diagram for deriving an arithmetic expression for explaining a control method. Figure 4 is a block diagram showing a normal injection pressure control method, Figure 5 is a pressure change diagram showing conventional open loop control, and Figure 6 is a pressure change diagram showing conventional closed loop control. be. 4... Screw, 6... Injection cylinder, 10...
...CPU, 11...Pressure setting device, 12...Pressure sensor, SV...Injection hydraulic pressure control signal, PV...Injection cylinder hydraulic pressure actual value signal.

Claims (1)

【特許請求の範囲】[Claims] 1 所定の圧力に設定された射出圧力により金型
内へ溶融成形材料を充填させ、この充填工程から
保圧工程に切換える時点でスクリユを前進させる
射出シリンダの油圧実測値に前記射出圧力設定を
一致させ、さらに保圧工程中、射出圧力を制御す
るCPU等の制御手段からそのサンプリング時間
毎に出力される射出油圧制御信号を保圧時間の各
制御区間毎に設けた圧力設定器の設定値に向つて
変化させることにより順次傾斜した折線軌跡を描
いて射出圧力による保圧制御を行なうようにした
射出成形機の射出圧力制御方法。
1 Fill the mold with molten molding material using an injection pressure set to a predetermined pressure, and at the time of switching from the filling process to the pressure holding process, match the injection pressure setting to the actual oil pressure value of the injection cylinder that advances the screw. Furthermore, during the pressure holding process, the injection hydraulic pressure control signal output from the control means such as the CPU that controls the injection pressure at each sampling time is set to the set value of the pressure setting device provided for each control period of the pressure holding time. An injection pressure control method for an injection molding machine in which holding pressure is controlled by injection pressure by drawing a sequentially inclined broken line locus by changing the direction of the injection pressure.
JP1632086A 1986-01-28 1986-01-28 Control of injection pressure in injection molder Granted JPS62174126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1632086A JPS62174126A (en) 1986-01-28 1986-01-28 Control of injection pressure in injection molder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1632086A JPS62174126A (en) 1986-01-28 1986-01-28 Control of injection pressure in injection molder

Publications (2)

Publication Number Publication Date
JPS62174126A JPS62174126A (en) 1987-07-30
JPH0422130B2 true JPH0422130B2 (en) 1992-04-15

Family

ID=11913194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1632086A Granted JPS62174126A (en) 1986-01-28 1986-01-28 Control of injection pressure in injection molder

Country Status (1)

Country Link
JP (1) JPS62174126A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141221A (en) * 1988-11-24 1990-05-30 Matsushita Electric Ind Co Ltd Control of injection molding machine
JP2636450B2 (en) * 1989-12-27 1997-07-30 トヨタ自動車株式会社 Injection molding machine
JP5805031B2 (en) 2012-08-10 2015-11-04 三菱重工プラスチックテクノロジー株式会社 Fluid pressure source control device and injection molding device
JP6169633B2 (en) 2015-03-04 2017-07-26 ファナック株式会社 Pressure control device for injection molding machine
CN105346038A (en) * 2015-11-23 2016-02-24 高佳 Pressure gauge of vertical injection molding machine

Also Published As

Publication number Publication date
JPS62174126A (en) 1987-07-30

Similar Documents

Publication Publication Date Title
US4917840A (en) Mold compression control process for an injection molding machine and apparatus thereof
US5251146A (en) Injection compression molding method and an apparatus therefor
JPH0422130B2 (en)
JP2628266B2 (en) Speed control method and apparatus for injection molding machine
JP2000052396A (en) Device and method for controlling injection molding
JPS63178021A (en) Method and apparatus for controlling injection molder
JPH0124055B2 (en)
US5543093A (en) Injection molding method and apparatus
JPH0622845B2 (en) Control method of injection molding machine
JP2807924B2 (en) Control device for injection molding machine
JP2629334B2 (en) Injection molding method
JPS6146293B2 (en)
JP2585103B2 (en) Injection molding method
JPH053814B2 (en)
JPS6317020A (en) Controlling method for dwelling in injection molder
JPS6232019A (en) Injection molding machine
JPH04339631A (en) Injection control method of injection molding machine
GB1566315A (en) Controlling the quality of injection moulding
JP3253387B2 (en) Feedback control method for injection molding machine and injection molding machine
KR960016030B1 (en) Method and apparatus for injection compression molding
JPS6237711Y2 (en)
JPH01200928A (en) Speed/pressure control system of injection molding machine
JP2652274B2 (en) Holding pressure control method in electric injection molding machine
JPH0516197A (en) Method for controlling injection of injection molding machine
JPH07186230A (en) Device and method for controlling injection molding

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term