JPS5834525B2 - metal granulation equipment - Google Patents

metal granulation equipment

Info

Publication number
JPS5834525B2
JPS5834525B2 JP14009874A JP14009874A JPS5834525B2 JP S5834525 B2 JPS5834525 B2 JP S5834525B2 JP 14009874 A JP14009874 A JP 14009874A JP 14009874 A JP14009874 A JP 14009874A JP S5834525 B2 JPS5834525 B2 JP S5834525B2
Authority
JP
Japan
Prior art keywords
electrode
rotating electrode
rotating
enclosure
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14009874A
Other languages
Japanese (ja)
Other versions
JPS5090563A (en
Inventor
セー オノラ イブ
デ レイソン ジエラール
ジー モルレ ジヤン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imphy SA
Original Assignee
Imphy SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imphy SA filed Critical Imphy SA
Publication of JPS5090563A publication Critical patent/JPS5090563A/ja
Publication of JPS5834525B2 publication Critical patent/JPS5834525B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/084Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid combination of methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Glanulating (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 本発明は、融点の高い金属の粉を、大きさや特性が調節
できる細かい小球の形に作る製造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of high melting point metal powders in the form of fine globules of adjustable size and properties.

回転電極を用いた粉末化方法により金属粉を得る方法は
知られている。
A method of obtaining metal powder by a powdering method using a rotating electrode is known.

この方法により、粉にすべき合金で作られた円筒形の又
はほぼ円筒形の回転電極は、その軸のまわりを回転せし
められる。
With this method, a cylindrical or nearly cylindrical rotating electrode made of the alloy to be ground is caused to rotate about its axis.

この軸は水平又は垂直である。This axis can be horizontal or vertical.

例えば電気アークのような細い加熱源は電極の自由端(
他端は固定されそれへ給電されている)に生じる。
A thin heating source, e.g. an electric arc, is used at the free end of the electrode (
The other end is fixed and powered).

遠心力が溶解金属を小滴の形状にする。この小滴はその
自由進路を進む間に凝固しそして冷える。
Centrifugal force forms the molten metal into droplets. This droplet solidifies and cools while traveling along its free path.

一般的に、粉による汚染を防止するために、そのような
装置は金属に対して中性である大気で満たされている囲
いか、真空の囲いの中に配置されている。
Generally, such equipment is placed in an enclosure filled with an atmosphere that is neutral to the metal or in a vacuum enclosure to prevent contamination by powder.

この装置により、合金鋼、ニッケル合金、コバルト合金
、チタン合金、べIJ IJウム、ニオブ、タングステ
ン合金等の融点が高くそして非常に反応性な金属の粉を
得ることが出来る。
This apparatus makes it possible to obtain powders of highly reactive metals with high melting points, such as alloy steels, nickel alloys, cobalt alloys, titanium alloys, aluminum, niobium, and tungsten alloys.

このような方法を用いた公知の装置は、回転電極の回転
軸に対して直角な面に固定した加熱源を具備している。
Known devices using such a method include a heating source fixed in a plane perpendicular to the axis of rotation of the rotating electrode.

加熱は回転電極の回転軸に沿って又は外部に僅かにずれ
て行われる。
Heating takes place along the axis of rotation of the rotating electrode or slightly offset to the outside.

このような配置においては、回転電極の直径は数センチ
メートルに制限される。
In such an arrangement, the diameter of the rotating electrode is limited to a few centimeters.

例数なら比較的大きな直径の電極を点状に加熱すると隔
解個処は局限され電極を局所的に彫りすぎることSなる
からである。
For example, if an electrode with a relatively large diameter is heated point-wise, the separation will be localized and the electrode will be carved too locally.

このような直径の制限により以下のような不利がもたら
される。
Such diameter limitations bring about the following disadvantages.

一回転電極取付装置が囲いの内部に在る合理的な配置の
場合、回転電極の長さは囲いの寸法により決められるが
、この回転電極はその断面が小さいため比較的軽い。
In the case of a rational arrangement in which the single rotating electrode mounting device is inside the enclosure, the length of the rotating electrode is determined by the dimensions of the enclosure, but this rotating electrode is relatively light due to its small cross section.

従って、各作業により得られる粉の重さも大変制限され
る。
Therefore, the weight of flour obtained from each operation is also very limited.

(直径4CrfLのニッケル合金電極は扉当り10kg
の質量を有する)一回転電極取付装置が囲いの外側に在
る場合、回転電極の長さは増大され得る。
(The nickel alloy electrode with a diameter of 4CrfL is 10kg per door.
The length of the rotating electrode can be increased if the rotating electrode mounting device (having a mass of ) is outside the enclosure.

そのかわりに、周囲空気と囲いとの間の漏密接ぎ目が回
転電極に接してこすれるので、電極棒の全長を完全に真
直ぐにする必要がある。
Instead, the entire length of the electrode rod must be completely straight, as the leaky seam between the ambient air and the enclosure rubs against the rotating electrode.

更に、電極支持装置は、回転電極の送入により回転電極
の消耗が補償されるように動かなければならない。
Furthermore, the electrode support device must move in such a way that the feeding of the rotating electrode compensates for the wear and tear of the rotating electrode.

得られる粉の粒度は次式と回転電極の特性とから決定さ
れる。
The particle size of the obtained powder is determined from the following equation and the characteristics of the rotating electrode.

d = k JE X ここでdはp hv
” 得られた粉の粒の直径で単位はミクロン、hは回転電極
の1分当りの回転速度、Rは回転電極の半径で直径はセ
ンナメートル、rは液状合金の表面張力で単位はerg
/crIL、 pは液状金属の密度で単位は9/cut
、には165X105の近似値定数である。
d = k JE X where d is p hv
” The diameter of the obtained powder grain is in microns, h is the rotational speed of the rotating electrode per minute, R is the radius of the rotating electrode and the diameter is senna meters, and r is the surface tension of the liquid alloy in erg.
/crIL, p is the density of liquid metal and the unit is 9/cut
, is an approximation constant of 165×105.

このように、所定粒度の粉(例えば200μのニッケル
合金の粉)を得る為に直径の小さい電極は6000及至
12000回転/分の回転速度を必要とするが、これは
解決に費用がかかる工学上の問題(漏密接ぎ目、軸承)
を提供する。
Thus, to obtain a powder of a given particle size (e.g. 200μ nickel alloy powder), a small diameter electrode requires a rotation speed of 6,000 to 12,000 revolutions per minute, which is an expensive engineering problem to solve. problems (leaky joints, bearings)
I will provide a.

本発明の目的は、費用のかかる複雑な技術を必要としな
い直径の大きな回転電極を用いることにより、合理的な
大きさの囲いで、粉を得ることを可能にすることである
The aim of the invention is to make it possible to obtain powder in reasonably sized enclosures by using rotating electrodes of large diameter that do not require expensive and complex technology.

この目的のための本発明の装置は、粉にすべき合金から
出来ており、自軸のまわりを回転する電極を熱するため
の細い加熱源を少なくとも1個用いることにより融解に
よって金属粉を作る装置であって、電極の消耗を補償す
るために電極の軸と平行に移動する細い加熱源が回転円
筒軸に垂直な面内でも移動し、従って加熱源の回転電極
の上の衝突点の移動がこの回転電極の末端面全体を包み
粉末化される金属の消耗面を一定速度で進行させるよう
に回転電極の回転も考慮に入れである。
The apparatus of the invention for this purpose is made of an alloy to be ground and produces metal powder by melting by means of at least one narrow heating source for heating an electrode rotating about its own axis. Apparatus in which a thin heating source moving parallel to the axis of the electrode to compensate for wear of the electrode is also moved in a plane perpendicular to the axis of the rotating cylinder, thus shifting the point of impact of the heating source on the rotating electrode. The rotation of the rotating electrode is also taken into account so that the consumable surface of the metal to be powdered envelops the entire end face of the rotating electrode and advances at a constant speed.

本発明の特徴の1つは、細い加熱源が1つの場合、回転
電極の末端面の半径長たけこの加熱源が移動することで
ある。
One of the features of the present invention is that when there is only one thin heating source, the heating source moves over a long radius of the end face of the rotating electrode.

本発明の特徴の1つは、回転電極から放逐されるまた温
かい粉粒が囲いの壁に固くくっつくことがないように放
出粉粒が壁となす角度が10°と60°との間、好まし
くは45°になるように装置を入れる囲いが作られてい
ることである。
One of the features of the invention is that the angle that the ejected powder particles make with the wall is preferably between 10° and 60°, so that the warm particles ejected from the rotating electrode do not stick tightly to the walls of the enclosure. The enclosure in which the device is placed is constructed so that the angle is 45°.

本発明の第1の変形として、粉末化用囲いが粉にされる
金属に対して中性なガスで満たされているなら、細い加
熱源装置は粉にすべき金属と非消耗性電極との間で生じ
る電気アークでもよいし、プラズマトーチでもよい。
In a first variant of the invention, if the pulverizing enclosure is filled with a gas that is neutral to the metal to be pulverized, the slender heating source device connects the metal to be pulverized and the non-consumable electrode. An electric arc generated between the two or a plasma torch may be used.

非消耗性電極すなわちプラズマトーチは、回転電極の回
転軸と平行な垂直軸に固定されており、そしてこの回転
軸に対して少なくとも回転電極の半径の半分たけ位置を
ずらせている。
The non-consumable electrode or plasma torch is fixed to a vertical axis parallel to the axis of rotation of the rotating electrode and offset relative to this axis by at least half the radius of the rotating electrode.

非消耗性電極すなわちプラズマトーチは、電気アーク又
はプラズマが回転電極の消耗面の中心に届くように、そ
して回転電極の軸の回転後は面の端に届くように回転お
よび移動可能なアームを介して垂直軸に固定されている
A non-consumable electrode or plasma torch is constructed by means of an arm that is rotatable and movable so that the electric arc or plasma reaches the center of the consumable surface of the rotating electrode and, after rotation of the axis of the rotating electrode, the edge of the surface. and fixed on the vertical axis.

回転電極の消耗を補償するために回転電極の回転軸に平
行に行なわれる非消耗性電極すなわちプラズマトーチの
移動は、平行軸の移動により達成される。
Movement of the non-consumable electrode or plasma torch parallel to the axis of rotation of the rotating electrode to compensate for wear of the rotating electrode is accomplished by movement of the parallel axis.

本発明の第2の変形として、粉末化用囲いが真空にされ
た時、加熱は電子銃によって行なう事が出来る。
In a second variant of the invention, heating can be performed by an electron gun when the powdering enclosure is evacuated.

この電子銃は第1の変形においてと同じように垂直軸に
固定されたアームに固定することも出来るし、もつと簡
単に固定させることも出来る。
This electron gun can be fixed, as in the first variant, to an arm fixed on a vertical axis, or it can be fixed simply.

後の場合において、回転電極の消耗の補償は電子銃の集
束の進行の変化によって行うことが出来る。
In the latter case, compensation for the wear of the rotating electrode can be achieved by changing the focusing progress of the electron gun.

回転電極を規則正しく消耗させるための、回転電極の半
径方向にわたる電子束の衝撃点の移動は、電子束の偏向
により行うことが出来る。
The movement of the point of impact of the electron flux over the radial direction of the rotating electrode in order to wear the rotating electrode in an orderly manner can be achieved by deflection of the electron flux.

電子束の集束の変化および偏向は電子銃の上の普通の電
磁装置により行なわれる。
Changing the focus and deflection of the electron flux is performed by conventional electromagnetic devices on the electron gun.

本発明の第3の変形として、保持されている細い加熱源
装置が前例のように電気アーク又はプラズマトーチであ
る時、別々の電力供給をする為に2つの非消耗性電極、
又は2つのプラズマトーチを用いることが出来る。
In a third variant of the invention, when the slender heating source device held is an electric arc or plasma torch as before, two non-consumable electrodes are provided for separate power supplies;
Or two plasma torches can be used.

加熱源の2つの頭部を1つの軸に固定した1つのアーム
に固定せしめることも出来る。
It is also possible to have the two heads of the heating source fixed to one arm which is fixed to one shaft.

これらの2つの頭部は回転電極の同一半径上でこの回転
電極の判径の173と回転電極の半径長との間、好まし
くは半径長のほぼl/2の距離たけ離れている。
These two heads are spaced apart on the same radius of the rotating electrode by a distance between 173 of the diameter of the rotating electrode and the radial length of the rotating electrode, preferably approximately 1/2 of the radial length.

この2つの加熱頭部を、別々の2つの軸に固定した別々
の2つのアームに固定することも出来る、軸およびアー
ムの配置、およびそれらの運動の制限は、2つの加熱頭
部が接触し得ることなく回転電極の前部の表面の全体が
掃引されるように、行なわれる。
The two heating heads can also be fixed on two separate arms fixed on two separate shafts. This is done in such a way that the entire surface of the front of the rotating electrode is swept without any interference.

本発明がよく理解されるように、金属粉製造の為の本発
明装置の2つの実施例を以下に叙述するが、本発明はこ
れらに制限されるものではない。
In order that the invention may be better understood, two embodiments of the inventive apparatus for producing metal powder will be described below, but the invention is not limited thereto.

第1の実施例においては上記した本発明の第1の変形と
同様、加熱手段は電気アークである。
In the first embodiment, as in the first variant of the invention described above, the heating means is an electric arc.

第1図はこの第1実施例の粉末化用囲いの縦断面図であ
る。
FIG. 1 is a longitudinal sectional view of the powdering enclosure of this first embodiment.

回転電極1はこの回転電極に作られている柄3を介して
心棒2に固定されている。
A rotating electrode 1 is fixed to a shaft 2 via a handle 3 formed on the rotating electrode.

心棒2は、駆動軸4および垂直中間軸5を介して、10
00乃至3000回転/回転速変速度で動く電動機6に
接続されている。
The mandrel 2 is connected via a drive shaft 4 and a vertical intermediate shaft 5 to 10
It is connected to an electric motor 6 that operates at variable speeds of 00 to 3000 revolutions/rotation.

青銅円盤および石墨の摩擦部システム7が電気ケーブル
8を介して軸4を直流発電機(図示せず)に電気的に接
続することを許容している。
A bronze disc and graphite friction system 7 allows the shaft 4 to be electrically connected via an electrical cable 8 to a DC generator (not shown).

回転電極1は壁の冷やしであるスリーブ9を介して、囲
い13の内の適当な高さまで運ばれる。
The rotating electrode 1 is conveyed to a suitable height within the enclosure 13 via a wall cooling sleeve 9.

粉をとり入れる容器12を囲い13の円錐形の下方部分
の中央に置くことが出来るように、回転電極1は囲い1
3の軸に対して僅かにずれた位置に在る。
The rotating electrode 1 is connected to the enclosure 1 in such a way that the container 12 for receiving the powder can be placed in the center of the conical lower part of the enclosure 13.
It is located at a position slightly shifted from the axis of 3.

囲い13は、冷却不可能な僅かの場所(丸窓、フランジ
、漏密通路)を除いては完全に冷却される。
The enclosure 13 is completely cooled except for a few places where cooling is not possible (portholes, flanges, leaky passages).

囲い13の上方部分11は粉末にする作業に役立つ熱線
および紫外線から適当に保護されている2つの丸窓14
および15を含んでいる。
The upper part 11 of the enclosure 13 has two round windows 14 which are suitably protected from heat and ultraviolet radiation to aid in the powdering operation.
and 15.

囲い13のこの上方部分にははめ輪16があり、このは
め輪16は、オリフィス18の助けにより中性の空気を
囲いの中に満たす前にこの囲いをからにするための第2
の真空ポンプに接続しているオリフィス17につながっ
ている。
In this upper part of the enclosure 13 there is a ferrule 16 which serves to empty the enclosure before filling it with neutral air with the aid of an orifice 18.
It is connected to an orifice 17 which is connected to a vacuum pump.

電気アークは回転電極1の上面19と非消耗電極20と
の間で発生する。
An electric arc occurs between the upper surface 19 of the rotating electrode 1 and the non-consumable electrode 20.

冷却水と電流とが冷却ケーブル21を通って入って来る
がこの冷却ケーブル21は電気ケーブル22を通って直
流発電機につながる前に、囲いから電気絶縁された漏密
通路を通ってはめ輪16を横断している。
Cooling water and electrical current enter through a cooling cable 21 which passes through an electrically insulated leakage passage from the enclosure to the ferrule 16 before being connected to the DC generator via an electrical cable 22. is crossing.

非消耗電極20の頭部は垂直軸24と接続されている水
平アーム23に機械的に接続されているが電気的には絶
縁されている。
The head of the non-consumable electrode 20 is mechanically connected, but electrically insulated, to the horizontal arm 23 which is connected to the vertical shaft 24.

この垂直軸24は漏密通路を通って囲いの上方部分11
を横切っておりそして囲いの外部に置かれた2個の装置
25および26を介して移動運動又は回転運動を与える
ことが出来る。
This vertical axis 24 passes through the leakage passage into the upper part 11 of the enclosure.
A translational or rotational movement can be imparted via two devices 25 and 26 which are placed across the enclosure and placed outside the enclosure.

直径約2.5m高さ約2771のこのような装置は直径
100乃至300mm高さが20mと70cmの間の回
転電極を粉にすることが出来る。
Such a device with a diameter of about 2.5 m and a height of about 2771 is capable of pulverizing rotating electrodes with a diameter of 100 to 300 mm and a height of between 20 m and 70 cm.

例えば、第1図の装置を用いて毎秒24センチメートル
の加熱源の自由端面における移動速度120mm直径の
ニッケル合金の電極、3000回転/回転速度では次の
粒径分布が得られた。
For example, using the apparatus of FIG. 1 with a moving speed at the free end of the heating source of 24 centimeters per second, a 120 mm diameter nickel alloy electrode, and a rotation speed of 3000 rpm, the following particle size distribution was obtained.

〈630μ 98.5% 〈500μ 93.3% 〈315μ 21% 〈250μ 14.7% 制限するものとしてではなく例として本書に挙げられて
おり、前述した第3の変形と一致する第2の実施例にお
いては、別々の2つの加熱頭部が準備され、この2つの
頭部は決して接触しない。
〈630μ 98.5% 〈500μ 93.3% 〈315μ 21% 〈250μ 14.7% A second implementation, which is mentioned in this document by way of example and not as a limitation, and is consistent with the third variant mentioned above. In the example, two separate heating heads are provided, the two heads never touching.

第2図はこのような実施例の平面図である。FIG. 2 is a plan view of such an embodiment.

消耗回転電極27は、別々の2つのアーム30および3
1に配置された2つの加熱頭部28および29の下に置
かれており、そして円運動をするように駆動されている
The consumable rotating electrode 27 is arranged in two separate arms 30 and 3.
1 and driven in a circular motion.

その結果、溶解すべき電極27の前部表面の全部が2つ
の加熱頭部によって走査されるがこれらの加熱頭部は接
触することが出来ない。
As a result, the entire front surface of the electrode 27 to be melted is scanned by the two heating heads, which cannot come into contact.

第3a 、3b図を参照して回転電極27の自由端面に
対し加熱頭部28がどのような軌跡を画くかを説明する
The trajectory of the heating head 28 with respect to the free end surface of the rotating electrode 27 will be described with reference to FIGS. 3a and 3b.

第3a図に示すように反時計方向に回転する金属電極の
自由端面の縁からその中心に向って進む加熱頭部は、第
3b図に示すように次第に半径が縮少していき中心に向
って収斂していくらせん形を画き、それにより回転電極
の自由端面を均一に溶融させる。
As shown in Fig. 3a, the heating head advances from the edge of the free end surface of the metal electrode toward its center as shown in Fig. 3b, and its radius gradually decreases toward the center as shown in Fig. 3b. A converging spiral shape is created, thereby uniformly melting the free end surface of the rotating electrode.

均等の方法の使用を考えると同様、本発明の範囲から逸
脱することなく細部を変形および改良することも勿論可
能である。
Variations and modifications in detail are of course possible without departing from the scope of the invention, as well as the use of equivalent methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の第1の実施例の縦断面図、i 第
2図は本発明装置の第2の実施例の平面図である。 第3a図および第3b図は回転電極の自由端面上に加熱
頭部が画く移動軌跡を示す。 図において1,27は回転電極、2は心棒、3は回転電
極1の軸、4は駆動軸、6は電動機、12ン は容器、
13は囲い、20は電極、23 、30 。 31はアーム、28.29は加熱頭部をそれぞれ示す。
FIG. 1 is a longitudinal sectional view of a first embodiment of the device of the present invention, and FIG. 2 is a plan view of a second embodiment of the device of the present invention. Figures 3a and 3b show the locus of movement of the heating head on the free end surface of the rotating electrode. In the figure, 1 and 27 are rotating electrodes, 2 is a shaft, 3 is the axis of rotating electrode 1, 4 is a drive shaft, 6 is a motor, 12 is a container,
13 is a enclosure, 20 is an electrode, 23, 30. 31 indicates an arm, and 28.29 indicates a heating head.

Claims (1)

【特許請求の範囲】 1 縦軸に垂直な自由端面を有する金属体を取付ける取
付台; この取付台を回転させるモーフ; 前記の自由端面の中心と縁との間で前記の金属体の回転
周期よりも小さい周期で少なくとも一つの加熱点を往復
動させる加熱装置;及び 前記の金属体の消耗を補償するため前記の金属体の縦軸
と平行に前記の加熱点と前記の自由端面とを接近させる
送り手段 を備え、前記の金属体の回転と前記の加熱点の往復動と
が前記の金属体の自由端面を均一に溶融させ、溶融した
金属を遠心力により飛散させ、粒状化することを特徴と
する金属粒状化装置。
[Claims] 1. A mounting base for mounting a metal body having a free end face perpendicular to the vertical axis; A morph for rotating this mounting base; A rotation period of the metal body between the center and the edge of the free end face; a heating device for reciprocating at least one heating point with a period smaller than 1; and a heating device that moves the heating point and the free end face parallel to the longitudinal axis of the metal body in order to compensate for wear of the metal body; The rotating metal body and the reciprocating motion of the heating point uniformly melt the free end surface of the metal body, and the molten metal is scattered by centrifugal force and granulated. Features of metal granulation equipment.
JP14009874A 1973-12-07 1974-12-05 metal granulation equipment Expired JPS5834525B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7343735A FR2253591B1 (en) 1973-12-07 1973-12-07

Publications (2)

Publication Number Publication Date
JPS5090563A JPS5090563A (en) 1975-07-19
JPS5834525B2 true JPS5834525B2 (en) 1983-07-27

Family

ID=9128885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14009874A Expired JPS5834525B2 (en) 1973-12-07 1974-12-05 metal granulation equipment

Country Status (7)

Country Link
JP (1) JPS5834525B2 (en)
CA (1) CA1039057A (en)
CH (1) CH598895A5 (en)
FR (1) FR2253591B1 (en)
GB (1) GB1481713A (en)
IT (1) IT1027018B (en)
SE (1) SE404147B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU933122A1 (en) * 1977-03-22 1982-06-07 Предприятие П/Я Г-4361 Apparatus for producing pellets
US4435342A (en) * 1981-11-04 1984-03-06 Wentzell Jospeh M Methods for producing very fine particle size metal powders
FR2538527B1 (en) * 1982-12-24 1987-06-19 Creusot Loire HEAT EXCHANGE ELEMENT AND METHOD FOR PRODUCING THE SAME
JPS59153807A (en) * 1983-02-21 1984-09-01 Pioneer Electronic Corp Electrode device in device for producing ultrafine metallic particle
JPS61223109A (en) * 1985-03-28 1986-10-03 Dia Shinku Giken Kk Method and apparatus for producing ultrafine particle
GB2196956A (en) * 1986-11-04 1988-05-11 Toyo Kohan Co Ltd Process and apparatus for the production of rapidly solidified powders of high melting point ceramics
US6468669B1 (en) * 1999-05-03 2002-10-22 General Electric Company Article having turbulation and method of providing turbulation on an article
DE602004019594D1 (en) * 2003-03-28 2009-04-09 Toshiba Kk Magnetic composite and process for its production
CN107008913B (en) * 2017-04-21 2023-06-27 西安赛隆金属材料有限责任公司 Vertical powder making equipment and process with plasma rotating electrode
CN117564281B (en) * 2024-01-15 2024-04-05 西安欧中材料科技股份有限公司 Preparation method of low-oxygen increment high-carbon high-alloy high-speed steel powder

Also Published As

Publication number Publication date
FR2253591A1 (en) 1975-07-04
JPS5090563A (en) 1975-07-19
CA1039057A (en) 1978-09-26
DE2455889B2 (en) 1976-08-19
IT1027018B (en) 1978-11-20
DE2455889A1 (en) 1975-06-19
SE404147B (en) 1978-09-25
FR2253591B1 (en) 1977-01-07
CH598895A5 (en) 1978-05-12
SE7414879L (en) 1975-06-09
GB1481713A (en) 1977-08-03

Similar Documents

Publication Publication Date Title
CA1077210A (en) Method and apparatus for producing high purity metal powders by electron-beam heating
US4474604A (en) Method of producing high-grade metal or alloy powder
JPS5834525B2 (en) metal granulation equipment
US4218410A (en) Method for the production of high-purity metal powder by means of electron beam heating
US3963812A (en) Method and apparatus for making high purity metallic powder
CN115135435B (en) Device for producing metal powder by centrifugal atomization
US4238427A (en) Atomization of molten metals
US4036568A (en) Machines for manufacture of powders
CA1219550A (en) Rotary electrode disc apparatus
US4639567A (en) Method and apparatus for melting rod-shaped material with an induction coil
CN114918420A (en) Apparatus and method for manufacturing powder material
US4067674A (en) Furnace for the production of spherical particles
WO1988001919A1 (en) Apparatus for producing powder and process for its production
JP2021188091A (en) Powder production apparatus
KR102465825B1 (en) Apparatus for manufacturing metal power using thermal plasma and its manufacturing method
CN207952633U (en) The preparation facilities of superfines
JPH03107404A (en) Method and apparatus for manufacturing metal powder
JP2808836B2 (en) Powder manufacturing apparatus and powder manufacturing method
JP2808835B2 (en) Powder manufacturing apparatus and powder manufacturing method
RU2048276C1 (en) Metal powder production apparatus
JPS63210206A (en) Apparatus for producing metal powder
DE2455889C3 (en) Device for producing metal or alloy powder by atomizing a rotating electrode
WO1993013898A1 (en) Production of atomized powder of quenched high-purity metal
TWM545237U (en) Feeding mechanism of electron beam melting furnace
JPS61170503A (en) Production of pulverous powder of aluminum or aluminum alloy