JPS5834436A - Driving method of electro-optical device - Google Patents

Driving method of electro-optical device

Info

Publication number
JPS5834436A
JPS5834436A JP56133150A JP13315081A JPS5834436A JP S5834436 A JPS5834436 A JP S5834436A JP 56133150 A JP56133150 A JP 56133150A JP 13315081 A JP13315081 A JP 13315081A JP S5834436 A JPS5834436 A JP S5834436A
Authority
JP
Japan
Prior art keywords
layer
light
liquid crystal
transparent
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56133150A
Other languages
Japanese (ja)
Other versions
JPS6257016B2 (en
Inventor
Tatsuo Masaki
正木 辰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP56133150A priority Critical patent/JPS5834436A/en
Priority to US06/396,051 priority patent/US4538884A/en
Publication of JPS5834436A publication Critical patent/JPS5834436A/en
Publication of JPS6257016B2 publication Critical patent/JPS6257016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1354Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied having a particular photoconducting structure or material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1357Electrode structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To realize the DC driving and to facilitate a display of animations for an electro-optical device, by forming a liquid crystal light valve with a photoconductive layer having the rectifying properties. CONSTITUTION:A rectifying photoconductive layer 9 containing a base layer 9a, an i-layer 9b and an n-layer 9c is provided on a transparent electrode 2b on a transparent substrate 1b. A reflecting mirror 8, a transparent insulating layer 7 and a light shielding layer 5 are formed on the layer 9. Then a deflecting plate 10 and a transparent electrode 2a are provided on both surfaces of another transparent electrode 1a, and a liquid crystal layer 3 is enclosed between the layer 5 and the electrode 2a. Thus a light valve is obtained. The DC voltage adverse to the rectifying properties of the layer 9 is applied, and then the wirting optical signal is projected to form a projected image. While the projected image is erased by applying the DC voltage forward to the rectifying properties of the layer 9. Thus the DC driving is made possible, and a display of animations is facilitated.

Description

【発明の詳細な説明】 本°)と明け、丸による入力1象を光+1−.効果によ
って投E +’!:に変換するrfc ’jA光学装置
の駆動方法に関する。
[Detailed Description of the Invention] [This °] and dawn, input one image by a circle to light +1-. Throw E +' by effect! The present invention relates to a method for driving an optical device that converts rfc'jA into:.

1汀)+2、この111丁の′7i?、気光学装置とし
て液晶ライトパルプ(光1「)なるものが知られている
。その−Illlとして、特開昭56−4:(681号
公報に於ては、液晶層と一′fljミラーと、2個の透
明’Ii(杓4間に挾まれた光電感応層C)+1:pR
−屯ハri )とから成る薄膜の多層摘逍をとるii’
i、’晶うイトパルプが開示されている。そして、この
()1なt+V−晶う・f l−パルプに尻・て、前記
−′市ミラーP;l1、Ai7品層側から入射する投影
光がっ℃碑’i Jt’=にr1遠しηい5瓶q1前に
反射させる為に必裟左要メ、である。
1) +2, '7i of this 111 gun? A liquid crystal light pulp (light 1'') is known as a gas optical device. , two transparent 'Ii (photoelectric sensitive layer C sandwiched between ladle 4) +1:pR
ii'
i, 'Crystallite pulp is disclosed. Then, the projection light incident from the -' city mirror P; This is necessary in order to reflect the light in front of the 5 bottles q1 far away.

)0丁かる誘′「[Lミラーとして乾1.1′/すえげ
’;1nS1Na、 AtF’、、tVIgF2、T 
i 02.5j02 鵠から1戊る多層1+aを用いて
いる。このとさ、「す視域全域の波」シ光を反射する肪
屯ミラーをf;芋るXbにQll、約151−以上の積
層体を各層厚の打言it、 )、、XbII +fil
 <r:行4・いつつ作成する必要があり、相当に高度
なIil!造技術全技術る。又、仮に前述の1」的を以
て作成された誘電ミラーであっても、実1ルミには、投
影光を完俄には皮材1することができず、)゛乙’3 
’+1. Iii!と訪′屯ミラーとの間に別途、光吸
収ハクイl−設けてその機能を袖りことが8決でめっ、
・λ、。
)
i 02.5j02 Multi-layer 1+a is used. In this case, we will use a flat mirror that reflects light from "waves throughout the viewing area";
<r: Line 4・It is necessary to create a very advanced Iil! All manufacturing technology. Furthermore, even if a dielectric mirror is made with the above-mentioned objective 1, it is not possible to completely transmit the projected light to the actual lumi.
'+1. Iiii! A separate light-absorbing filter is provided between the mirror and the mirror, and its function can be removed.
・λ,.

従って、この(求な従来の欣晶ノイドバルブでは、所期
の機能が光分にはづt−暉され−r%珪つ復雑な構造に
なる−にその製造にも手間がかかり、製造コストも高い
ものとなっていた。
Therefore, in the conventional cylindrical nodule valve, the desired function is not achieved by the light beam, resulting in a complicated structure. The cost was also high.

又、この様な従来の液晶ライトパルプでは、直流電圧駆
動することが困難であった。
Furthermore, it has been difficult to drive the conventional liquid crystal light pulp using a DC voltage.

そこで、本発明は、」υiかる従来の諸欠点を除去する
と共に、直流駆動を可能にして動画表示が容易である。
Accordingly, the present invention eliminates the various drawbacks of the conventional art, and also enables direct current driving, thereby facilitating the display of moving images.

一般には液晶ライトバルブと呼ばれる電気光学装置II
′tの駆動方法を提供することをiI的とするものであ
る。
Electro-optical device II, commonly called liquid crystal light valve
The main purpose of this invention is to provide a driving method for ``t''.

この様な目的を達成する本発明は、液晶層及び帳流性を
有する光、;s 電層を具え、光による人力1少を光′
屯効果によって投影1家に変換する電気バ;字装置に対
し、前記光導電層の1昏流性と逆方向になる直i>IF
、 ’Elf圧を印加して寸F込光信号を前dピ尤々ト
面層に投射することにより前記液晶層に拭づく投影像を
形成する過程と、前記光2Ji電層の1に雌性と順方向
に電圧を印加して前記投影像を消去するa程とを含むこ
とを特徴とする゛、lt、気光学装(置の駆動方法であ
る。
The present invention, which achieves such objects, comprises a liquid crystal layer and a liquid crystal layer;
For an electrical bar-shaped device that converts the projection into a projection by the tun effect, the direction opposite to the direction of the projection of the photoconductive layer is >IF.
, a process of forming a projected image on the liquid crystal layer by applying an Elf pressure and projecting an optical signal containing a dimension onto the front surface layer; and a step of applying a voltage in the forward direction to erase the projected image.

以下、図面を用いて具体例によって本発明の詳細な説明
する。
Hereinafter, the present invention will be explained in detail by way of specific examples using the drawings.

′fJ1図は、ライトバルブ装置の一例の略画断面図で
あり、図に於て、1. +1 口偏九子叫である。
Figure 'fJ1 is a schematic sectional view of an example of a light valve device, and in the figure, 1. +1 It's a loud cry.

la、lbは共に透明梳板で、ガラス版又は樹脂板より
成る。又s  2 a%  2 b i1共に埼明電極
で、例えば5n02やIn、 (S n ) Os Q
’Pの#J Jl:aQ!ノさ、500〜3000 A
程度)から成る。3は液晶層、又、4はスペーサーであ
って、液晶I43を密封すると共に、このj−厚を調整
する為のものであ樹脂製接着剤が用いられる。液晶層:
3に於ける液晶構造の変化には、通常DSMのように電
流効果によるものの他、TN方式(ねじれネマチック効
果)、I)AP(電界制tall PM屈折効果)方式
、相遷移方式あるいはGH(ゲストホスト効果)方式の
ように電界効果によるものがあるが、この図示例ではG
 H方式が好MM fxものとして採用されている。具
体的に、このG■■(ゲストホスト)液晶層3に用いる
液晶に就いては特に制限に1ないが、駆動時の温度上昇
を考慮してクリアリング温IWが50℃以上、望ましく
は60℃以液晶にゲストとして混入される染料としては
耐光性の良い、例えば、アンスラキノン系の染料が好ま
しく用いられる。このとき、液晶中の染料の含有h1け
、液晶の抽類によって左右されるが、通常、!lj 1
1に%で0.05〜10条、望ましくは、0.1〜5チ
である。更にこの液晶層3の厚さは一般に1〜20μm
程度とし、液晶の性14¥、応答速度1、駆動電圧等に
よって適切な厚さが設定される。5は遮光層であり、カ
ーボンや金属を堆積法により厚さ500八〜2μm程度
に成膜させたものである。そして、この遮光層5は第1
図のA、A’純に於ける切断平面図である第2図のと1
?りの平面形状を有し、この遮光層5には多数の4孔(
jが配列しである。尚、との透孔6の一つが、投影1ψ
に於ける一画素に相当する。因に、これη−の透孔6の
形状は、図示例の正方形のみに限られず、任漬の形状の
ものとすることができる。更に、第1図中の7は透光性
絶縁層層で、望ましくは l (JltΩ・on以上の
体積IJ(抗率を有する。これは例えは、グロー放電分
Jγr法によって形成されるsic 、 S:、N、の
)換、スパッタ蒸宿法等によシ形成される5ioz膜や
Pb1’i0a、1生ZT 。
Both la and lb are transparent carded plates made of glass plates or resin plates. Also, both s 2 a% 2 b i1 are Saimei electrodes, such as 5n02, In, (S n ) Os Q
'P's #J Jl:aQ! Nosa, 500-3000 A
degree). 3 is a liquid crystal layer, and 4 is a spacer for sealing the liquid crystal I43 and adjusting the j-thickness, and a resin adhesive is used. Liquid crystal layer:
In addition to the current effect as in DSM, changes in the liquid crystal structure in 3) include the TN method (twisted nematic effect), I) AP (field-controlled tall PM refraction effect) method, phase transition method, or GH (guest) method. There are methods that use electric field effects, such as the host effect method, but in this illustrated example, G
The H method has been adopted as the preferred MM fx. Specifically, there are no particular restrictions on the liquid crystal used for this G■■ (guest host) liquid crystal layer 3, but in consideration of the temperature rise during driving, the clearing temperature IW should be 50°C or higher, preferably 60°C. As the dye to be mixed as a guest into the liquid crystal below 0.degree. C., it is preferable to use an anthraquinone dye, which has good light resistance. At this time, it depends on the dye content h1 in the liquid crystal and the extraction type of the liquid crystal, but usually! lj 1
It is 0.05 to 10 threads in 1%, preferably 0.1 to 5 threads. Furthermore, the thickness of this liquid crystal layer 3 is generally 1 to 20 μm.
An appropriate thickness is set depending on the properties of the liquid crystal (14 yen), response speed (14 yen), driving voltage, etc. Reference numeral 5 denotes a light-shielding layer, which is formed by depositing carbon or metal to a thickness of about 5008 to 2 μm. This light shielding layer 5 is
Figure 2 and 1 are cutaway plan views of A and A' in the figure.
? This light shielding layer 5 has a large number of 4 holes (
j is an array. Furthermore, one of the through holes 6 with and has a projection 1ψ
corresponds to one pixel in . Incidentally, the shape of the through hole 6 of η- is not limited to the square shown in the example shown, but can be any shape. Furthermore, 7 in FIG. 1 is a transparent insulating layer, which preferably has a volume IJ (resistance of 1 (JltΩ・on) or more. This is, for example, a glow discharge component sic formed by the Jγr method, A 5ioz film, Pb1'i0a, and 1-year-old ZT film formed by S:, N,) conversion, sputter evaporation method, etc.

ポリバラキシリレン等の強誘電体の膜から成る。It consists of a ferroelectric film such as polyvaraxylylene.

そして、との透光性絶縁層7の厚さPi: 1.+ (
100A〜5μIIIの範囲とするのが良い。
And the thickness Pi of the transparent insulating layer 7: 1. + (
It is preferable to set it in the range of 100A to 5μIII.

8は反射ミラーであり、鏡面を成すA/−等金属の厚さ
500A〜1μl’11程度の堆積源から成る。
Reference numeral 8 denotes a reflecting mirror, which is composed of a deposition source of metal such as A/- having a thickness of about 500 A to 1 μl'11 forming a mirror surface.

このミラー8は前記絶縁層7を介して合孔6の全てに対
面する様に多数個配置され、各ミラー8は第1図の]3
.B’線に於ける切HB乎向図である第3図のとおりに
配列しである。尚、このミラー8の1個は、谷ミラーの
1川隙811からのもれ光を防ぐ目的から、少なくとも
r+iJ Me xh孔6の面積以上の面積(広さ)に
成形して・りる09は整流性を示す光導′喝層で、ここ
で謂う、整流性とは後述する様に通常のダイオードに於
ける整流性と異々り史に広い概念である。
A large number of these mirrors 8 are arranged so as to face all of the matching holes 6 through the insulating layer 7, and each mirror 8 is arranged at ]3 in FIG.
.. They are arranged as shown in Figure 3, which is a view of the cut HB direction at line B'. Note that one of the mirrors 8 is molded to have an area (width) at least larger than the area of the r+iJ Me xh hole 6 in order to prevent light from leaking from the valley mirror gap 811. is a light guiding layer that exhibits rectification, and the so-called rectification here has a broader concept than the rectification of ordinary diodes, as will be described later.

ところで、第1図の構成例に於て、遮光層5の透九件絶
縁層71tlllの曲には、カーボン層等のイ;吸1j
S4部材を設けて、投影光のミラー8による反射戻り光
を吸収するのが、投影像のコントラストを−にける為に
は望捷しいことである。
By the way, in the configuration example shown in FIG. 1, the transparent insulation layer 71tlll of the light shielding layer 5 has a
It is desirable to provide the S4 member to absorb the reflected light of the projection light by the mirror 8 in order to reduce the contrast of the projected image.

父、反射ミラー8は、全て導電1イ;から成り、li、
つ分pi1t していなければならないが、その形状の
如(iilは問わ々い。反射ミラー8の全てが分離して
いる理由は、これ等が連続していると、同−電位になっ
て電位差が生じない為、作像が不IIr能になるからで
ある。
The reflective mirror 8 is made of conductive elements 1, li,
The reason why all of the reflecting mirrors 8 are separated is that if they are continuous, they will have the same potential and the potential difference will occur. This is because image formation becomes impossible because no image formation occurs.

ここで、別の図面を用いて、第1図に示した尤’+LF
込)ζIJ液晶ライトパルプの作動に就いてd4・シく
説明すると共に、本発明に於ける“整流性″の抑t r
ξを明確にする。第4図は、第1図のライトバルブ装置
の作動原理を説明する模式図であるO シ゛4)、4凶に於て、透明′〔F極2aと2bとの間
に市原20により所定の直流電界を印加する。このとき
、信号光線が投射された領域では、発生したギヤリア(
図中ではθ印で示す東予)が前記耐昇により反射ミラー
8に移動する。これによって、透明′電極2aと反!1
.1ミラー8の間の?lf圧が透孔6を通して増大し1
.+(+1値をJ+Qえ、/1ダ晶層3に於て、誘電異
方性が正の液晶分子:1αと染料3βとがホモジーニア
ス配向伏j服からポメオトロビック配向伏態に変化する
。そして、ここに、投影光を偏光板10を1lllして
投射すると、偏光が透孔6を通して反射ミラー8に至っ
た後とこで反射され反射光RL、が・1++られる0他
方、信号光線が入射しない領域では、)第1・キャリア
が発生しないので、ギヤリアはjti明′11(極2b
に留り、反射ミラー8へは)多動(7ない。従って、こ
の1易合には液晶層3に印加される′1「、王が閾値を
越えることなく、液晶分子3αと染料3βはホモジーニ
アス配向状態にイ呆た7hる。そこで。
Here, using another drawing, let'+LF shown in FIG.
Including) We will explain the operation of ζIJ liquid crystal light pulp in detail, and also explain the suppression of "rectification" in the present invention.
Make ξ clear. FIG. 4 is a schematic diagram illustrating the operating principle of the light valve device shown in FIG. Apply a DC electric field. At this time, in the area where the signal beam was projected, the gear rear (
Toyo (indicated by θ in the figure) moves to the reflecting mirror 8 due to the lifting resistance. As a result, the transparent electrode 2a and the opposite! 1
.. Between 1 and 8 mirrors? The lf pressure increases through the through hole 6 and 1
.. In the crystal layer 3, the liquid crystal molecules with positive dielectric anisotropy: 1α and the dye 3β change from a homogeneous orientation state to a pomeotropic orientation state. When the projection light is projected here through the polarizing plate 10, the polarized light passes through the through hole 6 and reaches the reflection mirror 8, where it is reflected, and the reflected light RL is ・1++0 On the other hand, the signal light beam does not enter. In this region, the first carrier does not occur, so the gear rear is jti light'11 (pole 2b
Therefore, in this case, the liquid crystal molecules 3α and the dye 3β are I was disappointed with the homogeneous orientation state for 7 hours.

ここに入射した投影光(制電)は液晶層3甲の二色性染
料3βによって吸収され、反射ミラー8による反射光1
.は前記反射光[(T−、、に較べて光背1が少なくな
っている。
The projected light (antistatic) incident here is absorbed by the dichroic dye 3β of the liquid crystal layer 3A, and the reflected light 1 is reflected by the reflection mirror 8.
.. has less halo 1 than the reflected light [(T-, , ).

この様にして、反射光量の差に法づく投影像(・・・投
影する為の像)が形成され、液晶層3中に牛じた像が不
図示のスクリーン等に拡大して投影される。
In this way, a projected image (image for projection) based on the difference in the amount of reflected light is formed, and the image reflected in the liquid crystal layer 3 is enlarged and projected onto a screen (not shown), etc. .

11゛iハ自反」二のJf荀()tに於て6−圭、町獲
九1僻5及びミラー8に」、って、信号光線が液晶層3
側にもれ出るとと及υ・、連に投影光が光罎箪層9に入
射する小部イヤが阻止されでいる。
11゛I rebelled against ``At the second Jf.
If it leaks out to the side, the projection light will be blocked from entering the light conduit layer 9.

父、叙」二の作81J1例に於て、液晶層3中に形成さ
ノする投玩;1女がイ刺微細なものでない限りl」1、
特別な投影)tによらなくても室内光の1で投影像を1
1祝観察することもできる。
In the 81J1 example of the second work of the father, the projection formed in the liquid crystal layer 3.
Special projection) Even if it does not depend on t, the projected image is 1 with indoor light of 1
You can also observe the first celebration.

次に、第5図を用いた具体的イ;4成例に就いて1iH
ltJIJする。
Next, using Figure 5, we will discuss concrete examples of 1iH and 4 examples.
ltJIJ.

第1の41q成例では、第5図に示す侍に透明基板1b
に設けた透明′11:!、極2b上にPt 、 pd 
、 A、u又1’j: Mo  k 2 [1〜500
A 、Wましくは30〜2oo′にのjヤさに魚着して
基I曽9aを形成する。
In the first 41q formation example, the transparent substrate 1b is attached to the samurai shown in FIG.
Transparent '11:! , Pt on pole 2b, pd
, A, u or 1'j: Mo k 2 [1-500
A, W, preferably 30 to 2 oo', are attached to form a base 9a.

仄いで、5il14を主体とするガスを放電分精して活
層9a上にa−8i −H7m 9 bを形成する。
Then, the gas mainly composed of 5il14 is separated by electric discharge to form a-8i-H7m 9 b on the active layer 9a.

仁のa−8i−H層9 bは罰いn型の半導体となり苓
m9aとの間にショトギーバリア一層を形成する。尚、
a  Si  fl 119 b Itj−、s通常、
i層と呼ばれる。そして、このI會91)の厚さは他の
層、とりわけ液晶層3との関係で決められるが、通常、
 5000 A〜 20μmの範囲にある。
The a-8i-H layer 9b becomes an n-type semiconductor and forms a single barrier layer between it and the layer m9a. still,
a Si fl 119 b Itj-, s usually,
It is called the i-layer. The thickness of this layer 91) is determined depending on the relationship with other layers, especially the liquid crystal layer 3, but usually,
It is in the range of 5000 A to 20 μm.

PPrl″ ましくけ、1.000〜1100OO楠混入して枚重分
解を行ないs)早さ100〜3000A 、 ”di−
5しく rJ: 501)〜2000Aに堆積した6層
9cを形成して暗流性光導電層9を作成する。
PPrl'' Mashikake, mixed with 1.000~1100OO camphor tree and subjected to sheet decomposition.s) Speed 100~3000A, ``di-
The dark current photoconductive layer 9 is formed by forming six layers 9c deposited at 501) to 2000A.

次いで、第1図に示した実施例と同4>RにAtから成
る反射ミラー8、涛光性絶縁In 7 、 咋光層5の
形成を行った後、別の透明塙板1aの両面に偏向根10
と透明電極2aを設けて、雑光層5と透明電極2aとの
同にGI■液晶層3を封入してライトパルプ装置の一例
が構成する。この様にして得られたライトバルブ装置6
に於ける光導’;4i層≦)のバンドダイアグラムを第
6図(a)に示す0このバンドダイアグラムから解る様
に、−1−記装置rtによって環1t1求を得る場合、
透明電極2aと2 ))間に印加される電圧ば、2d側
が負になる1kに印加される。このとき、仮にショトギ
ーバリア層を形成せずに透明電悌2bに直接、a  8
i  117(ili’>) 9bを設けると、込1ル
」’T’f% 極21+からギヤリア(・・・il−が
剰い?を型で、との場合、重子)のインジェクションを
牛しるので、#:/j+ ’rW層9の1li4抵抗が
10’Ωon−1−0’Ω/7+1にある場f″f%j
す1待しない結采となる。これに対して1本例の様に7
ヨトキ一バリγ層を形成すると、光4市層9へのキャリ
アインジェクションが)sii 、IIZされ、尤>s
 ′iltハ゛9の暗抵抗が1012Ω’an1ミノ、
1−になる槁、1す1待どおりの投影像を形成すること
が可[11主になる。
Next, after forming a reflective mirror 8 made of At, a reflective insulator In 7 , and a photonic layer 5 at the same 4>R as in the embodiment shown in FIG. deflection root 10
An example of a light pulp device is constructed by providing a transparent electrode 2a and a GI liquid crystal layer 3 along with a miscellaneous light layer 5 and a transparent electrode 2a. Light valve device 6 obtained in this way
The band diagram of the light guide '; 4i layer ≤) is shown in FIG.
The voltage applied between the transparent electrodes 2a and 2) is 1k, with the 2d side being negative. At this time, without forming a shotogy barrier layer, a 8
i 117 (ili'>) If 9b is provided, the injection of the gear rear (... if il- is left over, Shigeko) will be carried out from pole 21+. Therefore, if the 1li4 resistance of the W layer 9 is 10'Ωon-1-0'Ω/7+1, then f''f%j
The result is an immediate conclusion. On the other hand, as in this example, 7
When a γ layer is formed, carrier injection into the optical layer 9 is)sii, IIZ, and >s
The dark resistance of 'ilt high 9 is 1012Ω'an1 mino,
When it becomes 1-, it is possible to form a projected image exactly as 1-1 [11 becomes main].

又、”E 19’)に於けるn層9Cは投影像を消去す
るII(式、フォー・キャリアを受容した反射ミラー8
から僕明市1)1會2 b IICフォトキャリアを掃
引するのを芥V、+1.つ安定して可能にする作用を持
つ。
In addition, the n-layer 9C in "E 19') is a reflection mirror 8 that receives the four carriers II (formula,
From Bokumei City 1) 1 meeting 2 b Sweep the IIC photo carrier with V, +1. It has the effect of stably enabling.

から作1氷の一バ13合上、ミラート;と回1中、’t
’l叔に分割してIi、気的にアインレイ1ぴ−11−
ることが必”児で々)す、l’A祭に汀第5図に小ず+
>’kに写白i哄同法を用いて、ミラー8とi’r、 
”i同11ζツバターy l/7−+ig成される。
Karasaku 1 ice cube 13th go, Mirat; and during episode 1, 't
'I split it into two uncles, and I feel like it's Ainrei 1pi-11-
It is necessary for children to attend the festival, and there is a small drop on the floor in Figure 5 at the l'A festival.
>'k using the shahaku i'r method, mirror 8 and i'r,
``i same 11ζ butter y l/7-+ig is formed.

尚、この場合、下−行)Y7で入’J、j’ した投影
九をj■躬ミラー8に」[って牢(f)Y;としでIX
l、−打さ1rるときにC11固々のnJ曽9cの而J
II11をミラー8のそれと同等か若干広くすることが
必リンである。因にイ固々のn Illi9cの1川4
;”1がミー2−8の一忙れ」二りも小さいとき1=i
Z &;i ミラー8の1r11に凹凸ができて入射光
を散乱させど・ことil(なり、そJtが拡jit4.
)、としての効果を示す様になる。
In this case, the projection 9 entered in Y7 (lower line) is projected to j■man mirror 8.
l, - when struck 1r, C11 solid nJ so 9c's J
It is necessary to make II11 equal to or slightly wider than that of mirror 8. By the way, it's hard n Illi9c's 1 river 4
;"1 is busy with me 2-8" When both are small, 1=i
Z &;
), it appears to be effective.

又、仮にこの4層9cを設けず、a−8i−0層9bに
反3ト1ミラー8かll’J扱、I汐して11′ン成さ
tする場合に(rJ圃者の界面にバリア、が形成される
ことがあり、)第1・キャリアの扉引に鳴所ノ・うがあ
ったシネ()6全(′こなる号の不til(合が見られ
ることが多い。(旦し、上iiLバリアが形1戊さ]1
ない1劾合にはn層9cを省略することもできる。
In addition, if this 4 layer 9c is not provided and the a-8i-0 layer 9b is treated as an anti-3T 1mirror 8 and 11' is formed on the a-8i-0 layer 9b (the interface of the rJ field A barrier may be formed, and a barrier may be formed at the door of the first carrier. (Tanshi, upper iiL barrier is shape 1) 1
The n-layer 9c can also be omitted if there is no such case.

ところでフ第1・ギヤリアの掃引に際して本例装置Ii
に印加される電圧は液晶層3に掛る電圧が閾値を、il
猪えない限り、透明′電極2bが同2aに対して止にな
る()トな順方向の直流1に圧でも或はりr#、 ′電
圧のどちらでも良い。
By the way, when sweeping the first gear rear, this example device Ii
The voltage applied to the liquid crystal layer 3 has a threshold value, il
As long as the transparent electrode 2b is not connected to the transparent electrode 2a, either the forward direct current 1 voltage or r#,' voltage may be used.

次に、第2の構成レリを説明する。この例では透明電極
2 b −L−に、  SiH4を主体とするガス中に
B21f、  全50−2Of’1100pp%−Wま
しくは200〜1. (1(l旧)ppm混入してグロ
ー族′「E分子)イを行い厚き、3()〜100(]A
、望壕しくば50〜300Aに1什偵したP;彊9aを
形成する。とのPj曽9aの個切な厚さけ、14号光線
の吸収量、及び2層9aとその」二に設けられるa −
S4−11. l# (iへ−7)91)との間の空乏
層の形成との曲係で決められる。
Next, the second configuration will be explained. In this example, the transparent electrode 2b-L- contains B21f in a gas mainly composed of SiH4, total 50-2Of'1100pp%-W, or 200-1. (Contains 1 (l old) ppm and performs glow group'"Emolecule)" to thicken, 3 () ~ 100 (] A
, P: 9a was formed in the moat 50-300A. The individual thickness of the Pj so 9a, the absorption amount of the No. 14 ray, and the two layers 9a and the a-
S4-11. It is determined by the relationship between the formation of a depletion layer between l# (i to -7)91).

次いで、;牙↓1の構成例の場合と同様にして、a  
St  11層 9b、  γL層9c、反射ミラー8
、祷光1″l:絶縁八カフ、aX層5を順次、積層した
後、Illの「h明′屯摩2aとの同に液晶層3を封入
してライトバルブ装(dを完成さ中だ。この装置に於け
る光導′重層9のバンドダイアグラムを第6図(b)に
示す。これから)奸る様に、投影像を形成する際の印加
電圧の極性は上記1151の例の場合と同じで、月、つ
、同(蛾の効果が144られる。
Next, in the same way as in the configuration example of;Fang↓1, a
St 11 layer 9b, γL layer 9c, reflection mirror 8
, Light 1"l: After sequentially laminating the 8 insulating caps and the aX layer 5, the liquid crystal layer 3 is sealed in the same way as the 2a of the Ill, and the light valve system (d is being completed). The band diagram of the light guiding layer 9 in this device is shown in FIG. Same, Moon, Tsu, Same (moth effect is 144).

父、本V/+1に於てもフォトキャリアの反射ミラー8
から透明電極2bへの掃引を・4)71の1ルlの場合
と同様に行うことができる。
Father, also in book V/+1, photo carrier reflection mirror 8
Sweeping from to the transparent electrode 2b can be performed in the same manner as in the case of 4) 71.

尚、2層9aとしては、上記のものの他5ill。In addition to the above, the second layer 9a includes 5ill.

とC九のグロー放電分解による堆積1[(P型a−8i
−C−H〕+Q )にa  St  Jl)f49 b
を形成して得られるヘテロジャンクションであっても良
く、全く同様の効果が得られる。
Deposition 1 [(P type a-8i
-C-H]+Q) to a St Jl) f49 b
A heterojunction obtained by forming the same may be used, and exactly the same effect can be obtained.

更に第3の構成例では光導′重層9の構成が−に記2例
と異なるだけで他は全く同様にして液晶ライトバルブ装
置f:児成させる。本例でニ1、光導電層9を次のとお
り作成する。即ち、透明′[1尤極2b上にa−8i−
N−II膜t S io、 I+%又はポリパラキシリ
レン族を厚さ、50〜1.000OA。
Furthermore, in a third configuration example, the liquid crystal light valve device f is produced in the same manner except that the configuration of the light guiding layer 9 is different from the second example described in (-) above. In this example, d1, the photoconductive layer 9 is prepared as follows. That is, a-8i- on the transparent ′[1-likelihood pole 2b
N-II film tSio, I+% or polyparaxylylene group thickness, 50-1.000 OA.

望ましくは100〜3000Aに形成して透光性絶縁層
9aを設けた挨、上記2例の場合と全く11i14,1
4にa−St −I−i層 9b% n層9cをllk
i次積層する。
Preferably, the thickness is 100 to 3000 A and the transparent insulating layer 9a is provided.
4 a-St-I-i layer 9b% n layer 9c
The i-th layer is laminated.

この、]s 3の例に於ける光導′11L層9のバンド
ダイアグラムを第6図(c)に示す。
FIG. 6(c) shows a band diagram of the light guide '11L layer 9 in this example of ]s3.

4に1列で9;]:、?A明’+l+: 1m 2 b
からa、  SI  、f(M(ild)9bへのキャ
リアインジェクションは絶縁層9aにより阻止され、又
、a−8I  H層91)がn型半導体である為、投影
1′J!を形成する際に11]力11される1圧圧極性
は、上記/、列の場合と全く同じであり、同イ求の効果
が得られる。父、フォトギヤリアの掃引II′ψ作もこ
れ等と同)士に行うことができる。
9 in one column for 4;]:,? A light'+l+: 1m 2 b
Since carrier injection from a, SI, f (M(ild) 9b to M(ild) 9b is blocked by the insulating layer 9a, and since the a-8I H layer 91) is an n-type semiconductor, the projection 1'J! The 1-pressure polarity applied when forming the 11] force 11 is exactly the same as in the case of the above-mentioned / column, and the same desired effect can be obtained. Father, Photo Gearia's Sweep II'ψ work can also be done in the same way as these.

以」二34+llの液晶ライトバルブ装置に於ては、S
 01.  を生体とするガスの放電外1’l’l−に
よってPI曽、a  Si  H1m (1層)、n層
等の光#五層の形成を行ったが、この他% SIF’4
  を生体とするカスの放’+lU分前によっても上記
のものと同様にP層(B、l−1,等がドーピングガス
として用いられる)、a−8i −F−1−i層(i層
)、n層(ドーピングガスとしてPtT3 等が用いら
れる)を形成することができる。
In the following 234+ll liquid crystal light valve device, S
01. Five optical layers such as PI so, a Si H1m (1 layer), and n layer were formed by discharging a gas with a living body.
Similarly to the above, P layer (B, l-1, etc. are used as doping gas), a-8i -F-1-i layer (i layer ), an n-layer (PtT3 or the like is used as a doping gas).

因に、a−8t (a−8i−11,a−8t −1i
’ −■)の作成方法やその性質、ドーピング効果等に
就いては「アモルファス1に子材料利用技術東成」(サ
イエンスフォーラム社出版、15)旧)、その他の文献
に詳しく記載されでいるので参照することができる。
Incidentally, a-8t (a-8i-11, a-8t -1i
The preparation method, properties, doping effects, etc. of ``-■) are described in detail in ``Amorphous 1st Material Utilization Technology Tosei'' (Science Forum Publishing, 15th old) and other documents, so please refer to them. can do.

又、容易に想起されることではあるが、本発明に係る整
流性尤導山;層としては、斜上の他、5eTe HAS
tSes 、 CdS 、 Cd’、l’e等と透)し
性絶縁層との積層体やCd5(′n型)とCd’l’e
 (P型)とのヘテロジャンクション等も適用すること
ができる。
Furthermore, as it may be easily recalled, the rectifying layer according to the present invention;
A laminate of tSes, CdS, Cd', l'e, etc. and a transparent insulating layer, or a laminate of Cd5 ('n type) and Cd'l'e
(P-type) heterojunction etc. can also be applied.

更に、ここで具体的実施例に塙づき本発明の詳細な説明
する。
Further, the present invention will now be described in detail with reference to specific examples.

実施例1 コーニング社製7059スライドガラスIb上のIn、
(Sn)Os  (松崎真空製)を透明電体2bとし、
これに電子ビームにより[’t q「PI3(ベーン、
ゾレノシャー) = ] X 1.0  ’l’orr
 蒸y+”fレイトQ<) = L A、/S 、 裁
板温度(Ts)−80℃で40Aの厚さに蒸ノii L
/I P t J□□□9aを設けた。
Example 1 In on Corning 7059 slide glass Ib,
(Sn)Os (manufactured by Matsuzaki Vacuum) is used as the transparent electric body 2b,
This is then subjected to an electron beam.
= ] X 1.0 'l'orr
Steaming + "f rate Q<) = L A, /S, cutting board temperature (Ts) - Steaming to a thickness of 40A at -80℃ ii L
/I P t J□□□9a was provided.

次いで ’谷11に結合タイプのグロー放7L分解法に
よりR−Si −11層 9bを次のようにして厚さ0 吟μIll堆積した。アノードカソード共に200φ、
その日の距#’Jt50 mmの反応炉にSiH4/1
a2−oz 勾のガスk 20 SCCM  L’ン、入し、pB 
= I X 10’rorrガ、ス月F、 = (1,
05Torr 、 Ts = 250℃のもとで、tt
li’ = 1.3.561VIHz 、 Rfi’パ
ワー=15Wでグロー放′「1℃分lW L、a  S
I  HVをスライドガラスTて。
Next, an R-Si-11 layer 9b was deposited on the valley 11 to a thickness of 0 μl by a bonding type glow emission 7L decomposition method as follows. Both anode and cathode are 200φ,
SiH4/1 was placed in the reactor with a distance #'Jt of 50 mm on that day.
a2-oz gradient gas k 20 SCCM L'n, enter, pB
= I
05Torr, Ts = 250℃, tt
li' = 1.3.561VIHz, Rfi' power = 15W, glow emission '1℃ minute lW L, a S
I Put the HV on the slide glass.

1−に10時間刊−=01笹椎積し添スライドガラス鬼
ハアノード+1llIにセットした0この1永にして(
4+られたa  SiH層は優れた光2Ct電性を示(
He−Neレーザー、1 m W/r−4での抵抗率)
=10’Ω・nnである。
1 - 10 hours edition - = 01 Sasashii stacked slide glass demon hanode + 1llI set in 0 this one year (
The 4+ a SiH layer exhibits excellent photo-2Ct conductivity (
Resistivity at He-Ne laser, 1 m W/r-4)
=10'Ω·nn.

次に、このa−8i−HJmQb上に電子ビーノ、蒸着
により Atを2000Aの厚さに診、で着した。
Next, At was deposited on this a-8i-HJmQb to a thickness of 2000A by vapor deposition using an electronic vibrator.

このとき、Xn = 1. X 1. OTnrr、 
Ts = 60℃、R−10影へであった。
At this time, Xn = 1. X1. OTnrr,
Ts = 60°C, to R-10 shade.

次いで、写真蝕刻法により、1個が9011n]X 9
0 ttm  の面積で100μm ピッチの(9,+
’、 3図示様のパターンを持つ)反射ミラー8を形成
し積した。このとき、a−8i−TI  を作映したの
と同一の装置で、上記の作製工程を経たJk板をアノー
ド1lillにセットし、PI(= I X 1 (1
’i’orrのもとで、SiH4/82 = t o係
を5SCCM、純粋なし N[]、を20 SCCM 4A、#ス)1三を+1.
151.”orrとし、Ts −250℃、I−jFパ
ワー−5,Wの条件で5時間堆積した。こうして得られ
たa −Si −N −11層の体積抵抗率は10 Ω
・m以上でちる。次にこのa  SI  N  H&光
性絶縁層7上にAtをzooo′に蒸着し、第2図示様
のパターンの遮光層5を第3図における反射ミラー8と
の重複中が5μmになるよう写真蝕刻法によりパターニ
ングした。従って開口部6のtM口りは80μm×80
μI’llでイうる。医いで遵光層5上にポリパラキシ
リレンを2 (100A LvJ皐さに気相熱分解法e
こより堆積した。ポリパラキシリレン上を綿布でラビン
グし成品の配向処理を行った。遮光層50周辺(その部
分のポリバラキシリレンは除ノズしである)vC%仄の
工程で必、安な開目を有するようにAj’、l、)、粉
末を分散させたエポキシ樹脂を厚さ5μITI K旬゛
λ布しその1−に配向処理をしたポリバラキシリレンJ
hm(2oooへの厚さ)を有する、゛汚明′+M 極
2 aを持つ7059スジイドガラス1at圧4・4し
た。充分エポキシ1立1脂を熱硬化させた汝これケ■空
槽内にゲストホスl−A’i−品と共に入れ、ロータリ
ーポンプで1. X 10  ”J、’arrへ になるよう4Jl気した。次いでケストポストl赦晶で
、」−1,[シあらかじめ設は)こi+il r−1を
塞さ゛除々にリークしながら真空槽内を冨Iモにして遮
した。尚、この液晶の配向はホモジーニアス配回である
。)ゲストホスト液晶にrf1ノルク社製不マディソク
相1291に131) IIケミカル社社製アンスヤギ
ノン系ブルーダイ1〕5重清比で0.5≠分散させたも
のを用いた。上記液晶のクリアリングポイントは1()
7℃であシ、閾値′重圧は2.2■である。透明基板1
a−トに11東山−二に製偏光フィルムNPF’−Q 
I 2 にュートラルクレー)脅・着装し第1図に示ず
ゲストホスト晶ライトバルブ装置を完成した。第7図に
とのり一ン、102は、投影光用ハr」ゲンランプ、1
03ば、投影光をミラー104に集光する為のレンズ、
105は、ゲストホスト液晶ジイトバルブ装置106で
姫→4形成され/C投影像をスクリーン101に2 0
 41Miに1広大するレンズである。107はポリゴ
ンミラー−C11拝込用光諒109から射出され、集光
レンズ108で集光されたI( e − N eレーザ
ー9:尤4 ’+lL Jk而面の手足された位置に1
00μnlφのスポットで反射する。
Then, by photolithography, one piece was 9011n]X 9
(9, +
', 3) A reflecting mirror 8 (having a pattern as shown in the figure) was formed and laminated. At this time, using the same device used to film a-8i-TI, set the Jk plate that had gone through the above manufacturing process on the anode 1 liter, and use PI (= I
Under 'i'orr, SiH4/82 = to 5 SCCM, pure N[], 20 SCCM 4A, #S) 13 +1.
151. "orr" and deposited for 5 hours under the conditions of Ts -250°C, I-jF power -5, W.The volume resistivity of the a-Si-N-11 layer thus obtained was 10 Ω.
・Child by m or more. Next, At was vapor-deposited on this aSI N H & photosensitive insulating layer 7 in a zoooo' manner, and the light-shielding layer 5 having the pattern shown in FIG. 2 was photographed so that the overlap with the reflecting mirror 8 in FIG. Patterning was performed using an etching method. Therefore, the tM opening of the opening 6 is 80 μm x 80
I'll be happy with μI'll. Polyparaxylylene (100A LvJ)
It was deposited more than this. The polyparaxylylene was rubbed with a cotton cloth to orient the product. Around the light-shielding layer 50 (the polyvaraxylylene in that part is removed), it is necessary to thicken the epoxy resin in which the powder is dispersed around the vC% process so as to have a cheap opening (Aj', l,). Polyvaraxylylene J subjected to orientation treatment
7059 striped glass 1at pressure 4.4 with "contamination"+M pole 2a, with hm (thickness to 2ooo). Heat-cure enough 1 part 1 part epoxy resin and place it in an empty tank along with the guesthos l-A'i- product, and pump 1 part with a rotary pump. X 10 ``J, I felt like it was going to be 4Jl. Next, I used Kest Post L to block ``-1, [previously set up] this i+il r-1.'' While gradually leaking, the inside of the vacuum chamber was filled. I made it an Imo and interrupted it. Note that the alignment of this liquid crystal is homogeneous alignment. 131) Ansuyaginon-based blue dye 1] manufactured by II Chemical Co., Ltd. was dispersed in a guest-host liquid crystal at a ratio of 0.5 to 0.5. The clearing point of the above liquid crystal is 1 ()
The temperature was 7°C, and the threshold pressure was 2.2. Transparent substrate 1
a-to 11 Higashiyama-Nini polarizing film NPF'-Q
A guest-host crystal light valve device (not shown in Fig. 1) was completed by attaching a neutral clay to I 2 (neutral clay). In FIG.
03, a lens for condensing the projection light onto the mirror 104;
105 is a guest-host liquid crystal display device 106 that forms a 4/C projected image on the screen 101.
It is a lens that expands by 1 in 41 Mi. 107 is emitted from the polygon mirror C11 worship light 109 and focused by the condensing lens 108.
It is reflected by a spot of 00μnlφ.

ここで、本実施例の投影像の形成、消去及びスクリーン
−にに投影された結果について簡単にボンミラ−107
を駆動しなから書込用I(e −Neレーザーを透明基
板1bを通して光導電層9に役割した。′市1■印加時
間2 0 msec 、  レーザーの得込強度,20
0μW/lsl  で予定した投影1家をゲストホスト
液晶は杉成し,1007/I。
Here, we will briefly explain the formation, erasure, and results of projection images on the screen in this embodiment.
Then, a writing I(e-Ne laser was applied to the photoconductive layer 9 through the transparent substrate 1b. Application time: 20 msec, obtained laser intensity: 20 msec.
The guest host LCD screen was scheduled to be projected at 0 μW/lsl on 1007/I.

W/l.i+  の〕・ロゲンランプによる投影光で投
影像をスクリーン十に投影した。得られたスクリーン」
−の像のコントラストは、明暗部の反射光強度で?績犬
6:1であった。投影像の消去は透明’1’l’c恰2
 aと2bとの間に1.KHzの交流″直圧2Vを2 
0 m sec印加して行った。このとき、光導i1.
 J?J 9の逆方向暗抵抗率は1013Ω・m以上で
, ilhi方向1114抵抗率は(場所ムラがあるが
)108〜 10oΩ・mであった。
W/l. The projected image was projected onto a screen 10 using projection light from an i+].logen lamp. The resulting screen
-The contrast of the image is determined by the intensity of reflected light in the bright and dark areas? The ratio was 6:1 for dogs. Erasing the projected image is transparent '1'l'c2
1 between a and 2b. KHz AC” direct pressure 2V 2
The voltage was applied for 0 msec. At this time, light guide i1.
J? The reverse dark resistivity of J9 was 1013 Ω·m or more, and the 1114 resistivity in the ilhi direction was 108 to 10 Ω·m (although there were variations in places).

メ、前記ポリバラキシリレンは資明電倹2a或はμmm
射光層外らのイオン注入を阻止し、液晶の寿命を増大さ
せろ上で有グノノに作用し/4。
Me, the polyvaraxylylene is 2a or μmm
It effectively works to prevent ion implantation from outside the light emitting layer and extend the life of the liquid crystal.

実施例2 9bを喉イrくした。このa  F”l t  I i
  層9 1)トに次に示す采1牛でn層9cを1. 
o o o A (Drllさに1イ(。
Example 2 9b was given a sore throat. This a F”lt I i
Layer 9 1) Add n layer 9c to 1.
o o o A (Drll is 1 (.

積した。Accumulated.

〈堆積粂件〉 PB = I X ] O  ”l’orrのもとでS
ilL /11t= 1 0 %のガスを2 8CCI
v’t%PH3A−1t =1 0 0 P P Mの
ガスを1 0 8CCU 導入してガス)1−を0. 
1 Torrとし、Ts = 2 0 (1 ℃、Rl
i”パワー= 8 Wで16分lttl 、1イ(−積
する。
〈Deposited matter〉 PB = I
ilL /11t= 10% gas at 28CCI
Introducing 108CCU of v't%PH3A-1t=100PPM gas and changing the gas) 1- to 0.
1 Torr, Ts = 20 (1 °C, Rl
i” power = 8 W for 16 minutes lttl, 1 i (-multiply.

この様にして得たn層を写真蝕刻法により第3図示の反
射ミラーと同−形成にパターニングした。因に、このと
きのがニ導電層9のバンドダイアグ2ムは第6図(a)
の様になる。
The n-layer thus obtained was patterned in the same manner as the reflecting mirror shown in Figure 3 by photolithography. Incidentally, the band diagram of the conductive layer 9 at this time is shown in FIG. 6(a).
It will look like this.

次に得られたn I’,n 9 c 、J二に実施例1
と同様にして反射ミラー8、透光性絶縁層7、、柚光層
5を形成シ2、配向処理したポリパラキシリレン層を有
する遮光層5と透明電極2aとの間にゲストホスト液晶
を密封した後、偏光板10を透明1古板1a上にK %
iして本実施例の液晶ライトバルブ装置を完成した。こ
のライトバルブ装置を組込んだ第7図の装置を用いて、
実施例1と同様に操作して14込光信号に応じた像がス
クリーン101上に出生された。但し、投影像を形成す
るとき、透明電極2aと2bとに印加する電圧は4.3
■であった。父、投影像の消去動作も実施例1と同一条
件で行ったが、光導電層9の順方向暗抵抗率は108Ω
・mで且つ、場所ムラが少なかった。
Next, the obtained n I', n 9 c, and J2 are shown in Example 1.
In the same manner as above, a reflective mirror 8, a transparent insulating layer 7, and a light layer 5 are formed.2, a guest host liquid crystal is placed between a light shielding layer 5 having an aligned polyparaxylylene layer and a transparent electrode 2a. After sealing, place the polarizing plate 10 on the transparent old plate 1a with K%
The liquid crystal light valve device of this example was completed. Using the device shown in FIG. 7 incorporating this light valve device,
An image corresponding to the 14-inclusive optical signal was produced on the screen 101 by operating in the same manner as in Example 1. However, when forming a projected image, the voltage applied to the transparent electrodes 2a and 2b is 4.3
■It was. The operation of erasing the projected image was also performed under the same conditions as in Example 1, but the forward dark resistivity of the photoconductive layer 9 was 108Ω.
・M and there was little unevenness in location.

実施例3 透明基板(7059スライドガラス)la上の透明電極
(In、 (Sn) Os )  2 aに次に示す条
件でP 1m Q aを10OAの厚さに堆積した〇く
堆積条件〉 Pal = I X 10  ’ TorrのもとでS
 iH4/HU = 10 %のガスを4 SCCM 
、 B、He/乍2=100PPMのガスを10 SC
CM it1人してガス圧を0.1 Torr  とし
、TS=250℃、RFパワー= 1. OWで100
秒間堆積した。こうして得られたP層9a−1−に実施
例1と同様にしてa  Si  n層9bを堆積し次い
で、実施例2と同一条件で1層9cを堆積しパターニン
グ17た後、実施例−1と同様にして反射ミラー8.透
光性絶縁層7.遮光層5を形成し、配向処理したポリバ
ラキシリレン層を有する遮光層5と透明電(m2aとの
間にゲストを完成した。本実施例に赴ける光導′成層9
のバンドダイアグラムは第6図(b)のようになり、逆
方向暗抵抗率は1013Ω・cm  以上、順方向暗]
1(抗率は108Ω・cnl で場所ムラは少なか、)
だ。実施例1と同様にしてM迷光信号に応じた像がスク
リーン101上にト生された。その際の投影像形成の駆
動印加電圧は実ノ加ρす2と同様に4.3■である。投
影像の消去動作も実施例1と同一条件で行うことができ
た。
Example 3 P 1m Q a was deposited to a thickness of 10 OA on a transparent electrode (In, (Sn) Os ) 2 a on a transparent substrate (7059 slide glass) la under the following conditions. I x 10' S under Torr
iH4/HU = 10% gas at 4 SCCM
, B, He/乍2 = 100 PPM gas at 10 SC
CM it was done by one person, the gas pressure was set to 0.1 Torr, TS = 250°C, RF power = 1. 100 in OW
Deposited in seconds. On the thus obtained P layer 9a-1-, a Si n layer 9b was deposited in the same manner as in Example 1, and then one layer 9c was deposited and patterned 17 under the same conditions as in Example 2, followed by Example-1. Reflection mirror 8. Transparent insulating layer 7. A light-shielding layer 5 was formed, and a guest was completed between the light-shielding layer 5 having an oriented polyvaraxylylene layer and a transparent conductor (m2a).
The band diagram of is as shown in Figure 6(b), and the reverse dark resistivity is 1013Ω・cm or more, and the forward dark resistivity is 1013Ω・cm or more.
1 (The resistivity is 108Ω・cnl, and there is little unevenness in location.)
is. An image corresponding to the M stray light signal was generated on the screen 101 in the same manner as in Example 1. The driving applied voltage for projection image formation at this time is 4.3 2 as in the actual application. The operation of erasing the projected image could also be performed under the same conditions as in Example 1.

実施例4 透明基板(7059スライドガラス)la上の透明電極
(Int (Sn) Os ) 2 a上にa−8i−
N −Hから成る透光性絶縁層9aを実施例1に於て透
光性絶縁層7を作成した条件と同一条件で200 OA
の厚さに形成した。次いで実施例1と同様にしてa−8
i−H層(9b)を堆積した抜、実施例2と同一条件で
n’)曽9cを形成しバターニングする。次いで実施例
1と同様にして反射ミラー8.透光性絶縁層7.遮光層
5を形成し、配向処理したポリパラキシリレン膜を有す
る遮光層5と透明Ia極2aとの間にゲストホストg晶
を密封し、偏光板10を透明基板1a lに装有し、本
実施例の液晶ライトバルブ装(α5を完成した。本実施
例における光導電層9のバンドダイアグラムは第6図(
c)のようになり、実施例2及び実施例:3と同様にそ
の逆方向暗抵抗率は】013Ω・m以上、順方同暗抵抗
率1l−1:108Ω・mであり、場所ムラは少なかっ
た。この液晶ライトバルブ装置dを組込んだ第7図の装
置を用いて実施例1と同様の操作で書込光信Uに応にて
行うことができた。
Example 4 Transparent electrode (Int (Sn) Os) 2a on transparent substrate (7059 slide glass) a-8i-
The translucent insulating layer 9a made of N-H was heated to 200 OA under the same conditions as those for forming the translucent insulating layer 7 in Example 1.
It was formed to a thickness of . Then, in the same manner as in Example 1, a-8
After depositing the i-H layer (9b), a layer (n') 9c was formed and patterned under the same conditions as in Example 2. Next, in the same manner as in Example 1, a reflecting mirror 8. Transparent insulating layer 7. A light shielding layer 5 is formed, a guest host g crystal is sealed between the light shielding layer 5 having an oriented polyparaxylylene film and the transparent Ia electrode 2a, and a polarizing plate 10 is mounted on the transparent substrate 1a. The liquid crystal light valve device (α5) of this example has been completed. The band diagram of the photoconductive layer 9 in this example is shown in FIG.
c), and as in Example 2 and Example 3, the reverse dark resistivity is 013 Ω・m or more, the forward dark resistivity is 1l-1:108 Ω・m, and the location unevenness is There weren't many. Using the device shown in FIG. 7 incorporating this liquid crystal light valve device d, writing optical signals U could be carried out in the same manner as in Example 1.

以上に詳しく、況明した本発明に於ては、1、 直流電
圧駆動によって電気光学効果を利用した表示が可能であ
って、その際、動画表示が容易である。
The present invention, which has been explained in detail above, has the following features: 1. Display using the electro-optic effect is possible by direct current voltage driving, and in this case, moving images can be easily displayed.

2、電圧のl」が広くとれて駆動電圧の制@++が容易
である。
2. The voltage l'' can be widened, making it easy to control the driving voltage.

3、投影像を形成したとき、表示面全体で画W(が安定
している。
3. When a projected image is formed, the image W is stable over the entire display surface.

4、装置が長寿命になる。4. The equipment has a long lifespan.

5、 装置構成要素、とりわけ、反則ミラーの構造が簡
略で、装置をコンパクトにすることができる。
5. The structure of the device components, especially the anti-fouling mirror, is simple and the device can be made compact.

6、反射ミラー要素によって直流t IF、駆動に於け
るフォトキャリアの受容が口f li’iである。
6. Receiving photo carriers in direct current t IF, driving by the reflective mirror element is f li'i.

等々の諸効果が得られる。Various effects such as this can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明に係る装置の一構成例の枳先
要h・1)、四回、第4図は本発明に係る装置の作動例
を1悦明する模式図、第5図は本発明に係る装置Nに於
ける光導電層の詳;(JOII構成を説明する略画断面
図、第6図(a) 、 (b) 、 (c)は何れもバ
ンドダイアグシムを示す略図、第7図(ケ液晶ライトパ
ルプ装置を含む投影光学系のl+!t %配置図である
。 図に於て、2a、2bは市川′腎/躯、3は敢晶層、3
α(C1液晶分子、3βは染料、5は遮光J弘7は1号
光性絶縁層、8は反射ミラー、9は光尋’rl(Ii7
.9aけM )te s又はP層又は透尤性絶k f(
d、91)は1層、9cはγLIl′1J110は1面
光板、101tまスクリーン、102 Ij:ハロゲン
ランプ、103゜108は集光レンズ、104は投影光
反射ミラー、105は投影像拡大レンズ、106はライ
トバルブ装置、107けポリゴンミラー、109にエレ
ーザー発1辰源である。 儀琴光紗( 第6z 2し  蟲     qし     りこ  3・□ 第5図 7、lθ \it) +1ずlljノIV
Figures 1 to 3 are schematic diagrams illustrating one example of the configuration of the device according to the present invention. Figure 5 shows details of the photoconductive layer in the device N according to the present invention; Figure 7 is a diagram showing the l+!t% layout of the projection optical system including the liquid crystal light pulp device.
α (C1 liquid crystal molecule, 3 β is dye, 5 is light shielding J-hiro 7 is No. 1 photosensitive insulating layer, 8 is reflective mirror, 9 is Kohiro'rl (Ii7
.. 9ake M )te s or P layer or impossibility k f(
d, 91) is one layer, 9c is γLIl'1J110 is a single-sided light plate, 101t is a screen, 102 Ij: halogen lamp, 103° 108 is a condensing lens, 104 is a projection light reflecting mirror, 105 is a projected image magnifying lens, 106 is a light valve device, 107 is a polygon mirror, and 109 is an elaser source. Gikoto Mitsusa (6th z 2 Shi Mushi q Shi Riko 3・□ Fig. 5 7, lθ \it) +1 Zullj no IV

Claims (1)

【特許請求の範囲】[Claims] 液晶層及(J鞘i’; 4tr、性を有する光導電層を
具え、光による人力1′1ζを光i(1′効果によって
投影像に変41fiする電気光学装置に対し、前H口元
導電層の整流1′1°ど逆)5向に)する直流電圧を印
J111[−て円込光信刊を1111記尤導市:層に1
々射することにより前11■−液晶層に梧づく投影携を
形成するits程と、iii前記光♂j”f、 ′(4
層の整流ゼ1゛と1111’1カ向に4!−℃11を印
加して前1f12投は′、汀を消去する過程とを含むこ
とを特徴とする+1(−・、′5A光学装jf’、jの
駆動Jj法。
The electro-optical device is equipped with a photoconductive layer having a liquid crystal layer and a photoconductive layer having a property of Direct current voltage to rectify the layer 1'1° (reverse) 5 directions) is stamped J111
The light ♂j''f, '(4
Layer rectification ze 1゛ and 1111' 4 in one direction! +1(-.,'5A optical device jf', j driving Jj method, characterized in that the previous 1f12 throw by applying -°C11 includes a process of erasing the bottom).
JP56133150A 1981-07-10 1981-08-25 Driving method of electro-optical device Granted JPS5834436A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56133150A JPS5834436A (en) 1981-08-25 1981-08-25 Driving method of electro-optical device
US06/396,051 US4538884A (en) 1981-07-10 1982-07-07 Electro-optical device and method of operating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56133150A JPS5834436A (en) 1981-08-25 1981-08-25 Driving method of electro-optical device

Publications (2)

Publication Number Publication Date
JPS5834436A true JPS5834436A (en) 1983-02-28
JPS6257016B2 JPS6257016B2 (en) 1987-11-28

Family

ID=15097876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56133150A Granted JPS5834436A (en) 1981-07-10 1981-08-25 Driving method of electro-optical device

Country Status (1)

Country Link
JP (1) JPS5834436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179018A (en) * 1987-12-31 1989-07-17 Hamamatsu Photonics Kk Light valve device
JPH049925A (en) * 1990-04-27 1992-01-14 Sharp Corp Optical writing type liquid crystal display element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388740A (en) * 1976-10-22 1978-08-04 Izon Corp Electrical optical device
JPS53137165A (en) * 1977-05-02 1978-11-30 Hughes Aircraft Co Liquid crystal light valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388740A (en) * 1976-10-22 1978-08-04 Izon Corp Electrical optical device
JPS53137165A (en) * 1977-05-02 1978-11-30 Hughes Aircraft Co Liquid crystal light valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179018A (en) * 1987-12-31 1989-07-17 Hamamatsu Photonics Kk Light valve device
JPH049925A (en) * 1990-04-27 1992-01-14 Sharp Corp Optical writing type liquid crystal display element

Also Published As

Publication number Publication date
JPS6257016B2 (en) 1987-11-28

Similar Documents

Publication Publication Date Title
US4538884A (en) Electro-optical device and method of operating same
TW476862B (en) Reflection-type liquid crystal display and method for manufacturing the same
US5594567A (en) Spatial light modulator with a photoconductor having uneven conductivity in a lateral direction and a method for fabricating the same
US4730903A (en) Ferroelectric crystal display panel and manufacturing method thereof
JP2915724B2 (en) Display device
JPH0752268B2 (en) Optical writing type liquid crystal element
JPH049925A (en) Optical writing type liquid crystal display element
JPS5834436A (en) Driving method of electro-optical device
US5760853A (en) Liquid crystal light valve with dielectric mirror containing semiconductor oxide, ferroelectric material or conductive material
JPS5834435A (en) Electro-optical device
JPH0367247B2 (en)
JPS6037590A (en) Liquid crystal display
JPH063693A (en) Dielectric substance mirror and its manufacture
JPH07134310A (en) Optical writing type electro-optic device
JPS5810720A (en) Electrooptical device
JP2763223B2 (en) LCD light valve
JP2702810B2 (en) Projection type liquid crystal display
JP3006749B2 (en) Spatial light modulator
JP2975576B2 (en) Optical writing type liquid crystal display
JPS5835516A (en) Electrooptic device
JPH03130720A (en) Display device
JPH032836A (en) Photoconduction type liquid crystal light valve
JP3005102B2 (en) Spatial light modulator
JPH0784282A (en) Production of spatial optical modulator
JPH08122809A (en) Manufacture of space light modulating element