JPS6257016B2 - - Google Patents

Info

Publication number
JPS6257016B2
JPS6257016B2 JP56133150A JP13315081A JPS6257016B2 JP S6257016 B2 JPS6257016 B2 JP S6257016B2 JP 56133150 A JP56133150 A JP 56133150A JP 13315081 A JP13315081 A JP 13315081A JP S6257016 B2 JPS6257016 B2 JP S6257016B2
Authority
JP
Japan
Prior art keywords
layer
liquid crystal
light
mirror
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56133150A
Other languages
Japanese (ja)
Other versions
JPS5834436A (en
Inventor
Tatsuo Masaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP56133150A priority Critical patent/JPS5834436A/en
Priority to US06/396,051 priority patent/US4538884A/en
Publication of JPS5834436A publication Critical patent/JPS5834436A/en
Publication of JPS6257016B2 publication Critical patent/JPS6257016B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1354Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied having a particular photoconducting structure or material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1357Electrode structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 本発明は、光による入力像を光電効果によつて
投影像に変換する電気光学装置の駆動方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for driving an electro-optical device that converts an input optical image into a projected image using the photoelectric effect.

従来、この種の電気光学装置として液晶ライト
バルブ(光弁)なるものが知られている。その一
例として、特開昭56−43681号公報に於ては、液
晶層と誘電ミラーと、2個の透明電極間に挾まれ
た光電感応層(光導電層)とから成る薄膜の多層
構造をとる液晶ライトバルブが開示されている。
そして、この様な液晶ライトバルブに於て、前記
誘電ミラーは、液晶層側から入射する投影光が光
導電層には達しない様、事前に反射させる為に必
要な要素である。
Conventionally, a liquid crystal light valve has been known as this type of electro-optical device. As an example, JP-A-56-43681 discloses a thin film multilayer structure consisting of a liquid crystal layer, a dielectric mirror, and a photoelectric sensitive layer (photoconductive layer) sandwiched between two transparent electrodes. A liquid crystal light valve is disclosed.
In such a liquid crystal light valve, the dielectric mirror is a necessary element for reflecting the projection light incident from the liquid crystal layer side in advance so that it does not reach the photoconductive layer.

斯かる誘電ミラーとしては、例えばZnS、
Na3AlF6、MgF2、TiO2、SiO2等から成る多層膜
を用いている。このとき、可視域全域の波長光を
反射する誘電ミラーを得る為には、約15層以上の
積層体を各層厚の精確な制御を行ないつつ作成す
る必要があり、相当に高度な製造技術を要する。
又、仮に前述の目的を以て作成された誘電ミラー
であつても、実際には、投影光を完全には反射す
ることができず、光導電層と誘電ミラーとの間に
別途、光吸収層を設けてその機能を補うことが必
要であつた。
Such dielectric mirrors include, for example, ZnS,
A multilayer film consisting of Na 3 AlF 6 , MgF 2 , TiO 2 , SiO 2 , etc. is used. At this time, in order to obtain a dielectric mirror that reflects light of wavelengths throughout the visible range, it is necessary to create a laminate of approximately 15 or more layers while precisely controlling the thickness of each layer, which requires considerably advanced manufacturing technology. It takes.
Furthermore, even if a dielectric mirror is made for the above purpose, in reality it cannot completely reflect the projected light, and a separate light absorption layer is required between the photoconductive layer and the dielectric mirror. It was necessary to establish a system to supplement its functions.

従つて、この様な従来の液晶ライトバルブで
は、所期の機能が充分には発揮されず、且つ複雑
な構造になる上その製造にも手間がかかり、製造
コストも高いものとなつていた。
Therefore, such conventional liquid crystal light valves do not fully exhibit their intended functions, have a complicated structure, are time-consuming to manufacture, and are expensive to manufacture.

又、この様な従来の液晶ライトバルブでは、直
流電圧駆動することが困難であつた。
Furthermore, it has been difficult to drive such a conventional liquid crystal light valve with a direct current voltage.

そこで、本発明は、斯かる従来の諸欠点を除去
すると共に、直流駆動を可能にして動画表示が容
易である。一般には液晶ライトバルブと呼ばれる
電気光学装置の駆動方法を提供することを目的と
するものである。
Therefore, the present invention eliminates the various drawbacks of the conventional art, and also enables direct current driving, thereby facilitating the display of moving images. The object of the present invention is to provide a method for driving an electro-optical device generally called a liquid crystal light valve.

この様な目的を達成する本発明は、液晶層及び
整流性を有する光導電層を具え、光による入力像
を光電効果によつて投影像に変換する電気光学装
置に対し、前記光導電層の整流性と逆方向になる
直流電圧を印加して書込光信号を前記光導電層に
投射することにより前記液晶層に基づく投影像を
形成する過程と、前記光導電層の整流性と順方向
に電圧を印加して前記投影像を消去する過程とを
含むことを特徴とする電気光学装置の駆動方法で
ある。
The present invention, which achieves these objects, provides an electro-optical device that includes a liquid crystal layer and a photoconductive layer having rectifying properties, and converts an input image of light into a projected image using the photoelectric effect. A process of forming a projected image based on the liquid crystal layer by applying a DC voltage in a direction opposite to the rectifying property and projecting a writing optical signal onto the photoconductive layer, and a process of forming a projected image based on the liquid crystal layer, and A method of driving an electro-optical device is characterized in that the method includes the step of erasing the projected image by applying a voltage to the projected image.

以下、図面を用いて具体例によつて本発明を詳
細に説明する。
Hereinafter, the present invention will be explained in detail by way of specific examples using the drawings.

第1図は、ライトバルブ装置の一例の略画断面
図であり、図に於て、10は偏光子(板)であ
る。1a,1bは共に透明基板で、ガラス板又は
樹脂板より成る。又、2a,2bは共に透明電極
で、例えばSnO2やIn2(Sn)O3等の薄膜(厚さ、
500〜3000Å程度)から成る。3は液晶層、又、
4はスペーサーであつて、液晶層3を密封すると
共に、この層厚を調整する為のものである。そし
てこのスペーサー4としては通常、アルミナ粉末
やガラスフアイバー粉末を混入した樹脂製接着剤
が用いられる。液晶層3に於ける液晶構造の変化
には、通常DSMのように電流効果によるものの
他、TN方式(ねじれネマチツク効果)、DAP
(電界制御複屈折効果)方式、相遷移方式あるい
はGH(ゲストホスト効果)方式のように電界効
果によるものがあるが、この図示例ではGH方式
が好適なものとして採用されている。具体的に、
このGH(ゲストホスト)液晶層3に用いる液晶
に就いては特に制限はないが、駆動時の温度上昇
を考慮してクリアリング温度が50℃以上、望まし
くは60℃以上のものが選定される。又、液晶の配
向はホモジニアスであるが、ツイストしてもGH
方式に用いる他の配向でも勿論問題ない。液晶に
ゲストとして混入される染料としては耐光性の良
い、例えば、アンスラキノン系の染料が好ましく
用いられる。このとき、液晶中の染料の含有量
は、液晶の種類によつて左右されるが、通常、重
量%で0.05〜10%、望ましくは、0.1〜5%であ
る。更にこの液晶層3の厚さは一般に1〜20μm
程度とし、液晶の性能、応答速度、駆動電圧等に
よつて適切な厚さが設定される。5は遮光層であ
り、カーボンや金属を堆積法により厚さ500Å〜
2μm程度に成膜させたものである。そして、こ
の遮光層5は第1図のA,A′線に於ける切断平
面図である第2図のとおりの平面形状を有し、こ
の遮光層5には多数の透孔6が配列してある。
尚、この透孔6の一つが、投影像に於ける一画素
に相当する。因に、これ等の透孔6の形状は、図
示例の正方形のみに限られず、任意の形状のもの
とすることができる。更に、第1図中の7は透光
性絶縁層で、望ましくは、1012Ω・cm以上の体積
抵抗率を有する。これは例えば、グロー放電分解
法によつて形成されるSiC、Si3N4の膜、スパツタ
蒸着法等により形成されるSiO2膜やPbTiO3
PLZT、ポリパラキシリレン等の強誘電体の膜か
ら成る。そして、この透光性絶縁層7の厚さは、
1000Å〜5μmの範囲とするのが良い。
FIG. 1 is a schematic sectional view of an example of a light valve device, and in the figure, 10 is a polarizer (plate). Both 1a and 1b are transparent substrates made of glass plates or resin plates. In addition, both 2a and 2b are transparent electrodes, such as thin films ( thickness ,
(approximately 500 to 3000 Å). 3 is a liquid crystal layer, and
4 is a spacer for sealing the liquid crystal layer 3 and adjusting the layer thickness. As the spacer 4, a resin adhesive mixed with alumina powder or glass fiber powder is usually used. Changes in the liquid crystal structure in the liquid crystal layer 3 include the current effect as in DSM, the TN method (twisted nematic effect), and DAP.
There are methods based on electric field effects such as (field-controlled birefringence effect) method, phase transition method, and GH (guest-host effect) method, but in this illustrated example, the GH method is adopted as the preferred method. specifically,
There are no particular restrictions on the liquid crystal used for this GH (guest host) liquid crystal layer 3, but one with a clearing temperature of 50°C or higher, preferably 60°C or higher is selected in consideration of the temperature rise during driving. . Also, although the orientation of the liquid crystal is homogeneous, even if it is twisted, the GH
Of course, there is no problem with other orientations used in the method. As the dye to be mixed into the liquid crystal as a guest, for example, an anthraquinone dye having good light resistance is preferably used. At this time, the content of the dye in the liquid crystal depends on the type of liquid crystal, but is usually 0.05 to 10% by weight, preferably 0.1 to 5% by weight. Furthermore, the thickness of this liquid crystal layer 3 is generally 1 to 20 μm.
An appropriate thickness is set depending on the performance, response speed, driving voltage, etc. of the liquid crystal. 5 is a light shielding layer, which is made with a thickness of 500 Å or more by depositing carbon or metal.
The film was formed to a thickness of about 2 μm. This light-shielding layer 5 has a planar shape as shown in FIG. 2, which is a cutaway plan view taken along lines A and A' in FIG. 1, and a large number of through holes 6 are arranged in this light-shielding layer 5. There is.
Note that one of the through holes 6 corresponds to one pixel in the projected image. Incidentally, the shape of these through holes 6 is not limited to the square shown in the illustrated example, but can be any shape. Furthermore, 7 in FIG. 1 is a light-transmitting insulating layer, which desirably has a volume resistivity of 10 12 Ω·cm or more. This includes, for example, SiC and Si 3 N 4 films formed by glow discharge decomposition, SiO 2 films and PbTiO 3 films formed by sputter deposition, etc.
It consists of a ferroelectric film such as PLZT or polyparaxylylene. The thickness of this transparent insulating layer 7 is
The thickness is preferably in the range of 1000 Å to 5 μm.

8は反射ミラーであり、鏡面を成すAl等金属
の厚さ500Å〜1μm程度の堆積膜から成る。こ
のミラー8は前記絶縁層7を介して透孔6の全て
に対面する様に多数個配置され、各ミラー8は第
1図のB,B′線に於ける切断平面図である第3図
のとおりに配列してある。尚、このミラー8の1
個は、各ミラーの間隙8Hからのもれ光を防ぐ目
的から、少なくとも前記透孔6の面積以上の面積
(広さ)に成形してある。
Reference numeral 8 denotes a reflecting mirror, which is made of a deposited film of metal such as Al forming a mirror surface with a thickness of about 500 Å to 1 μm. A large number of mirrors 8 are arranged so as to face all of the through holes 6 through the insulating layer 7, and each mirror 8 is shown in FIG. They are arranged as follows. In addition, this mirror 8-1
The holes are formed to have an area (width) at least larger than the area of the through holes 6 for the purpose of preventing light leaking from the gaps 8H between the mirrors.

9は整流性を示す光導電層で、ここで謂う、整
流性とは後述する様に通常のダイオードに於ける
整流性と異なり更に広い概念である。
Reference numeral 9 denotes a photoconductive layer exhibiting rectifying properties, and the so-called rectifying properties here are different from the rectifying properties of ordinary diodes and are a broader concept, as will be described later.

ところで、第1図の構成例に於て、遮光層5の
透光性絶縁層7側の面には、カーボン層等の光吸
収部材を設けて、投影光のミラー8による反射戻
り光を吸収するのが、投影像のコントラストを上
げる為には望ましいことである。
By the way, in the configuration example shown in FIG. 1, a light absorbing member such as a carbon layer is provided on the surface of the light shielding layer 5 on the side of the transparent insulating layer 7 to absorb the reflected light of the projected light by the mirror 8. This is desirable in order to increase the contrast of the projected image.

又、反射ミラー8は、全て導電体から成り、且
つ分離していなければならないが、その形状の如
何は問わない。反射ミラー8の全てが分離してい
る理由は、これ等が連続していると、同一電位に
なつて電位差が生じない為、作像が不可能になる
からである。
Further, the reflecting mirror 8 must be made entirely of a conductive material and must be separated, but its shape does not matter. The reason why all of the reflecting mirrors 8 are separated is that if they were continuous, they would be at the same potential and no potential difference would occur, making it impossible to form an image.

ここで、別の図面を用いて、第1図に示した光
書込型液晶ライトバルブの作動に就いて詳しく説
明すると共に、本発明に於ける“整流性”の概念
を明確にする。第4図は、第1図のライトバルブ
装置の作動原理を説明する模式図である。
Here, the operation of the optical writing type liquid crystal light valve shown in FIG. 1 will be explained in detail using other drawings, and the concept of "rectification" in the present invention will be clarified. FIG. 4 is a schematic diagram illustrating the operating principle of the light valve device of FIG. 1.

第4図に於て、透明電極2aと2bとの間に電
源20により所定の直流電界を印加する。このと
き、信号光線が投射された領域では、発生したキ
ヤリア(図中では印で示す電子)が前記電界に
より反射ミラー8に移動する。これによつて、透
明電極2aと反射ミラー8の間の電圧が透孔6を
通して増大し閾値を越え、液晶層3に於て、誘電
異方向性が正の液晶分子3αと染料3βとがホモ
ジーニアス配向状態からホメオトロピツク配向状
態に変化する。そして、ここに、投影光を偏光板
10を通して投射すると、偏光が透孔6を通して
反射ミラー8に至つた後ここで反射され反射光
RL2が得られる。他方、信号光線が入射しない領
域では、フオトキヤリアが発生しないので、キヤ
リアは透明電極2bに留り、反射ミラー8へは移
動しない。従つて、この場合には液晶層3に印加
される電圧が閾値を越えることなく、液晶分子3
αと染料3βはホモジーニアス配向状態に保たれ
る。そこで、ここに入射した投影光(偏光)は液
晶層3中の二色性染料3βによつて吸収され、反
射ミラー8による反射光RL1は前記反射光RL2
較べて光量が少なくなつている。
In FIG. 4, a predetermined DC electric field is applied by a power source 20 between transparent electrodes 2a and 2b. At this time, in the region onto which the signal beam is projected, generated carriers (electrons indicated by marks in the figure) are moved to the reflecting mirror 8 by the electric field. As a result, the voltage between the transparent electrode 2a and the reflective mirror 8 increases through the through hole 6 and exceeds the threshold value, and in the liquid crystal layer 3, the liquid crystal molecules 3α with positive dielectric anisotropy and the dye 3β become homogeneous. Changes from the genius orientation state to the homeotropic orientation state. When projection light is projected here through the polarizing plate 10, the polarized light passes through the through hole 6 and reaches the reflecting mirror 8, where it is reflected and the reflected light is
RL 2 is obtained. On the other hand, in the region where the signal beam is not incident, no photocarrier is generated, so the carrier remains on the transparent electrode 2b and does not move to the reflection mirror 8. Therefore, in this case, the voltage applied to the liquid crystal layer 3 does not exceed the threshold value and the liquid crystal molecules 3
α and dye 3β are kept in a homogeneous orientation. Therefore, the projection light (polarized light) incident here is absorbed by the dichroic dye 3β in the liquid crystal layer 3, and the amount of light reflected by the reflection mirror 8 RL 1 is smaller than that of the reflected light RL 2 . There is.

この様にして、反射光量の差に基づく投影像
(……投影する為の像)が形成され、液晶層3中
に生じた像が不図示のスクリーン等に拡大して投
影される。
In this way, a projected image (an image to be projected) is formed based on the difference in the amount of reflected light, and the image generated in the liquid crystal layer 3 is enlarged and projected onto a screen (not shown) or the like.

尚、叙上の過程に於ては、遮光層5及びミラー
8によつて、信号光線が液晶層3側にもれ出るこ
と及び、逆に投影光が光導電層9に入射する不都
合が阻止されている。
In the above process, the light shielding layer 5 and the mirror 8 prevent the signal light from leaking to the liquid crystal layer 3 side and conversely prevent the projection light from entering the photoconductive layer 9. has been done.

又、叙上の作動例に於て、液晶層3中に形成さ
れる投影像が極微細なものでない限りは、特別な
投影光によらなくても室内光の下で投影像を目視
観察することもできる。
In addition, in the above operation example, unless the projected image formed in the liquid crystal layer 3 is extremely fine, the projected image can be visually observed under indoor light without using special projection light. You can also do that.

次に、第5図を用いた具体的構成例に就いて説
明する。
Next, a specific configuration example will be explained using FIG. 5.

第1の構成例では、第5図に示す様に透明基板
1bに設けた透明電極2b上にPt、Pd、Au又は
Moを20〜500Å、望ましくは30〜200Åの厚さに
蒸着して基層9aを形成する。次いで、SiH4
主体とするガスを放電分解して基層9a上にa−
Si−H層9bを形成する。このa−Si−H層9b
は弱いn型の半導体となり基層9aとの間にシヨ
トキーバリアー層を形成する。尚、a−Si−H層
9bは、通常、i層と呼ばれる。そして、この層
9bの厚さは他の層、とりわけ液晶層3との関係
で決められるが、通常、5000Å〜20μmの範囲に
ある。
In the first configuration example, as shown in FIG. 5, Pt, Pd, Au or
The base layer 9a is formed by depositing Mo to a thickness of 20 to 500 Å, preferably 30 to 200 Å. Next, a gas mainly composed of SiH 4 is decomposed by discharge to form a-
A Si-H layer 9b is formed. This a-Si-H layer 9b
becomes a weak n-type semiconductor and forms a Schottky barrier layer between it and the base layer 9a. Note that the a-Si-H layer 9b is usually called an i-layer. The thickness of this layer 9b is determined depending on the relationship with other layers, especially the liquid crystal layer 3, but is usually in the range of 5000 Å to 20 μm.

更に、このa−Si−H層9b上に、SiH4を主体
とするガスにPH3を100〜20000ppm、望ましく
は、1000〜10000ppm混入して放電分解を行な
い、厚さ100〜3000Å、望ましくは500〜2000Åに
堆積したn層9cを形成して整流性光導電層9を
作成する。
Further, on this a-Si-H layer 9b, 100 to 20,000 ppm, preferably 1,000 to 10,000 ppm of PH 3 is mixed into a gas mainly composed of SiH 4 and discharge decomposition is performed to form a layer with a thickness of 100 to 3,000 Å, preferably. A rectifying photoconductive layer 9 is formed by forming an n layer 9c with a thickness of 500 to 2000 Å.

次いで、第1図に示した実施例と同様にAlか
ら成る反射ミラー8、透光性絶縁層7、遮光層5
の形成を行つた後、別の透明基板1aの両面に偏
向板10と透明電極2aを設けて、遮光層5と透
明電極2aとの間にGH液晶層3を封入してライ
トバルブ装置の一例が完成する。この様にして得
られたライトバルブ装置に於ける光導電層9のバ
ンドダイアグラムを第6図aに示す。このバンド
ダイアグラムから解る様に、上記装置によつて投
影像を得る場合、透明電極2aと2b間に印加さ
れる電圧は、2b側が負になる様に印加される。
このとき、仮にシヨトキーバリア層を形成せずに
透明電極2bに直接、a−Si−H層(i層)9b
を設けると、透明電極2bからキヤリア(……i
層が弱いn型で、この場合、電子)のインジエク
シヨンを生じるので、光導電層9の暗抵抗が108
Ωcm〜109Ωcmにある場合、期待しない結果とな
る。これに対して、本例の様にシヨトキーバリア
層を形成すると、光導電層9へのキヤリアインジ
エクシヨンが阻止され、光導電層9の暗抵抗が
1012Ω・cm以上になる為、期待どおりの投影像を
形成することが可能になる。
Next, as in the embodiment shown in FIG. 1, a reflective mirror 8 made of Al, a transparent insulating layer 7, and a light shielding layer 5
After forming the above, a polarizing plate 10 and a transparent electrode 2a are provided on both sides of another transparent substrate 1a, and a GH liquid crystal layer 3 is sealed between the light shielding layer 5 and the transparent electrode 2a, thereby forming an example of a light valve device. is completed. A band diagram of the photoconductive layer 9 in the light valve device thus obtained is shown in FIG. 6a. As can be seen from this band diagram, when a projected image is obtained by the above device, the voltage applied between the transparent electrodes 2a and 2b is applied such that the voltage on the 2b side is negative.
At this time, it is assumed that the a-Si-H layer (i layer) 9b is directly applied to the transparent electrode 2b without forming a Schottky barrier layer.
When a carrier (...i
The dark resistance of the photoconductive layer 9 is 10 8 because the layer is of weak n-type and causes injection (in this case, electrons).
If it is between Ωcm and 10 9 Ωcm, the result will be unexpected. On the other hand, when a Schottky barrier layer is formed as in this example, carrier injection into the photoconductive layer 9 is prevented, and the dark resistance of the photoconductive layer 9 is reduced.
Since it is 10 12 Ω・cm or more, it is possible to form a projected image as expected.

又、本例に於けるn層9cは投影像を消去する
際、フオトキヤリアを受容した反射ミラー8から
透明電極2bにフオトキヤリアを掃引するのを容
易、且つ安定して可能にする作用を持つ。但し、
このn層9cは、電気的に低抵抗であるから作像
の都合上、ミラー8と同様、複数に分割して電気
的にアイソレイトさせることが必要であり、実際
には第5図に示す様に写真蝕刻法を用いて、ミラ
ー8とほゞ同様のパターンに形成される。
In addition, the n-layer 9c in this example has the function of easily and stably sweeping the photo carrier from the reflecting mirror 8 receiving the photo carrier to the transparent electrode 2b when erasing the projected image. . however,
Since this n-layer 9c has low electrical resistance, it is necessary to divide it into a plurality of parts and electrically isolate them in the same way as the mirror 8 for image forming purposes. It is formed into a pattern substantially similar to that of the mirror 8 using photolithography.

尚、この場合、平行光で入射した投影光を反射
ミラー8によつて平行光として反射させるときに
は個々のn層9cの面積をミラー8のそれと同等
か若干広くすることが必要である。因に個々のn
層9cの面積がミラー8のそれよりも小さいとき
にはミラー8の面に凹凸ができて入射光を散乱さ
せることになり、それが拡散板としての効果を示
す様になる。
In this case, when the projection light incident as parallel light is reflected as parallel light by reflection mirror 8, it is necessary to make the area of each n layer 9c equal to or slightly larger than that of mirror 8. Therefore, individual n
When the area of the layer 9c is smaller than that of the mirror 8, unevenness is formed on the surface of the mirror 8, scattering the incident light, and thus exhibiting an effect as a diffuser plate.

又、仮にこのn層9cを設けず、a−Si−H層
9bに反射ミラー8を直接、接して形成される場
合には両者の界面にバリアが形成されることがあ
り、フオトキヤリアの掃引に場所ムラがあつたり
不完全になる等の不都合が見られることが多い。
但し、上記バリアが形成されない場合にはn層9
cを省略することもできる。
Furthermore, if this n-layer 9c is not provided and the reflection mirror 8 is formed in direct contact with the a-Si-H layer 9b, a barrier may be formed at the interface between the two, and the photo carrier sweep Inconveniences such as uneven placement and incompleteness are often observed.
However, if the barrier is not formed, the n-layer 9
c can also be omitted.

ところでフオトキヤリアの掃引に際して本例装
置に印加される電圧は液晶層3に掛る電圧が閾値
を越えない限り、透明電極2bが同2aに対して
正になる様な順方向の直流電圧でも或は交流電圧
のどちらでも良い。
By the way, as long as the voltage applied to the liquid crystal layer 3 does not exceed the threshold value, the voltage applied to the device of this example when sweeping the photo carrier may be a forward DC voltage such that the transparent electrode 2b is positive with respect to the transparent electrode 2a, or Either AC voltage is fine.

次に、第2の構成例を説明する。この例では透
明電極2b上に、SiH4を主体とするガス中に
B2H6を50〜20000ppm、望ましくは200〜
10000ppm混入してグロー放電分解を行い厚さ、
30〜1000Å、望ましくは50〜300Åに堆積したP
層9aを形成する。このP層9aの適切な厚さ
は、信号光線の吸収量、及びP層9aとその上に
設けられるa−Si−H層(i層)9bとの間の空
乏層の形成との関係で決められる。
Next, a second configuration example will be explained. In this example, on the transparent electrode 2b, a gas containing mainly SiH 4 is placed.
B2H6 50~ 20000ppm , preferably 200~
After mixing 10,000ppm and performing glow discharge decomposition, the thickness
P deposited between 30 and 1000 Å, preferably between 50 and 300 Å
Form layer 9a. The appropriate thickness of the P layer 9a depends on the amount of absorption of the signal beam and the formation of a depletion layer between the P layer 9a and the a-Si-H layer (i layer) 9b provided thereon. It can be decided.

次いで、第1の構成例の場合と同様にして、a
−Si−H層9b、n層9c、反射ミラー8、透光
性絶縁層7、遮光層5を順次、積層した後、他の
透明電極2aとの間に液晶層3を封入してライト
バルブ装置を完成させた。この装置に於ける光導
電層9のバンドダイアグラムを第6図bに示す。
これから解る様に、投影像を形成する際の印加電
圧の極性は上記第1の例の場合と同じで、且つ、
同様の効果が得られる。
Next, in the same manner as in the first configuration example, a
- After sequentially laminating the Si-H layer 9b, the n-layer 9c, the reflective mirror 8, the translucent insulating layer 7, and the light-shielding layer 5, a liquid crystal layer 3 is sealed between the other transparent electrode 2a and the light valve is turned off. Completed the device. A band diagram of the photoconductive layer 9 in this device is shown in FIG. 6b.
As can be seen, the polarity of the applied voltage when forming the projected image is the same as in the first example above, and
A similar effect can be obtained.

又、本例に於てもフオトキヤリアの反射ミラー
8から透明電極2bへの掃引を第1の例の場合と
同様に行うことができる。
Also in this example, the photo carrier can be swept from the reflective mirror 8 to the transparent electrode 2b in the same manner as in the first example.

尚、P層9aとしては、上記のものの他SiH4
とCH4のグロー放電分解による堆積膜(P型a−
Si−C−H膜)にa−Si−H層9bを形成して得
られるヘテロジヤンクシヨンであつても良く、全
く同様の効果が得られる。
In addition to the above-mentioned materials, SiH 4
Deposited film (P-type a-
A heterojunction obtained by forming an a-Si-H layer 9b on a Si-C-H film) may also be used, and exactly the same effect can be obtained.

更に第3の構成例では光導電層9の構成が上記
2例と異なるだけで他は全く同様にして液晶ライ
トバルブ装置を完成させる。本例では、光導電層
9を次のとおり作成する。即ち、透明電極2b上
にa−Si−N−H膜、SiO2膜、又はポリパラキシ
リレン膜を厚さ、50〜10000Å、望ましくは100〜
3000Åに形成して透光性絶縁層9aを設けた後、
上記2例の場合と全く同様にa−Si−H層9b、
n層9cを順次積層する。
Furthermore, in the third example of the structure, the liquid crystal light valve device is completed in the same manner as in the above two examples except for the structure of the photoconductive layer 9. In this example, the photoconductive layer 9 is created as follows. That is, an a-Si-N-H film, a SiO 2 film, or a polyparaxylylene film is formed on the transparent electrode 2b to a thickness of 50 to 10,000 Å, preferably 100 to 100 Å.
After forming the transparent insulating layer 9a to a thickness of 3000 Å,
Just like in the above two examples, the a-Si-H layer 9b,
The n-layers 9c are sequentially stacked.

この第3の例に於ける光導電層9のバンドダイ
アグラムを第6図cに示す。
A band diagram of the photoconductive layer 9 in this third example is shown in FIG. 6c.

本例では、透明電極2bからa−Si−H層(i
層)9bへのキヤリアインジエクシヨンは絶縁層
9aにより阻止され、又、a−Si−H層9bがn
型半導体である為、投影像を形成する際に印加さ
れる電圧極性は、上記2例の場合と全く同じであ
り、同様の効果が得られる。又、フオトキヤリア
の掃引操作もこれ等と同様に行うことができる。
In this example, from the transparent electrode 2b to the a-Si-H layer (i
The carrier injection to the layer) 9b is prevented by the insulating layer 9a, and the a-Si-H layer 9b is
Since it is a type semiconductor, the voltage polarity applied when forming a projection image is exactly the same as in the above two examples, and the same effect can be obtained. Furthermore, the photo carrier sweep operation can be performed in the same manner as above.

以上3例の液晶ライトバルブ装置に於ては、
SiH4を主体とするガスの放電分解によつてP
層、a−Si−H層(i層)、n層等の光導電層の
形成を行つたが、この他、SiF4を主体とするガス
の放電分解によつても上記のものと同様にP層
(B2H6等がドーピングガスとして用いられる)、
a−Si−F−H層(i層)、n層(ドーピングガ
スとしてPH3等が用いられる)を形成することが
できる。
In the above three examples of liquid crystal light valve devices,
P by discharge decomposition of gas mainly composed of SiH4
In addition, photoconductive layers such as the a-Si-H layer ( i -layer), the n-layer, etc. P layer (B 2 H 6 etc. is used as a doping gas),
An a-Si-F-H layer (i-layer) and an n-layer (PH 3 or the like is used as a doping gas) can be formed.

因に、a−Si(a−Si−H、a−Si−F−H)
の作成方法やその性質、ドーピング効果等に就い
ては「アモルフアス電子材料利用技術集成」(サ
イエンスフオーラム社出版、1981)、その他の文
献に詳しく記載されているので参照することがで
きる。
Incidentally, a-Si (a-Si-H, a-Si-F-H)
The preparation method, its properties, doping effects, etc. are described in detail in "Collection of Technologies for Utilizing Amorphous Electronic Materials" (Science Forum Publishing, 1981) and other documents, which can be referred to.

又、容易に想起されることではあるが、本発明
に係る整流性光導電層としては、叙上の他、
SeTe、AS2Se3、CdS、CdTe等と透光性絶縁層
との積層体やCdS(n型)とCdTe(P型)との
ヘテロジヤンクシヨン等も適用することができ
る。
In addition, as it is easily recalled, the rectifying photoconductive layer according to the present invention includes, in addition to the above,
A laminate of SeTe, AS 2 Se 3 , CdS, CdTe, etc. and a transparent insulating layer, a heterojunction of CdS (n type) and CdTe (p type), etc. can also be applied.

更に、ここで具体的実施例に基づき本発明を詳
細に説明する。
Furthermore, the present invention will now be described in detail based on specific examples.

実施例 1 コーニング社製7059スライドガラス1b上の
In2(Sn)O3(松崎真空製)を透明電極2bと
し、これに電子ビームによりPtをPB(ベースプ
レツシヤー)=1×10-6Torr蒸着レイト(R)=
1Å/S、基板温度(Ts)=80℃で40Åの厚さに
蒸着し、Pt層9aを設けた。次いで、容量結合タ
イプのグロー放電分解法によりa−Si−H層9b
を次のようにして厚さ10μm堆積した。アノード
カソード共に200φ、その間の距離50mmの反応炉
にSiH4/H2=50%のガスを20SCCM導入し、PB
=1×10-6Torrガス圧=0.05Torr、Ts=250℃の
もとで、RF=13.56MHz、RFパワー=15Wでグロ
ー放電分解し、a−Si−H層をスライドガラス上
に10時間堆積した。スライドガラスはアノード側
にセツトした。この様にして得られたa−Si−H
層は優れた光導電性を示しクシ型電極を用いてサ
ーフエスタイプで測定した場合、ρo(暗抵抗
率)=1010Ω・cm、ρL(He−Neレーザー、1m
W/cm2での抵抗率)=105Ω・cmである。
Example 1 On Corning 7059 slide glass 1b
In 2 (Sn) O 3 (manufactured by Matsuzaki Vacuum) is used as the transparent electrode 2b, and Pt is applied to it using an electron beam (PB (base pressure)) = 1 × 10 -6 Torr evaporation rate (R) =
The Pt layer 9a was deposited to a thickness of 40 Å at a temperature of 1 Å/S and a substrate temperature (Ts) of 80°C. Next, the a-Si-H layer 9b is formed by a capacitive coupling type glow discharge decomposition method.
was deposited to a thickness of 10 μm as follows. 20 SCCM of SiH 4 /H 2 = 50% gas was introduced into a reactor with anode and cathode of 200φ and a distance of 50 mm between them, and P B
= 1 × 10 -6 Torr Under gas pressure = 0.05 Torr, Ts = 250°C, RF = 13.56 MHz, RF power = 15 W, glow discharge decomposition was performed, and the a-Si-H layer was placed on a slide glass for 10 hours. Deposited. The slide glass was set on the anode side. a-Si-H obtained in this way
The layer exhibits excellent photoconductivity, and when measured with a Surf-S type using a comb-shaped electrode, ρo (dark resistivity) = 10 10 Ω cm, ρ L (He-Ne laser, 1 m
Resistivity in W/cm 2 )=10 5 Ω·cm.

次に、このa−Si−H層9b上に電子ビーム蒸
着によりAlを2000Åの厚さに蒸着した。このと
き、PB=1×10-5Torr、Ts=60℃、R=10Å/
sであつた。
Next, Al was deposited to a thickness of 2000 Å on this a-Si-H layer 9b by electron beam evaporation. At this time, P B =1×10 -5 Torr, Ts=60℃, R=10Å/
It was s.

次いで、写真蝕刻法により、1個が90μm×90
μmの面積で100μmピツチの(第3図示様のパ
ターンを持つ)反射ミラー8を形成した。更に、
この反射ミラー8上に次のとおりa−Si−N−H
の透光性絶縁層7を3000Å堆積した。このとき、
a−Si−Hを作製したのと同一の装置で、上記の
作製工程を経た基板をアノード側にセツトし、P
B=1×10-6Torrのもとで、SiH4/H2=10%を
5SCCM、純粋なNH3を20SCCM導入しガス圧を
0.15Torrとし、Ts=250℃、RFパワー=5Wの条
件で5時間堆積した。こうして得られたa−Si−
N−H層の体積抵抗率は1014Ω・cm以上である。
次にこのa−Si−N−H透光性絶縁層7上にAlを
2000Å蒸着し、第2図示様のパターンの遮光層5
を第3図における反射ミラー8との重複巾が5μ
mになるよう写真蝕刻法によりパターニングし
た。従つて開口部6の面積は80μm×80μmであ
る。次いで遮光層5上にポリパラキシリレンを
2000Åの厚さに気相熱分解法により堆積した。ポ
リパラキシリレン上を綿布でラビングし液晶の配
向処理を行つた。遮光層5の周辺(その部分のポ
リパラキシリレンは除去してある)に、次の工程
で必要な開口を有するようにAl2O3粉末を分散さ
せたエポキシ樹脂を厚さ5μmに塗布しその上に
配向処理をしたポリパラキシリレン層(2000Åの
厚さ)を有する透明電極2aを持つ7059スライド
ガラス1aを圧着した。充分エポキシ樹脂を熱硬
化させた後これを真空槽内にゲストホスト液晶と
共に入れ、ロータリーポンプで〜1×10-2Torr
になるよう排気した。次いでゲストホスト液晶
で、上記あらかじめ設けた開口を塞ぎ除々にリー
クしながら真空槽内を常圧にして遮光層5と透明
電極2aの間にゲストホスト液晶を満した後、エ
ポキシ樹脂で開口を塞ぎ密封した。尚、この液晶
の配向はホモジーニアス配向である。ゲストホス
ト液晶には、メルク社製ネマテイツク相1291に
BDHケミカル社製アンスラキノン系ブルーダイ
D5を重量比で0.5%分散させたものを用いた。上
記液晶のクリアリングポイントは107℃であり、
閾値電圧は2.2Vである。透明基板1a上に日東
電工製偏光フイルムNPF−Q12(ニユートラルグ
レー)を着装し第1図に示すゲストホスト液晶ラ
イトバルブ装置を完成した。第7図にこの液晶ラ
イトバルブ装置を組込んだ投影装置の概略図を示
す。101は、白色拡散面をもつスクリーン、1
02は、投影光用ハロゲンランプ、103は、投
影光をミラー104に集光する為のレンズ、10
5は、ゲストホスト液晶ライトバルブ装置106
で形成された投影像をスクリーン101に20倍に
拡大するレンズである。107はポリゴンミラー
で、書込用光源109から射出され、集光レンズ
108で集光されたHe−Neレーザーを光導電層
面上の予定された位置に100μmφのスポツトで
投射する。
Next, one piece is 90μm x 90mm by photolithography.
A reflecting mirror 8 (having a pattern as shown in FIG. 3) with an area of 100 μm and a pitch of 100 μm was formed. Furthermore,
On this reflecting mirror 8, the following a-Si-N-H
A transparent insulating layer 7 with a thickness of 3000 Å was deposited. At this time,
Using the same equipment used to fabricate a-Si-H, set the substrate that underwent the above fabrication process on the anode side, and
Under B = 1×10 -6 Torr, SiH 4 /H 2 = 10%
5SCCM, introduce 20SCCM of pure NH 3 and increase the gas pressure
Deposition was carried out for 5 hours under the conditions of 0.15 Torr, Ts = 250°C, and RF power = 5W. The thus obtained a-Si-
The volume resistivity of the NH layer is 10 14 Ω·cm or more.
Next, Al is deposited on this a-Si-N-H transparent insulating layer 7.
A light shielding layer 5 of 2000 Å is deposited and has a pattern as shown in the second figure.
The overlap width with the reflecting mirror 8 in Fig. 3 is 5μ.
Patterning was carried out by photolithography to obtain m. Therefore, the area of the opening 6 is 80 μm×80 μm. Next, polyparaxylylene is applied on the light shielding layer 5.
It was deposited to a thickness of 2000 Å by vapor phase pyrolysis. The polyparaxylylene was rubbed with a cotton cloth to align the liquid crystal. Epoxy resin in which Al 2 O 3 powder is dispersed is applied to a thickness of 5 μm around the light-shielding layer 5 (the polyparaxylylene in that area has been removed) so as to have the openings necessary for the next step. A 7059 slide glass 1a having a transparent electrode 2a having an oriented polyparaxylylene layer (2000 Å thick) was pressure-bonded thereon. After sufficiently curing the epoxy resin, it was placed in a vacuum chamber together with a guest host liquid crystal, and heated to ~1×10 -2 Torr using a rotary pump.
I exhausted it so that it was. Next, the guest-host liquid crystal is used to close the opening prepared in advance, and the vacuum chamber is brought to normal pressure while leaking gradually, and the space between the light-shielding layer 5 and the transparent electrode 2a is filled with the guest-host liquid crystal, and then the opening is closed with epoxy resin. Sealed. Note that the alignment of this liquid crystal is homogeneous alignment. The guest host liquid crystal is nematic phase 1291 manufactured by Merck & Co.
Anthraquinone blue dye manufactured by BDH Chemical Co., Ltd.
A material in which D5 was dispersed at 0.5% by weight was used. The clearing point of the above liquid crystal is 107℃,
The threshold voltage is 2.2V. A polarizing film NPF-Q12 (neutral gray) manufactured by Nitto Denko was mounted on the transparent substrate 1a to complete the guest-host liquid crystal light valve device shown in FIG. FIG. 7 shows a schematic diagram of a projection device incorporating this liquid crystal light valve device. 101 is a screen with a white diffusion surface, 1
02 is a halogen lamp for projection light; 103 is a lens for condensing the projection light onto mirror 104; 10
5 is a guest host liquid crystal light valve device 106
This lens magnifies the projected image formed on the screen 101 by 20 times. A polygon mirror 107 projects the He--Ne laser emitted from the writing light source 109 and focused by the condenser lens 108 onto a predetermined position on the surface of the photoconductive layer with a spot of 100 .mu.m.phi.

ここで、本実施例の投影像の形成、消去及びス
クリーン上に投影された結果について簡単に述べ
る。透明電極2aと2bに直流電圧を2b側が負
極になるようにして4.2V印加した。ポリゴンミ
ラー107を駆動しながら書込用He−Neレーザ
ーを透明基板1bを通して光導電層9に投射し
た。電圧印加時間20msec、レーザーの書込強
度、200μW/cm2で予定した投影像をゲストホス
ト液晶は形成し、100mW/cm2のハロゲンランプ
による投影光で投影像をスクリーン上に投影し
た。得られたスクリーン上の像のコントラスト
は、明暗部の反射光強度で最大6:1であつた。
投影像の消去は透明電極2aと2bとの間に1K
Hzの交流電圧2Vを20msec印加して行つた。この
とき、光導電層9の逆方向暗抵抗率は1013Ω・cm
以上で、順方向暗抵抗率は(場所ムラがあるが)
108〜109Ω・cmであつた。
Here, the formation and erasure of a projected image in this embodiment and the results of projection on the screen will be briefly described. A DC voltage of 4.2 V was applied to the transparent electrodes 2a and 2b with the 2b side serving as the negative electrode. While driving the polygon mirror 107, a writing He--Ne laser was projected onto the photoconductive layer 9 through the transparent substrate 1b. A projected image was formed on the guest-host liquid crystal using a voltage application time of 20 msec and a laser writing intensity of 200 μW/cm 2 , and the projected image was projected onto the screen using projection light from a 100 mW/cm 2 halogen lamp. The contrast of the resulting image on the screen was 6:1 at maximum in terms of reflected light intensity in bright and dark areas.
The projected image is erased by 1K between the transparent electrodes 2a and 2b.
This was done by applying an AC voltage of 2V at Hz for 20msec. At this time, the reverse dark resistivity of the photoconductive layer 9 is 10 13 Ω・cm
With the above, the forward dark resistivity is (although there are some uneven locations)
It was 10 8 to 10 9 Ω·cm.

又、前記ポリパラキシリレンは透明電極2a或
は遮光層5からのイオン注入を阻止し、液晶の寿
命を増大させる上で有効に作用した。
Moreover, the polyparaxylylene blocked ion implantation from the transparent electrode 2a or the light shielding layer 5, and effectively acted to increase the life of the liquid crystal.

実施例 2 実施例1と同様にして透明基板1b上の透明電
極2b面にPtを蒸着し次いで、a−Si−H層9b
を堆積した。このa−Si−H層9b上に次に示す
条件でn層9cを1000Åの厚さに堆積した。
Example 2 Pt was vapor-deposited on the surface of the transparent electrode 2b on the transparent substrate 1b in the same manner as in Example 1, and then a-Si-H layer 9b was deposited.
was deposited. On this a-Si-H layer 9b, an n-layer 9c was deposited to a thickness of 1000 Å under the following conditions.

<堆積条件> PB=1×10-6TorrのもとでSiH4/H2=10%の
ガスを2SCCM、PH3/H2=100PPMのガスを
10SCCM導入してガス圧を0.1Torrとし、Ts=
200℃、RFパワー=8Wで16分間堆積する。
<Deposition conditions> SiH 4 /H 2 = 10% gas at 2SCCM, PH 3 /H 2 = 100PPM gas under P B = 1×10 -6 Torr.
Introducing 10SCCM and setting the gas pressure to 0.1Torr, Ts=
Deposit for 16 minutes at 200°C and RF power = 8W.

この様にして得たn層を写真蝕刻法により第3
図示の反射ミラーと同一形状にパターニングし
た。因に、このときの光導電層9のバンドダイア
グラムは第6図aの様になる。
The n-layer thus obtained was processed into a third layer by photolithography.
It was patterned to have the same shape as the illustrated reflecting mirror. Incidentally, the band diagram of the photoconductive layer 9 at this time is as shown in FIG. 6a.

次に得られたn層9c上に実施例1と同様にし
て反射ミラー8、透光性絶越層7、遮光層5を形
成し、配向処理したポリパラキシリレン層を有す
る遮光層5と透明電極2aとの間にゲストホスト
液晶を密封した後、偏光板10を透明基板1a上
に装着して本実施例の液晶ライトバルブ装置を完
成した。このライドバルブ装置を組込んだ第7図
の装置を用いて、実施例1と同様に操作して書込
光信号に応じた像がスクリーン101上に再生さ
れた。但し、投影像を形成するとき、透明電極2
aと2bとに印加する電圧は4.3Vであつた。
又、投影像の消去動作も実施例1と同一条牛で行
つたが、光導電層9の順方向暗抵抗率は108Ω・
cmで且つ、場所ムラが少なかつた。
Next, a reflective mirror 8, a transparent absolute layer 7, and a light shielding layer 5 are formed on the obtained n-layer 9c in the same manner as in Example 1, and a light shielding layer 5 having an oriented polyparaxylylene layer is formed. After sealing the guest-host liquid crystal between the transparent electrode 2a and the transparent electrode 2a, the polarizing plate 10 was mounted on the transparent substrate 1a to complete the liquid crystal light valve device of this example. Using the apparatus shown in FIG. 7 incorporating this ride valve device, an image corresponding to the write light signal was reproduced on the screen 101 in the same manner as in Example 1. However, when forming a projected image, the transparent electrode 2
The voltage applied to a and 2b was 4.3V.
Furthermore, the operation of erasing the projected image was performed using the same wire as in Example 1, but the forward direction dark resistivity of the photoconductive layer 9 was 10 8 Ω・
cm, and there was little unevenness in location.

実施例 3 透明基板(7059スライドガラス)1a上の透明
電極(In2(Sn)O3)2aに次に示す条件でP層
9aを100Åの厚さに堆積した。
Example 3 A P layer 9a was deposited to a thickness of 100 Å on a transparent electrode (In 2 (Sn) O 3 ) 2a on a transparent substrate (7059 slide glass) 1a under the following conditions.

<堆積条件> PB=1×10-6TorrのもとでSiH4/H2=10%の
ガスを4SCCM、B2H6/H2=100PPMのガスを
10SCCM導入してガス圧を0.1Torrとし、Ts=
250℃、RFパワー=10Wで100秒間堆積した。こ
うして得られたP層9a上に実施例1と同様にし
てa−Si−H層9bを堆積し次いで、実施例2と
同一条件でn層9cを堆積しパターニングした
後、実施例−1と同様にして反射ミラー8、透光
性絶縁層7、遮光層5を形成し、配向処理したポ
リパラキシリレン層を有する遮光層5と透明電極
2aとの間にゲストホスト液晶を密封し、偏光板
10を透明基板1a上に装着して本実施例の液晶
ライトバルブ装置を完成した。本実施例における
光導電層9のバンドダイアグラムは第6図bのよ
うになり、逆方向暗抵抗率は1013Ω・cm以上、順
方向暗抵抗率は108Ω・cmで場所ムラは少なかつ
た。実施例1と同様にして書込光信号に応じた像
がスクリーン101上に再生された。その際の投
影像形成の駆動印加電圧は実施例2と同様に
4.3Vである。投影像の消去動作も実施例1と同
一条件で行うことができた。
<Deposition conditions> SiH 4 /H 2 = 10% gas at 4SCCM, B 2 H 6 /H 2 = 100PPM gas under P B = 1×10 -6 Torr.
Introducing 10SCCM and setting the gas pressure to 0.1Torr, Ts=
Deposition was carried out at 250°C and RF power = 10W for 100 seconds. On the thus obtained P layer 9a, an a-Si-H layer 9b was deposited in the same manner as in Example 1, and then an N layer 9c was deposited and patterned under the same conditions as in Example 2. Similarly, a reflective mirror 8, a transparent insulating layer 7, and a light shielding layer 5 are formed, and a guest host liquid crystal is sealed between the light shielding layer 5 having an aligned polyparaxylylene layer and the transparent electrode 2a, and polarized light is generated. The liquid crystal light valve device of this example was completed by mounting the plate 10 on the transparent substrate 1a. The band diagram of the photoconductive layer 9 in this example is as shown in FIG. 6b, and the reverse dark resistivity is 10 13 Ω·cm or more, the forward dark resistivity is 10 8 Ω·cm, and there is little unevenness in places. Nakatsuta. An image corresponding to the write light signal was reproduced on the screen 101 in the same manner as in Example 1. The driving applied voltage for projection image formation at that time was the same as in Example 2.
It is 4.3V. The operation of erasing the projected image could also be performed under the same conditions as in Example 1.

実施例 4 透明基板(7059スライドガラス)1a上の透明
電極(In2(Sn)O3)2a上にa−Si−N−Hか
ら成る透光性絶縁膜9aを実施例1に於て透光性
絶縁層7を作成した条件と同一条件で2000Åの厚
さに形成した。次いで実施例1と同様にしてa−
Si−H層9bを堆積した後、実施例2と同一条件
でn層9cを形成しパターニングする。次いで実
施例1と同様にして反射ミラー8、透光性絶縁層
7、遮光層5を形成し、配向処理したポリパラキ
シリレン膜を有する遮光層5と透明電極2aとの
間にゲストホスト液晶を密封し、偏光板10を透
明基板1a上に装着し、本実施例の液晶ライトバ
ルブ装置5を完成した。本実施例における光導電
層9のバンドダイアグラムは第6図cのようにな
り、実施例2及び実施例3と同様にその逆方向暗
抵抗率は1013Ω・cm以上、順方向暗抵抗率は108
Ω・cmであり、場所ムラは少なかつた。この液晶
ライトバルブ装置を組込んだ第7図の装置を用い
て実施例1と同様の操作で書込光信号に応じた像
がスクリーン101上に再生された。但し、投影
像形成の際の駆動電圧は4.4Vであつた。又、投
影像の消去動作も他の実施例と同一条件にて行う
ことができた。
Example 4 In Example 1, a transparent insulating film 9a made of a-Si-N-H was placed on a transparent electrode (In 2 (Sn) O 3 ) 2a on a transparent substrate (7059 slide glass) 1a. It was formed to a thickness of 2000 Å under the same conditions as those for forming the photosensitive insulating layer 7. Then, in the same manner as in Example 1, a-
After depositing the Si--H layer 9b, an n-layer 9c is formed and patterned under the same conditions as in Example 2. Next, a reflective mirror 8, a transparent insulating layer 7, and a light shielding layer 5 were formed in the same manner as in Example 1, and a guest host liquid crystal was placed between the light shielding layer 5 having an aligned polyparaxylylene film and the transparent electrode 2a. was sealed, and the polarizing plate 10 was mounted on the transparent substrate 1a to complete the liquid crystal light valve device 5 of this example. The band diagram of the photoconductive layer 9 in this example is as shown in FIG. is 10 8
Ω・cm, and there was little unevenness in location. Using the device shown in FIG. 7 incorporating this liquid crystal light valve device, an image corresponding to the write light signal was reproduced on the screen 101 in the same manner as in Example 1. However, the driving voltage during projection image formation was 4.4V. Furthermore, the operation of erasing the projected image could be performed under the same conditions as in the other embodiments.

以上に詳しく説明した本発明に於ては、 1 直流電圧駆動によつて電気光学効果を利用し
た表示が可能であつて、その際、動画表示が容
易である。
In the present invention described in detail above, 1. Display using the electro-optic effect is possible by direct current voltage driving, and in this case, moving images can be easily displayed.

2 電圧の巾が広くとれて駆動電圧の制御が容易
である。
2. The voltage range is wide, making it easy to control the driving voltage.

3 投影像を形成したとき、表示面全体で画質が
安定している。
3. When a projected image is formed, the image quality is stable across the entire display surface.

4 装置が長寿命になる。4. The equipment has a longer lifespan.

5 装置構成要素、とりわけ、反射ミラーの構造
が簡略で、装置をコンパクトにすることができ
る。
5. The structure of the device components, especially the reflecting mirror, is simple, and the device can be made compact.

6 反射ミラー要素によつて直流電圧、駆動に於
けるフオトキヤリアの受容が可能である。
6. The reflection mirror element allows the reception of photo carriers in direct current voltage and drive.

等々の諸効果が得られる。Various effects such as this can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明に係る装置の一構成
例の概要説明図、第4図は本発明に係る装置の作
動例を説明する模式図、第5図は本発明に係る装
置に於ける光導電層の詳細構成を説明する略画断
面図、第6図a,b,cは何れもバンドダイアグ
ラムを示す略図、第7図は液晶ライトバルブ装置
を含む投影光学系の概略配置図である。 図に於て、2a,2bは透明電極、3は液晶
層、3αは液晶分子、3βは染料、5は遮光層、
7は透光性絶縁層、8は反射ミラー、9は光導電
層、9aは基層、又はP層又は透光性絶縁層、9
bはi層、9cはn層、10は偏光板、101は
スクリーン、102はハロゲンランプ、103,
108は集光レンズ、104は投影光反射ミラ
ー、105は投影像拡大レンズ、106はライト
バルブ装置、107はポリゴンミラー、109は
レーザー発振源である。
1 to 3 are schematic diagrams illustrating a configuration example of the device according to the present invention, FIG. 4 is a schematic diagram illustrating an example of the operation of the device according to the present invention, and FIG. 5 is a schematic diagram illustrating an example of the operation of the device according to the present invention. 6A, B, and C are all schematic diagrams showing band diagrams. FIG. 7 is a schematic layout diagram of a projection optical system including a liquid crystal light valve device. It is. In the figure, 2a and 2b are transparent electrodes, 3 is a liquid crystal layer, 3α is a liquid crystal molecule, 3β is a dye, 5 is a light shielding layer,
7 is a transparent insulating layer, 8 is a reflective mirror, 9 is a photoconductive layer, 9a is a base layer, or a P layer or a transparent insulating layer, 9
b is an i layer, 9c is an n layer, 10 is a polarizing plate, 101 is a screen, 102 is a halogen lamp, 103,
108 is a condensing lens, 104 is a projection light reflecting mirror, 105 is a projected image magnifying lens, 106 is a light valve device, 107 is a polygon mirror, and 109 is a laser oscillation source.

Claims (1)

【特許請求の範囲】 1 基板及び液晶層を有し、かつ該基板と液晶層
の間に整流性を有する光導電層を配置し、 前記光導電層の整流性と逆方向になる直流電圧
を印加した状態下で書込光信号を前記光導電層に
投射することにより前記液晶層に基づく投影像を
形成する手段と、前記光導電層の整流性と順方向
に電圧を印加した状態下で前記投影像を消去する
手段とを有する電気光学装置において、 前記光導電層がn層とi層で形成され、該n層
の上に反射ミラーを設けることを特徴とする電気
光学装置。
[Scope of Claims] 1. A photoconductive layer having a rectifying property is arranged between the substrate and the liquid crystal layer, and a DC voltage is applied in a direction opposite to the rectifying property of the photoconductive layer. means for forming a projection image based on the liquid crystal layer by projecting a writing optical signal onto the photoconductive layer under applied conditions; and a means for erasing the projected image, wherein the photoconductive layer is formed of an n layer and an i layer, and a reflecting mirror is provided on the n layer.
JP56133150A 1981-07-10 1981-08-25 Driving method of electro-optical device Granted JPS5834436A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56133150A JPS5834436A (en) 1981-08-25 1981-08-25 Driving method of electro-optical device
US06/396,051 US4538884A (en) 1981-07-10 1982-07-07 Electro-optical device and method of operating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56133150A JPS5834436A (en) 1981-08-25 1981-08-25 Driving method of electro-optical device

Publications (2)

Publication Number Publication Date
JPS5834436A JPS5834436A (en) 1983-02-28
JPS6257016B2 true JPS6257016B2 (en) 1987-11-28

Family

ID=15097876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56133150A Granted JPS5834436A (en) 1981-07-10 1981-08-25 Driving method of electro-optical device

Country Status (1)

Country Link
JP (1) JPS5834436A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179018A (en) * 1987-12-31 1989-07-17 Hamamatsu Photonics Kk Light valve device
JPH0833549B2 (en) * 1990-04-27 1996-03-29 シャープ株式会社 Optical writing type liquid crystal display element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388740A (en) * 1976-10-22 1978-08-04 Izon Corp Electrical optical device
JPS53137165A (en) * 1977-05-02 1978-11-30 Hughes Aircraft Co Liquid crystal light valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388740A (en) * 1976-10-22 1978-08-04 Izon Corp Electrical optical device
JPS53137165A (en) * 1977-05-02 1978-11-30 Hughes Aircraft Co Liquid crystal light valve

Also Published As

Publication number Publication date
JPS5834436A (en) 1983-02-28

Similar Documents

Publication Publication Date Title
US4538884A (en) Electro-optical device and method of operating same
US5477359A (en) Liquid crystal projector having a vertical orientating polyimide film
US3824002A (en) Alternating current liquid crystal light value
US4925276A (en) Liquid crystal light valve utilizing hydrogenated amorphous silicon photodiode
US5384649A (en) Liquid crystal spatial light modulator with electrically isolated reflecting films connected to electrically isolated pixel portions of photo conductor
US5178445A (en) Optically addressed spatial light modulator
EP0642050A2 (en) Spatial light modulator, method of production thereof and projection type display
EP0463803B1 (en) Liquid crystal element of optical writing type
JPS6230615B2 (en)
JPS6257016B2 (en)
US5220445A (en) Optical image processor
US5309262A (en) Optically addressed light valve system with two dielectric mirrors separated by a light separating element
JPH0769532B2 (en) Projection display device
JP3202574B2 (en) Optical writing type liquid crystal element
EP0681201A2 (en) Spatial light modulator and liquid crystal display device
USH840H (en) Single-Schottky diode liquid crystal light valve and method
JP2724207B2 (en) Ferroelectric liquid crystal element and optical writing type liquid crystal display
JPS5835516A (en) Electrooptic device
JPH07134310A (en) Optical writing type electro-optic device
JPH1020328A (en) Spatial light modulation element
JP2769395B2 (en) LCD light valve
JP2761253B2 (en) Optical writing type liquid crystal display
WO1989002613A1 (en) Single-schottky diode liquid crystal light valve and method
JP2768589B2 (en) Optical writing liquid crystal light valve
JPH05241187A (en) Liquid crystal light valve