JPS5810720A - Electrooptical device - Google Patents

Electrooptical device

Info

Publication number
JPS5810720A
JPS5810720A JP56108722A JP10872281A JPS5810720A JP S5810720 A JPS5810720 A JP S5810720A JP 56108722 A JP56108722 A JP 56108722A JP 10872281 A JP10872281 A JP 10872281A JP S5810720 A JPS5810720 A JP S5810720A
Authority
JP
Japan
Prior art keywords
layer
liquid crystal
light
crystal layer
projected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56108722A
Other languages
Japanese (ja)
Inventor
Tatsuo Masaki
正木 辰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP56108722A priority Critical patent/JPS5810720A/en
Priority to US06/396,051 priority patent/US4538884A/en
Publication of JPS5810720A publication Critical patent/JPS5810720A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1354Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied having a particular photoconducting structure or material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1357Electrode structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain a liquid crystal light valve which is provided with a sufficient function with a simple sturcture, by interposing a light shielding layer, which has plural transmission holes corresponding to picture elements, and plural reflective mirrors, which face to respective transmission holes through a light-transmittable insulating layer and are separated from one another, between a liquid crystal layer and a photoconductive layer. CONSTITUTION:When a voltage is applied across transparent electrodes 2a and 2b and a signal ray is projected to a photoconductive layer 9 through a transparent substrate 1b, the resistance of the photoconductive layer 9 in this projection part is reduced, and the value of the voltage applied to the corresponding part of a liquid crystal layer 3 is increased through a transmission hole 6, and the orientation direction of the liquid crystal existing in the corresponding area is changed. A projected image is formed in the liquid crystal layer 3, and the projection light is projected from the side of a transparent substrate 1a and is reflected by a mirror 8, thereby magnifying and projecting the image generated in the liquid crystal layer 3 onto a screen or the like. Troubles of the leakage of the signal ray to the side of the crystal layer 3 and the incidence of the pro- jection light to the photoconductive layer 9 are prevented by a light shielding layer 5 and mirrors 8.

Description

【発明の詳細な説明】 本発明は、光による入力像を光電効果によって投影像に
変換する電気光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electro-optical device that converts an optical input image into a projected image using the photoelectric effect.

従来、この種の電気光学装置として液晶ライシバルプ(
光弁)なるものが知られている。
Conventionally, this type of electro-optical device was liquid crystal lysivalp (
The light valve) is known.

その−例として、特開昭56−43681号公報に於て
は、液晶層と誘電ミラーと、2個の透明電極間に挾まれ
た光電感応層(光導電層)とから成る薄膜の多層構造を
とる液晶ライトパルプが開示されている。そして、この
様な液晶ライトパルプに於て、前記誘電ミラーは、液晶
層側から入射する投影光が光導電層には達しない様、事
前に反射させる為に必要な要素である。
As an example, JP-A-56-43681 discloses a thin film multilayer structure consisting of a liquid crystal layer, a dielectric mirror, and a photoelectric sensitive layer (photoconductive layer) sandwiched between two transparent electrodes. A liquid crystal light pulp that takes In such a liquid crystal light pulp, the dielectric mirror is a necessary element for reflecting the projection light incident from the liquid crystal layer side in advance so that it does not reach the photoconductive layer.

ている。このとき、可視域全域の波長光を反射する誘電
ミラーを得る為には、約15層以上の積層体を各層厚の
精確な制御を行ないつつ作成する必要があり、相当に高
度な製造技術を要する。又、仮に前述の目的を以て作成
された誘電ミラーであっても、実際には、投影光を完全
には反射することができず、光導電層と誘電ミラーとの
間に別途、光吸収層を設けてその機能を補うことが必要
であった。
ing. At this time, in order to obtain a dielectric mirror that reflects wavelengths throughout the visible range, it is necessary to create a laminate of approximately 15 or more layers while precisely controlling the thickness of each layer, which requires considerably advanced manufacturing technology. It takes. Furthermore, even if a dielectric mirror is made for the above purpose, in reality it cannot completely reflect the projected light, and a separate light absorption layer is required between the photoconductive layer and the dielectric mirror. It was necessary to establish a system and supplement its functions.

従って、この様な従来の液晶ライトパルプでは、所期の
機能が充分には発揮されず、且つ複雑な構造になる一ト
その製造にも手間がかかり、製造コストも高いものとな
っていた。
Therefore, such conventional liquid crystal light pulp does not fully exhibit its intended function, has a complicated structure, and requires time and effort to manufacture, resulting in high manufacturing costs.

そこで、本発明は、斯かる従来の諸欠点を除去して、簡
略な構造にして充分な機能を備えた一般には液晶ライ[
バルブと呼ばれる電気光学装置を提供することを目的と
するものである。
Therefore, the present invention eliminates the various drawbacks of the conventional liquid crystal display, which is generally a liquid crystal light source, which has a simple structure and sufficient functions.
The purpose of this invention is to provide an electro-optical device called a bulb.

又、本発明では、高解像のカラー表示を可能にする電気
光学装置を提供することも別の目的にしている。
Another object of the present invention is to provide an electro-optical device that enables high-resolution color display.

この様な目的を達成する本発明は、液晶層及び光導電層
を具え、光による入力像を光電効果によって投影像に変
換する電気光学装置であって、画素に相当する複数の透
孔を有する遮光層及び、この遮光層の片面に接した透光
性の絶縁層を介して前記透孔の各々に対面し且つ互に分
離した複数の反射鏡を前記液晶層と光導電層との間に介
在させて成ることを特徴とするものである。
To achieve these objects, the present invention is an electro-optical device that includes a liquid crystal layer and a photoconductive layer, converts an input image of light into a projected image by photoelectric effect, and has a plurality of through holes corresponding to pixels. A plurality of reflective mirrors facing each of the through holes and separated from each other are provided between the liquid crystal layer and the photoconductive layer through a light shielding layer and a light transmitting insulating layer in contact with one side of the light shielding layer. It is characterized by being formed by intervening.

以下、図面を用いた実施例によって本発明をWaに説明
する。
Hereinafter, the present invention will be explained by way of examples using drawings.

第1図は、第1の実施例の略画断面図であり1図に於て
、1aqlbは共に透明基板で、ガラス板又は樹脂板よ
り成る。又、2m、2bは共に透明電極で、例えば81
10意やIn* (8m) OR等の薄膜から成る。3
は液晶層、又、4はスペーサーであって、液晶層3を密
封すると共に、その層厚を調整する為のものである。そ
してこのスペーサー4としては通常、アルミナ粉末やガ
ラス7″′Mバー粉末を混入した樹脂製接着剤が用いら
れる。
FIG. 1 is a schematic cross-sectional view of the first embodiment. In FIG. 1, both 1aqlb and 1aqlb are transparent substrates made of a glass plate or a resin plate. Also, both 2m and 2b are transparent electrodes, for example 81
It consists of a thin film such as In* (8m) OR. 3
4 is a liquid crystal layer, and 4 is a spacer for sealing the liquid crystal layer 3 and adjusting its layer thickness. As the spacer 4, a resin adhesive mixed with alumina powder or glass 7'''M bar powder is usually used.

5は遮光層であり、カーボンや金属を堆積法により厚さ
500^−2μm程度に成膜させたものである。そして
、この遮光層5は第1図の本ム′纏に於ける切断平面図
である第2図のとおりの平面形状を有し、この遮光層5
には多数の透孔6が配列しである。尚、この透孔6の一
つが、投影像に於ける一画素に相当する。因に、これ等
の透孔6の形状は、図示例の正方形のみに限られず、任
意の形状のものとすることができる。
5 is a light-shielding layer, which is formed by depositing carbon or metal to a thickness of about 500^-2 μm. This light-shielding layer 5 has a planar shape as shown in FIG.
A large number of through holes 6 are arranged in the hole. Note that one of the through holes 6 corresponds to one pixel in the projected image. Incidentally, the shape of these through holes 6 is not limited to the square shown in the illustrated example, but can be any shape.

更に、第1図中の7は透光性絶縁層で、例えば、放電分
解法によって形成される810.811N4の膜、スパ
ッタ蒸着法等により形成されるstag展やPb?%Q
s、 PLZT等の強誘電体の膜から成る。そして、こ
の透光性絶縁層7の厚さは、1000ム種−の範囲とす
るのが良い。
Furthermore, 7 in FIG. 1 is a light-transmitting insulating layer, for example, an 810.811N4 film formed by discharge decomposition, a stag film or Pb? film formed by sputter deposition, etc. %Q
It consists of a ferroelectric film such as PLZT. The thickness of the light-transmitting insulating layer 7 is preferably in the range of 1000 μm.

8は反射ミラーであり、鏡面を成すa等金属の厚さ50
0ム°〜1μm程度の堆積膜から成る。このミラー8は
透孔6の全てに対面する様に多数個配置され、各ミラー
8は第1図のBSBJに於ける切断平面図である第3図
のとおりに配列しである。尚、このミラー8の1個は、
各ミラーの間@snからのもれ光を防ぐ目的から、少な
くとも前記透孔6の面積以上の面積(広さ)に成形しで
ある。
8 is a reflective mirror, and the thickness of metal such as a forming the mirror surface is 50
It consists of a deposited film with a thickness of about 0 μm to 1 μm. A large number of mirrors 8 are arranged so as to face all of the through holes 6, and each mirror 8 is arranged as shown in FIG. 3, which is a cutaway plan view of the BSBJ of FIG. 1. Incidentally, one of these mirrors 8 is
In order to prevent light from leaking between the mirrors @sn, it is formed to have an area (width) that is at least larger than the area of the through hole 6.

9は光導電層で、一般には後述する様に暗抵抗が液晶層
3の抵抗より高くなる周知の光導電材料より成る。光導
電材料としては、例えば、8・、a @−T @、ム畠
*@@s等の8−系力ルコゲン物質、0(15、Z+a
O,Zn5等の2−6族化合物、アモルファスシリコン
等の無機材料や、ポリビニルカルバゾールに代表される
有機光導電材料が挙げられる。
Reference numeral 9 denotes a photoconductive layer, which is generally made of a well-known photoconductive material whose dark resistance is higher than the resistance of the liquid crystal layer 3, as will be described later. Examples of photoconductive materials include 8-based lucogen substances such as 8., a@-T@, Muhata*@@s, 0(15,
Examples include Group 2-6 compounds such as O and Zn5, inorganic materials such as amorphous silicon, and organic photoconductive materials typified by polyvinyl carbazole.

ここで、第1図の光書送形液晶ライトバルブの作動に就
き簡単に説明する。
Here, the operation of the optical sending type liquid crystal light valve shown in FIG. 1 will be briefly explained.

透明電極2aと2bとの間に、不図示の電源から所定の
電圧を印加した状態で、透明基板1k  を通して光導
電層9に信号光線を投射すると、その部位の光導電層9
の抵抗が減少する。すると、信号光線が投射された領域
に対応する液晶層3に印加されるt正値が透孔6を通し
て増大して、該当領域に在る液晶の配向方向が変化する
When a signal beam is projected onto the photoconductive layer 9 through the transparent substrate 1k with a predetermined voltage applied between the transparent electrodes 2a and 2b from a power supply (not shown), the photoconductive layer 9 at that location is
resistance decreases. Then, the positive t value applied to the liquid crystal layer 3 corresponding to the region onto which the signal beam is projected increases through the through hole 6, and the alignment direction of the liquid crystal in the corresponding region changes.

この橡にして、液晶層3内には、液晶の配向方向の差に
基づく投影像(・・・投影する為の像)が形成され、こ
こに透明基板1a側から投影光を投射し、更に、ミラー
8により投影光を反射させることによって、液晶層3中
に生じた像が不図示のスクリーン等に拡大して投影され
る。
In this way, a projection image (an image for projection) is formed in the liquid crystal layer 3 based on the difference in the alignment direction of the liquid crystal, and projection light is projected onto this from the transparent substrate 1a side. By reflecting the projection light by the mirror 8, the image generated in the liquid crystal layer 3 is enlarged and projected onto a screen (not shown) or the like.

叙上の過程に於ては、遮光層5及びミラー8によって、
信号光線が液晶層311にもれ出ること及び、逆に投影
光が光導電層9に入射する不都合が阻止されている。
In the above process, the light shielding layer 5 and the mirror 8
This prevents the signal light from leaking into the liquid crystal layer 311 and the projection light from entering the photoconductive layer 9.

尚、以上の作動例に於て、液晶層3中に形成される投影
像−が極微細なものでない限りは、特別な投影光によら
なくても室内光の下で投影像を目視観察することもでき
る。
In the above operation example, unless the projected image formed in the liquid crystal layer 3 is extremely fine, the projected image can be visually observed under indoor light without using special projection light. You can also do that.

ところで、第1図の実施例に於て、遮光層5の透光性絶
縁層7側の面には、カーボン層等の光吸収部材を設けて
、投影光の文う−8による反射戻り光を吸収するのが、
投影像のコンFラスシを上げる為には望ましいことであ
る。
By the way, in the embodiment shown in FIG. 1, a light absorbing member such as a carbon layer is provided on the surface of the light shielding layer 5 on the side of the light transmitting insulating layer 7, so that the reflected return light due to the projection light is absorbed. It absorbs
This is desirable in order to increase the contrast of the projected image.

又、反射ミラー8は、全て導電体から成り、且つ分離し
ていなければならないが、その形状の如何は問わない。
Further, the reflecting mirror 8 must be made entirely of a conductive material and must be separated, but its shape does not matter.

反射ミラー8の全てが分離している理由は、これ等が連
続していると、同一電位になって電位差が生じない為、
作像が不可能になるからである。
The reason why all of the reflecting mirrors 8 are separated is because if they are continuous, they will have the same potential and no potential difference will occur.
This is because image formation becomes impossible.

そして、投影像を形成する際に、光導電層9の暗抵抗は
、液晶層3の抵抗より少くとも1ケタ以上大きいことが
必要で、光導電層9の厚さ、液晶層3の厚さ及び抵抗率
にも依存するが、通常1光導電層9の暗抵抗率は概略、
1o・Ω口 以上が必要で、望ましくはIgllΩam
以上である。
When forming a projected image, the dark resistance of the photoconductive layer 9 needs to be at least one order of magnitude larger than the resistance of the liquid crystal layer 3. Although it depends on the resistivity and resistivity, the dark resistivity of one photoconductive layer 9 is usually approximately:
1o・Ωmouth or more is required, preferably IgllΩam
That's all.

液晶構造の変化には、D8Mのように電流効果にの よるも%tL、TN方式(ねじれネマティック効果1D
ムP (mll副制御複屈折効果方式、相遷移方式ある
いはOR(ゲストホスト効果)方式のように電界効果に
よるものがあり、それぞれの方式に適した液晶を選定し
て適用する。
Changes in the liquid crystal structure depend on the current effect like the D8M, %tL, TN method (twisted nematic effect 1D
There are methods based on electric field effects such as sub-controlled birefringence effect method, phase transition method, and OR (guest-host effect) method, and a liquid crystal suitable for each method is selected and applied.

次に第4図及び第5図を以て、別の実施例を説明する。Next, another embodiment will be described with reference to FIGS. 4 and 5.

第1図と同核な構成を持つ液晶ライトバルブの透孔の上
に、下記の手順でR(レッド)、B(ブルー)、G(グ
リーン)から成る3色のカラーフィルター(0りを第5
図に示す様にストライプ状に形成、配列することによっ
て第4図の略画断面図で示すカラー表示用液晶ライトバ
ルブが得られる。
Place three color filters consisting of R (red), B (blue), and G (green) on the transparent hole of the liquid crystal light valve, which has the same structure as in Figure 1, using the following procedure. 5
By forming and arranging them in stripes as shown in the figure, a liquid crystal light valve for color display as shown in the schematic cross-sectional view of FIG. 4 can be obtained.

尚、第4図中の符号のうち、第1図と同一のものは全て
第1図の場合と同一の構成要素を指すものであり、それ
等の説明は、ここでは省略する。
Incidentally, among the reference numerals in FIG. 4 that are the same as those in FIG. 1, all refer to the same components as in FIG. 1, and the explanation thereof will be omitted here.

水その他の有機溶媒にも易溶な赤色色材である塩基性染
料70キシンa (Bム81社製)を真空蒸着法により
、5oooム′の厚さに蒸着膜形成しく真空度5 X 
10 ’?・rr) 、引き続いてポリパラキシリレン
(ユニオンカーバイド社製) ヲIIF用反応釜(0,
1テ・rr、25℃)にて2060m’の厚さになるま
で膜生成を行なった。後に7オトレジスト(商品名: 
?PR101・東京応化工業社製)を1000rPeで
回転塗布しく 65001)、通常の処理法により露光
現像処理を行ないスジライブ状のパターンを形成した。
Basic dye 70xine a (manufactured by Bm81), which is a red coloring material that is easily soluble in water and other organic solvents, was deposited to a thickness of 5 mm using a vacuum evaporation method at a vacuum level of 5X.
10'?・rr), followed by polyparaxylylene (manufactured by Union Carbide) and reaction vessel for IIF (0,
The film was formed at a temperature of 1 Te·rr (25° C.) to a thickness of 2060 m′. Later, 7 Otoresist (product name:
? PR101 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was spin-coated at 1000 rPe (65001), and subjected to exposure and development using a conventional processing method to form a streaky pattern.

これを2 X 10 ”?・rrの酸素プラズマエツチ
ング装置(〒IGムL社製・商品名:PLAIMOD 
)にてエツチングしたところ、はぼ60分にて不要な着
色層を除去することができた。
This was etched using a 2 x 10”?rr oxygen plasma etching device (manufactured by IG Co., Ltd., product name: PLAIMOD).
), the unnecessary colored layer could be removed in about 60 minutes.

ハラ+シリレン保護展のためにフォトレジストの溶剤及
び現像による色素層の傷みは全(生じナカった。つぎに
青色色素として銅7タロシア二ンを5oooi’ rr
厚さに蒸着しM形成を行なった@7タロシアニンは顔料
で耐7オシレジスト特性に特に優れているので、直接フ
ォトレジストを塗布することができた。先の赤染料のス
トライプパターンを正確にマスクのアライメントを行す
l/N 、 青色ハターン部分に耐エツチングレジスト
層ができるように露光現像処理を施し酸素プラズマエツ
チングにて不Ili部のエツチング除去を行なった。酸
素圧力は2 X 10 ”Tovrで所要時間は約1o
分であった。更にその上に録色の船7りpシアニンを蒸
着法にて80oθ;゛り厚さに設け、引きつづいて#!
1色の赤と同じ方法によりバラキシリレンを重合させ膜
形成を行ないフォトレジストのパターン形威し、酸素プ
ラズマ(2X10’?・rr)にてエツチングした。こ
れに要した時間は70分であった。
Due to the protection of Hala + Silylene, the damage to the dye layer due to photoresist solvent and development was completely removed. Next, copper 7 talocyanine was added as a blue dye to 5000'rr.
Since @7 talocyanine, which was vapor-deposited to a thickness to form M, is a pigment and has particularly excellent resistance to 7-osire resist, it was possible to directly coat the photoresist. Accurately align the mask for the previous red dye stripe pattern, perform exposure and development treatment to form an etching resist layer on the blue pattern area, and remove the unetched area using oxygen plasma etching. Ta. The oxygen pressure is 2 x 10”Tovr and the time required is about 1o
It was a minute. Further, on top of that, a layer of p-cyanine was deposited to a thickness of 80 degrees by vapor deposition, followed by #!
A film was formed by polymerizing varaxylylene using the same method as for the first color red, and the photoresist pattern was formed and etched using oxygen plasma (2×10'?.rr). The time required for this was 70 minutes.

この様にして得られた第4図の液晶ライトバルブから液
晶層3を除去したものに対してカラーフィルター側から
ハロゲンランプの光を投射し、20倍に拡大して不図示
のスクリーン上に投影した処、鮮明な1、G、Bから成
る有色ストライブ像が得られた@ 崗、第4図、第5llIの実施例に於て、カラーフィル
ターの配置は図示のストライプ状からモザイク状に変形
することも可能である。そして各フィルターの形成方法
も上記した方法のみには限定されない。
Light from a halogen lamp is projected from the color filter side onto the thus obtained liquid crystal light valve shown in FIG. 4 from which the liquid crystal layer 3 has been removed, and the light from the halogen lamp is magnified 20 times and projected onto a screen (not shown). As a result, a clear colored stripe image consisting of 1, G, and B was obtained. It is also possible to do so. The method for forming each filter is also not limited to the above-described method.

更に、第6図による実施例に就いて説明する。Further, the embodiment shown in FIG. 6 will be explained.

第6図に略画断面図で示す様に、コーニング社製の70
59スライドガラス101の片面に形成シた透明電極と
しての!テ0膜(板端真空社製)102上に1356M
BsのR1放電分解法により、ペースプレッシャーをI
 X 10 ’Tart以下にして、11114/m−
10襲の混合ガスを20800Mの流量で流しながら、
ガス圧、〜0.1!・rr:放電パワー、10W:基板
温度、〜200℃:の条件下で、厚さ5μmの優れた光
導電性を示すアモルファスシリコン膜103を形成した
。次いで、真空蒸着法により、aをzoooム′ の厚
さに成膜させた。このとき、10 ”?trr以上の真
空度であれば、鏡面状記U膜を、1個の大きさが90μ
■X 90μmで互の間隔が10μ翼になるように分割
して反射ミラー104を形成した・ こうして得られた反射ミラー104の上面に、13.5
6MMmの11放電分解法により、ベースプレッシャー
をI X 1G ’Tart以下にしてglH4/lロ
ー1010ガスを58(IOM、 100%(D NH
* 、l/ Xを20g0011[の流量で流しながら
、ガス圧、0.15’!’・rr:放電パワー、10W
:基板温度、〜zoo℃:の条件下で・厚さ5oooH
“の1田4膜10Bを形成した。
As shown in the schematic cross-sectional view in Figure 6, 70
59 as a transparent electrode formed on one side of the slide glass 101! 1356M on Te0 membrane (manufactured by Itabata Vacuum Co., Ltd.) 102
The pace pressure is reduced by the R1 discharge decomposition method of Bs.
X 10 'Tart or less, 11114/m-
While flowing a 10-stroke mixed gas at a flow rate of 20800M,
Gas pressure, ~0.1! An amorphous silicon film 103 having a thickness of 5 μm and exhibiting excellent photoconductivity was formed under the following conditions: rr: discharge power, 10 W: substrate temperature, ~200° C. Next, a film was formed to a thickness of 100 mm by vacuum evaporation. At this time, if the degree of vacuum is 10"?trr or more, the mirror-like U film can be
■The reflection mirror 104 was formed by dividing the blades into 10μ blades with a width of 90μm. On the upper surface of the reflection mirror 104 thus obtained,
Using the 6MMm 11 discharge decomposition method, glH4/l low 1010 gas was converted to 58 (IOM, 100% (D NH
*, while flowing l/X at a flow rate of 20g0011[, the gas pressure is 0.15'! '・rr: discharge power, 10W
: Substrate temperature, ~zoo℃: Thickness 5ooooH
4 films 10B were formed.

この11114膜は、良好な透光性とIIIL気的絶気
性絶縁性ものであった。次いで、IIINJ膜10B膜
上0Bムtをzooo;つ厚さに成膜した後、写真蝕翔
法によって、U膜tOS中に1個の開口面積が80μm
 X 80μmとなる透孔107を図示の如く一定の間
隔で形成した。
This 11114 film had good light transmittance and IIIL gas insulation properties. Next, after forming a film with a thickness of 0B on the IIINJ film 10B, one opening area of 80 μm was formed in the U film tOS by photo-etching.
Through holes 107 having a diameter of 80 μm were formed at regular intervals as shown in the figure.

又、別のスライドガラス108の片面に形成したImm
(am)01膜109に水を含有するグリセリン液を塗
布し、これをムを膜10ftに重ねてstmN411上
が導通状態になるようにしてから■@意(in) O@
膜109と19011102との間に直流電圧sovを
tOS個が負極になるようにして2秒間印加し、そのと
き、ハロゲンランプを用いて投影光を投射した場合と全
く投射しなかった場合に就いて、表面電位の変化をエレ
クトロメーターで測定した。その結果を第7図に示す。
In addition, Imm formed on one side of another slide glass 108
(am) Apply a glycerin solution containing water to the 01 membrane 109, overlay it on the 10ft membrane so that the top of the stmN411 becomes conductive, and then
A DC voltage sov was applied between the membranes 109 and 19011102 for 2 seconds with tOS being the negative electrode, and at that time, the results were calculated for the cases in which projection light was projected using a halogen lamp and in the case in which no projection light was projected at all. , changes in surface potential were measured with an electrometer. The results are shown in FIG.

このとき、投射光の投射タイミングは、電圧印加を止め
てからOSS後後、投射光のエネルギーは100mW/
awtであった。
At this time, the projection timing of the projection light is after the voltage application is stopped and after the OSS, and the energy of the projection light is 100mW/
It was awt.

97図中の実線は、投影光を全く投射しない場合及び、
スライドガラス10B(ilから光を投射した場合に共
通する結果である。又、点線はスライドガラス101側
から投影光を投射した場合の結果を示しており、投影光
が投射された直後(約1−一・−1後)に表面電位の急
激な減少が認められる。
The solid line in Figure 97 indicates the case where no projection light is projected and
This is a common result when the light is projected from the slide glass 10B (il).The dotted line shows the result when the projection light is projected from the slide glass 101 side, and immediately after the projection light is projected (approximately 1 After -1 and -1), a rapid decrease in surface potential was observed.

本実施例の実験から、本発明の反射ミラー性能が魚せら
れることが理解できる。
From the experiment of this example, it can be seen that the reflective mirror performance of the present invention is improved.

本実施例において反射ミラー104のa蒸着膜範囲が有
効である。膜厚が薄い方が膜はがれかなく、エツチング
速度も連く、積層する液晶層の均一性が得られること等
から望ましいがムを蒸着の際の膜厚の不均一性を考慮し
ないと膜厚りうるため、より望ましい膜厚は1000ム
−3OG O倉である。又、81mNA膜105(絶縁
層)の膜厚も薄い方が絶縁層での電圧降下を小さくする
等の点から望ましいが、絶縁層でのリーク電流をなくす
上から限界があり、この限界は駆動電圧及び絶縁層を形
成する材質により変るものである・しかじ、駆動電圧の
配分を考えるとアモルファスシリコン膜103(光導電
層)の膜厚と同騙度以下であることが望ましい。
In this embodiment, the a-deposited film range of the reflecting mirror 104 is effective. A thinner film is preferable because it prevents the film from peeling, improves the etching speed, and provides uniformity in the laminated liquid crystal layer. Therefore, a more desirable film thickness is 1000 μm. In addition, it is desirable that the thickness of the 81mNA film 105 (insulating layer) be thinner in order to reduce the voltage drop in the insulating layer, but there is a limit to eliminating leakage current in the insulating layer, and this limit is It varies depending on the voltage and the material forming the insulating layer. However, when considering the distribution of the driving voltage, it is desirable that the thickness be equal to or less than the thickness of the amorphous silicon film 103 (photoconductive layer).

本実施例に於ける透孔107が80μmX8Gμmで1
100Itピツチに形成されているが、開口面積をより
小さくしピッチもより小さくすることにより当然解像度
を上げることが出来る。
In this example, the through hole 107 is 80μm×8Gμm and 1
Although they are formed at a pitch of 100 It, the resolution can naturally be increased by making the aperture area smaller and the pitch smaller.

これ等の実施例で説明した本発明に於て、投影光を光導
電層に、又、信号光を液晶層に入射させない為に、透孔
の開口面積よりも反射ミラーの面積が大きくなる様に設
計しである。このとき、両者の重なり部分が少なくとも
中間に介在する絶縁層の厚さより大きいことが望ましい
In the present invention explained in these embodiments, in order to prevent projection light from entering the photoconductive layer and signal light from entering the liquid crystal layer, the area of the reflecting mirror is larger than the opening area of the through hole. It is designed to. At this time, it is desirable that the overlap between the two is at least larger than the thickness of the insulating layer interposed between them.

更に、本発明では、液晶層に接する透明電極や遮光層(
場合により、カラーフィルター)の表面に周知の液晶配
向処理を行なうこともできるO 以上に詳しく説明した本発明では、 1、 特に装置内の反射ミラーの構造が簡素化されたの
で、装置全体がコンパクトな構成になり、且つ、製造技
術も簡略にして、その歩留りも陶土した。
Furthermore, in the present invention, a transparent electrode and a light-shielding layer (
In some cases, well-known liquid crystal alignment treatment can be applied to the surface of the color filter).In the present invention described in detail above, 1. In particular, the structure of the reflection mirror in the device is simplified, so the entire device is compact. It has a simple structure, the manufacturing technology is simple, and the yield is similar to that of china clay.

1 簡略な構造にして、極めて良品位の投影像を提供す
ることができる。
1. Extremely high quality projection images can be provided with a simple structure.

3、 直流電圧で駆動する場合、従来のものでは、光導
電層内に所謂、キャリアトラップレベルを形成すること
が必要であったが、本発明では、反射ミラーが導電体で
ある為、これがキャリアを充分に受容し、光導電層内に
別途、キャリアトラップレベルを設ける必要はなく、製
造工程が少なくて済む。
3. When driving with a DC voltage, it was necessary to form a so-called carrier trap level in the photoconductive layer in the conventional method, but in the present invention, since the reflecting mirror is a conductor, this trap level is It is not necessary to provide a separate carrier trap level within the photoconductive layer, and the number of manufacturing steps can be reduced.

4、 カラーフィルターを微細加工技術によって付加す
ることが容易にでき、その結果、高解像のカラー表示用
液晶ライトバルブを提供することができる。
4. A color filter can be easily added using microfabrication technology, and as a result, a liquid crystal light valve for high-resolution color display can be provided.

等々の諸効果が得られる。Various effects such as this can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及至第6図は、何れも本発明の実施例に係る説明
図であり、第7図は、第6図示実施例に於ける実験結果
を示すグラフである。 図において、i a % tb、 101.108は透
明基板、2a 2bS102.109は透明電極、3は
液晶層、5.106は遮光層、6.107は透孔、7.
105は絶縁層、8.104は反射ミラー、9.103
は光導電層、KOF、 Go′P、 BOFは有色フィ
ルターである。
1 to 6 are explanatory diagrams relating to embodiments of the present invention, and FIG. 7 is a graph showing experimental results in the embodiment shown in FIG. In the figure, ia % tb, 101.108 is a transparent substrate, 2a 2bS102.109 is a transparent electrode, 3 is a liquid crystal layer, 5.106 is a light shielding layer, 6.107 is a through hole, 7.
105 is an insulating layer, 8.104 is a reflective mirror, 9.103
is a photoconductive layer, and KOF, Go'P, and BOF are colored filters.

Claims (1)

【特許請求の範囲】 11晶層及び光導電層を具え、光による入力像を充電効
果によって投影像に変換する電気光学装置に於て、画素
に相当する複数の透孔を有する遮光層及び、この遮光層
の片面に接した透光性の絶縁層を介して前記透孔の各々
に対面し且つ互に分離した複数の反射銃を前記液晶層と
光導電層との間に介在させて成ることを特徴とする電気
光学装置。 2 前記透孔に有色の光学的フィルターを配設して成る
特許請求の範囲第1項記載の電気光学装置。
[Scope of Claims] 11. An electro-optical device comprising a crystal layer and a photoconductive layer and converting an input image of light into a projected image by a charging effect, comprising: a light-shielding layer having a plurality of through holes corresponding to pixels; A plurality of reflective guns facing each of the through holes and separated from each other are interposed between the liquid crystal layer and the photoconductive layer through a light-transmitting insulating layer that is in contact with one side of the light-shielding layer. An electro-optical device characterized by: 2. The electro-optical device according to claim 1, wherein a colored optical filter is disposed in the through hole.
JP56108722A 1981-07-10 1981-07-10 Electrooptical device Pending JPS5810720A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56108722A JPS5810720A (en) 1981-07-10 1981-07-10 Electrooptical device
US06/396,051 US4538884A (en) 1981-07-10 1982-07-07 Electro-optical device and method of operating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56108722A JPS5810720A (en) 1981-07-10 1981-07-10 Electrooptical device

Publications (1)

Publication Number Publication Date
JPS5810720A true JPS5810720A (en) 1983-01-21

Family

ID=14491893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56108722A Pending JPS5810720A (en) 1981-07-10 1981-07-10 Electrooptical device

Country Status (1)

Country Link
JP (1) JPS5810720A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240430A (en) * 1985-08-19 1987-02-21 Seiko Epson Corp Liquid crystal light valve
JPH01179015A (en) * 1987-12-31 1989-07-17 Hamamatsu Photonics Kk Light valve device
JPH05203908A (en) * 1991-06-07 1993-08-13 Hughes Aircraft Co Single light valve full color projection display device
US5258705A (en) * 1990-12-21 1993-11-02 Sharp Kabushiki Kaisha Active matrix substrate inspecting device
US5296954A (en) * 1990-09-11 1994-03-22 Sharp Kabushiki Kaisha Liquid crystal display device having masking films being connected by conductors which extend across the central portions of the display electrodes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240430A (en) * 1985-08-19 1987-02-21 Seiko Epson Corp Liquid crystal light valve
JPH01179015A (en) * 1987-12-31 1989-07-17 Hamamatsu Photonics Kk Light valve device
US5296954A (en) * 1990-09-11 1994-03-22 Sharp Kabushiki Kaisha Liquid crystal display device having masking films being connected by conductors which extend across the central portions of the display electrodes
US5258705A (en) * 1990-12-21 1993-11-02 Sharp Kabushiki Kaisha Active matrix substrate inspecting device
JPH05203908A (en) * 1991-06-07 1993-08-13 Hughes Aircraft Co Single light valve full color projection display device

Similar Documents

Publication Publication Date Title
US5650867A (en) Functional substrate for controlling pixels
EP0412921B1 (en) Thin film transistor liquid crystal display device with optical interference color filters
DE4444557A1 (en) Lightweight display board for liq. crystal display device
TW594328B (en) Color liquid crystal display panel, manufacturing method of the same
US6068953A (en) Color filter for liquid crystal display device
JPS5810720A (en) Electrooptical device
US7098973B2 (en) Transflective liquid crystal display using transflective color filter
JPH10186349A (en) Liquid crystal display element and production thereof
JPH03167524A (en) Color liquid crystal display device
US5508134A (en) Liquid crystal element manufacturing method
EP1069460B1 (en) Reflective lcd device and method of manufacture thereof
JP2900948B2 (en) Liquid crystal display panel and method of manufacturing the same
JPS6240430A (en) Liquid crystal light valve
JP4361979B2 (en) Color filter
JP3603444B2 (en) Counter substrate, manufacturing method thereof, liquid crystal display element, and projection type liquid crystal display device
JP2573355B2 (en) Electrode substrate, liquid crystal display device, and manufacturing method thereof
EP0501657B1 (en) Method of manufacturing a colour filter
JPH08129186A (en) Liquid crystal display device
JPH07287220A (en) Liquid crystal device and its production
KR100190043B1 (en) Thin film transistor and lcd using it
JP3203882B2 (en) Color filter for liquid crystal display
JPH0477717A (en) Color liquid crystal display element
JPH07230101A (en) Liquid crystal display element and projection display device using the same
JPH03269415A (en) Active matrix optical modulation element
JPH11295517A (en) Reflection type liquid crystal light bulb and color filter used for the same