JPS5834401B2 - Carbon sintering method - Google Patents

Carbon sintering method

Info

Publication number
JPS5834401B2
JPS5834401B2 JP54047012A JP4701279A JPS5834401B2 JP S5834401 B2 JPS5834401 B2 JP S5834401B2 JP 54047012 A JP54047012 A JP 54047012A JP 4701279 A JP4701279 A JP 4701279A JP S5834401 B2 JPS5834401 B2 JP S5834401B2
Authority
JP
Japan
Prior art keywords
sintering
mold
powder
carbon
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54047012A
Other languages
Japanese (ja)
Other versions
JPS55140707A (en
Inventor
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP54047012A priority Critical patent/JPS5834401B2/en
Priority to US06/138,448 priority patent/US4414028A/en
Priority to GB8011883A priority patent/GB2051134B/en
Priority to FR8008222A priority patent/FR2453701A1/en
Priority to DE19803013943 priority patent/DE3013943A1/en
Priority to IT48402/80A priority patent/IT1128651B/en
Publication of JPS55140707A publication Critical patent/JPS55140707A/en
Publication of JPS5834401B2 publication Critical patent/JPS5834401B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は炭素原料粉末を焼結する方法の改良に係る。[Detailed description of the invention] The present invention relates to improvements in the method of sintering carbon raw material powder.

炭素(黒鉛)の焼結は、骨材として天然黒鉛を素材とす
る天然黒鉛系、無煙炭、粘結炭等の石炭類を素材とする
無煙炭系、石炭系、石油コークス、石炭ピッチコークス
等のコークス類を素材とするオイルコークス系、ピッチ
コークス系、及びカーボンブラックを素材とするスート
系等種々のものが用いられ、必要に応じてコールタール
、コールタールピッチ、樹脂等の結合剤が混合される。
Sintering of carbon (graphite) can be performed using natural graphite-based coke that uses natural graphite as an aggregate, anthracite-based coke that uses coal such as anthracite and coking coal, coal-based coke, petroleum coke, coal pitch coke, etc. Various types of coke, such as oil coke based on carbon black, pitch coke based, and soot based based on carbon black, are used, and if necessary, binders such as coal tar, coal tar pitch, and resin are mixed. .

通常の焼結法では約1000℃以下の長時間の1次焼結
を行なった後、更に昇温しで長時間の2次焼結を行なう
ため、長時間と複雑な工程及び処理がかSる。
In the normal sintering method, after a long period of primary sintering at about 1000°C or less, the temperature is further raised to perform a long period of secondary sintering, which requires a long time and complicated processes and treatments. Ru.

結合剤のピッチは揮発分が多いので焼結体中に多くの気
泡を含み、焼結密度は低いし、抵折力等の奥様的強度が
低い欠点があった。
Since the pitch of the binder has a large volatile content, it contains many air bubbles in the sintered body, resulting in a low sintered density and low mechanical strength such as bending strength.

本発明はこのような欠点に鑑みて提案されたもので、焼
結時に原料粉末を減圧雰囲気において通電することによ
り粉末間にグロー放電を起させて処理をし、処理された
後に加熱及び加圧して焼結することを特徴とする。
The present invention was proposed in view of these drawbacks, and involves processing the raw material powder by applying electricity in a reduced pressure atmosphere during sintering to cause a glow discharge between the powders, and then heating and pressurizing the powder after the processing. It is characterized by being sintered.

粉末間に通電して放電を行なう放電焼結法は従来知られ
ているが、これは大気圧で、場合によっては加圧雰囲気
で行なわれている。
A discharge sintering method in which electric current is passed between powders to generate a discharge is conventionally known, but this is performed at atmospheric pressure, or in some cases in a pressurized atmosphere.

この場合の放電はアークとか火花放電で、−個所に放電
が集中し易い、そのため焼結粉末全体を均一に短時間に
処理することがむずかしい。
The discharge in this case is an arc or spark discharge, and the discharge tends to be concentrated at - points, making it difficult to uniformly treat the entire sintered powder in a short time.

この点本発明は減圧中での放電、即ちグロー放電を行な
わせるから放電路が拡がり粉末全体の放電処理が極めて
容易となる。
In this regard, the present invention allows discharge under reduced pressure, that is, glow discharge, so that the discharge path is expanded and the discharge treatment of the entire powder becomes extremely easy.

減圧制御を行ない、放電路を充分拡げたグロー放電を行
なわせ、粉末処理を行なうと粉末間の放電浄化、活性化
の処理が全体的均一にでき、能率的に行なえ、捷たこの
浄化処理によって発生する揮発分が真空排気処理によっ
て焼結粉末層から容易に外部に排除され、粉末同志が純
な状態に近接接触するようになり、したがって焼結はこ
の活性化した粉末同志が拡散結合して、高密度に強く結
合し、機械的強度を高めることかできる。
By performing glow discharge with the discharge path sufficiently expanded by controlling the pressure reduction and performing powder treatment, the discharge purification and activation process between the powders can be performed uniformly and efficiently. The generated volatile matter is easily removed from the sintered powder layer by the vacuum evacuation process, and the powders come into close contact with each other in a pure state. Therefore, sintering is caused by the diffusion bonding of these activated powders. It is possible to bond strongly with high density and increase mechanical strength.

以下図面の一実施例により本発明を説明する。The present invention will be explained below with reference to an embodiment of the drawings.

第1図において、1は通気性を有する型で、これを減圧
排気容器2内に挿入して設ける。
In FIG. 1, reference numeral 1 denotes a breathable mold, which is inserted into a vacuum evacuation container 2.

3が真空ポンプ、4及び5は型1の上下から挿入した加
圧パンチで、このパンチ4,5に電極を兼用させること
により通電々源6を接続する。
3 is a vacuum pump, and 4 and 5 are pressurizing punches inserted from the top and bottom of the mold 1. The punches 4 and 5 also serve as electrodes to connect a power source 6.

7が型1内パンチ4,5間に充填された焼結原料の炭素
粉である。
Reference numeral 7 denotes carbon powder as a sintering raw material filled between the punches 4 and 5 in the mold 1.

型1としてはファイバーカーボンの結合体のような通気
性のある耐熱材料が用いられ、排気容器2内において真
空ポンプ3の排気により型1内部が容易に排気できる多
孔質体で構成されている。
The mold 1 is made of an air-permeable, heat-resistant material such as a composite of fiber carbon, and is made of a porous material that allows the inside of the mold 1 to be easily evacuated by evacuation from a vacuum pump 3 in an evacuation container 2 .

減圧は生起させるグロー放電の分散性を考慮して通常1
〜50’l’orr程度に排気制御される。
The pressure reduction is usually 1 in consideration of the dispersibility of the glow discharge to be generated.
Exhaust is controlled to about ~50'l'orr.

ポンプ3による排気によって型1を通して内部充填の焼
結粉末7は所要の減圧中に制御され、こ\に上下パンチ
4,5を通して電源6から通電され、放電され、放電は
粉末全体に分散し均一に拡がったグロー放電が発生する
The internally filled sintered powder 7 passes through the mold 1 by evacuation from the pump 3, and is controlled during the required depressurization, and is then energized from the power supply 6 through the upper and lower punches 4, 5 to be discharged, and the discharge is uniformly distributed throughout the powder. A glow discharge that spreads occurs.

グロー放電の放電々流は小さく、これは通電々源6によ
り制御され、安定したグロー放電を発生せしめる。
The discharge current of the glow discharge is small, and this is controlled by the energizing source 6 to generate a stable glow discharge.

放電によって粉末7は表面が放電衝撃を受けて表面付着
のガス、不純物は分解され蒸化され容易に分解飛散し表
面浄化し、且つ活性化する。
Due to the discharge, the surface of the powder 7 is subjected to discharge impact, and gases and impurities adhering to the surface are decomposed and evaporated, easily decomposed and scattered, and the surface is purified and activated.

これとともに結合剤を加えているときはその揮発分も容
易に分解飛散し、固定炭素分を残すように制御される。
At the same time, when a binder is added, its volatile content is easily decomposed and scattered, and the fixed carbon content is controlled to remain.

揮発分の分解飛散は型1を通して行なわれるが、型1が
通気性のものであり、しかもポンプ3による排気減圧が
行なわれているから、前記分解飛散物は型の通気孔を通
って容易に排気され、したがって放電処理効果は容易な
急速に行なわれる。
The decomposition and scattering of volatile matter is carried out through the mold 1, but since the mold 1 is breathable and the exhaust pressure is reduced by the pump 3, the decomposed and scattered substances easily pass through the vent holes of the mold. evacuated and therefore the discharge treatment effect is carried out easily and rapidly.

このようにして粉末7は活性化し、不純物は分解し、揮
発して除去され、充分な処理が行なわれたところで、パ
ンチ4,5を駆動して加圧し、通電々源6による供給電
力をアップして加熱し、焼結するが、前記グロー放電に
よる処理により焼結性が向上し、電界拡散、熱拡散によ
る拡散結合効果を高くして良好な焼結を完了させること
ができる。
In this way, the powder 7 is activated, the impurities are decomposed, volatilized and removed, and when sufficient processing has been performed, the punches 4 and 5 are driven to pressurize and the power supplied by the current source 6 is increased. The glow discharge treatment improves the sinterability, and enhances the diffusion bonding effect due to electric field diffusion and thermal diffusion, making it possible to complete good sintering.

前記放電による処理時間は1〜50Torrの減圧制御
により分散性の良いグロー放電を行なって処理するから
通常l〜60秒程度の短時間に充填された粉末全体の均
一処理ができ、焼結性を高められるから、焼結効果は、
同一焼結において焼結時間が処理をしないものに比較し
て約1/3に短縮できることが確認された。
The processing time for the discharge is controlled by vacuum control at 1 to 50 Torr to perform glow discharge with good dispersion, so that the entire filled powder can be uniformly processed in a short time of usually about 1 to 60 seconds, and the sinterability is improved. Because the sintering effect is enhanced,
It was confirmed that the sintering time could be reduced to about 1/3 compared to that without any treatment in the same sintering process.

捷た焼結粉末は結合剤を特に必要としないで焼結でき、
このため高密度化を著しく高めることができた。
The crushed sintered powder can be sintered without the need for a binder.
For this reason, it was possible to significantly increase the density.

第2図は押出し加工する場合の実施例で、8が案内部分
を兼ねる押出しダイスで、部分的に多孔質部材81.8
2で通気性に構成されていて、減圧容器2内に装置され
ている。
Fig. 2 shows an example of extrusion processing, where 8 is an extrusion die that also serves as a guide part, and a partially porous member 81.
2 and is configured to be air permeable, and is installed in a vacuum container 2.

9はダイス8に嵌合するパンチで、このパンチ9のカロ
圧により、内部焼結粉末7の押出しが行なわれ、ダイス
8とパンチ9との間に電源6を接続して通電する。
Reference numeral 9 denotes a punch that fits into the die 8. Internal sintered powder 7 is extruded by the Calorie pressure of this punch 9, and a power source 6 is connected between the die 8 and the punch 9 to supply electricity.

このダイスの押出し成形によっても、焼結粉末7に対し
て減圧中でグロー放電の処理ができ焼結性を向上した状
態で押出し成形することができ、成品の焼結は高密度に
高強度に焼結することができる。
By extrusion molding using this die, the sintered powder 7 can be treated with glow discharge under reduced pressure, and extrusion molding can be performed with improved sintering properties, and the finished product can be sintered with high density and high strength. Can be sintered.

以上のように本発明は炭素原料粉末を通気性の型に入れ
、排気して減圧中で通電して分散性のよいグロー放電を
発生させて処理をするから、焼結粉末の浄化、活性化の
処理が安定して行なわれ、分解ガス等の発散効果が良く
、急速な良好の処理ができ、焼結性を著しく高めること
ができ、この処理粉末を焼結することにより焼結は短時
間で行なわれ、得られた焼結体は高密度で高強度となる
As described above, in the present invention, carbon raw material powder is placed in an air-permeable mold, evacuated, and energized under reduced pressure to generate glow discharge with good dispersion. The process is stable, has a good dissipation effect for decomposed gas, etc., can be processed quickly and efficiently, and can significantly improve sinterability. By sintering this treated powder, sintering can be done in a short time. The resulting sintered body has high density and high strength.

実施例を説明すると、生コークス100メツシユ粉末を
通気性カーボン型に充填し、型を減圧容器内で3〜5T
orr程度に減圧した状態でパンチから通電をし、グロ
ー放電を発生させて型内焼結粉末の処理を行なった。
To explain an example, 100 mesh powder of raw coke is filled into an air permeable carbon mold, and the mold is heated to 3 to 5 T in a vacuum container.
The sintered powder in the mold was treated by applying electricity from the punch while the pressure was reduced to about 0.05 to generate a glow discharge.

この放電処理は約25秒間行ない100に9/c111
で加圧した。
This discharge treatment is carried out for about 25 seconds and becomes 100 to 9/c111.
Pressure was applied.

この処理後、通電々力を約3.4WH/、9の加熱をし
、450に9/dの加圧をして焼結を行なったとき、焼
結体の密度は約2.3g/crAで、圧縮強度は約2.
1トン/−であった。
After this treatment, the density of the sintered body was approximately 2.3 g/crA when sintering was carried out by heating at an electrical current of about 3.4 WH/9 and applying a pressure of 450 to 9/d. The compressive strength is approximately 2.
It was 1 ton/-.

比較のために従来の方法で得られた焼結体の最大密度が
約2.1g/c11tで、圧縮強度が約1トン/d程度
であったのに比較すると焼結性が著しく向上し高密度焼
結体の得られることが判明した。
For comparison, the maximum density of the sintered body obtained by the conventional method was about 2.1 g/c11t, and the compressive strength was about 1 ton/d. It has been found that a dense sintered body can be obtained.

なお焼結は通電焼結を行なうものに限らず、炉中加熱焼
結が任意に利用されることは勿論である。
Note that sintering is not limited to electrical sintering, and furnace heating sintering may of course be used as desired.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図は曲の実施
例の構成図である。 1は型、2は減圧容器、3は真空ポンプ、4゜5はパン
チ、6は電源、7は焼結粉末、8はダイス、9はパンチ
である。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of an embodiment of a song. 1 is a mold, 2 is a vacuum container, 3 is a vacuum pump, 4.5 is a punch, 6 is a power source, 7 is a sintered powder, 8 is a die, and 9 is a punch.

Claims (1)

【特許請求の範囲】 1 通気の型またはダイス内に原料炭素粉末を充填し、
前記型またはターイスの周囲雰囲気を減圧すると共に前
記型またはダイス内の充填粉末に直接渣たは誘導電流を
通電して、粉末間にグロー放電を起させて処理し、この
グロー放電による処理が行なわれた後に、加圧と加熱を
行なって焼結するようにしたことを特徴とする炭素の焼
結方法。 2 雰囲気圧を1〜50Torrに減圧することを特徴
とする特許請求の範囲第1項に記載の炭素の焼結方法。
[Claims] 1. Filling raw carbon powder into an aeration mold or die,
The surrounding atmosphere of the mold or die is reduced in pressure, and a residue or an induced current is passed directly to the packed powder in the mold or die to cause glow discharge between the powders, and the treatment is performed by this glow discharge. A method for sintering carbon, which is characterized in that the carbon is sintered by applying pressure and heating after being sintered. 2. The carbon sintering method according to claim 1, wherein the atmospheric pressure is reduced to 1 to 50 Torr.
JP54047012A 1979-04-11 1979-04-16 Carbon sintering method Expired JPS5834401B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP54047012A JPS5834401B2 (en) 1979-04-16 1979-04-16 Carbon sintering method
US06/138,448 US4414028A (en) 1979-04-11 1980-04-08 Method of and apparatus for sintering a mass of particles with a powdery mold
GB8011883A GB2051134B (en) 1979-04-11 1980-04-10 Sintering method and apparatus using a multi-directional compression system and a powder mould
FR8008222A FR2453701A1 (en) 1979-04-11 1980-04-11 SINTERING METHOD AND APPARATUS
DE19803013943 DE3013943A1 (en) 1979-04-11 1980-04-11 METHOD AND DEVICE FOR SINTERING A PARTICLE SIZE WITH A POWDER-SHAPED SHAPE
IT48402/80A IT1128651B (en) 1979-04-11 1980-04-11 PROCEDURE AND DEVICE FOR THE SINTERING OF A MASS OF PARTICLES WITH A MOLD OF FRIABLE MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54047012A JPS5834401B2 (en) 1979-04-16 1979-04-16 Carbon sintering method

Publications (2)

Publication Number Publication Date
JPS55140707A JPS55140707A (en) 1980-11-04
JPS5834401B2 true JPS5834401B2 (en) 1983-07-26

Family

ID=12763250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54047012A Expired JPS5834401B2 (en) 1979-04-11 1979-04-16 Carbon sintering method

Country Status (1)

Country Link
JP (1) JPS5834401B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152110A (en) * 1984-01-18 1985-08-10 Fujitsu Ltd Microwave amplifier
JPS6356802A (en) * 1986-08-28 1988-03-11 Sony Corp Rotary coupling device
JPS63169801A (en) * 1987-01-08 1988-07-13 Fujitsu Ltd Waveguide circuit module
JPH01265703A (en) * 1988-04-18 1989-10-23 Fujitsu Ltd Microwave amplifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152110A (en) * 1984-01-18 1985-08-10 Fujitsu Ltd Microwave amplifier
JPS6356802A (en) * 1986-08-28 1988-03-11 Sony Corp Rotary coupling device
JPS63169801A (en) * 1987-01-08 1988-07-13 Fujitsu Ltd Waveguide circuit module
JPH01265703A (en) * 1988-04-18 1989-10-23 Fujitsu Ltd Microwave amplifier

Also Published As

Publication number Publication date
JPS55140707A (en) 1980-11-04

Similar Documents

Publication Publication Date Title
JP2505880B2 (en) Method for producing high-density carbon and graphite products
JP2006004943A (en) Carbon composite material for fuel cell separator, production method thereof, and fuel cell separator utilizing the same
US3980447A (en) Process for the manufacture of brown coal briquettes
JPS5834401B2 (en) Carbon sintering method
JPS63171802A (en) Prodoction of porous sintered metallic body
JPS6186411A (en) Preparation of porous carbon plate
SU730285A3 (en) Method of hot pressing of metallic powders
JPH0524919A (en) Production of carbon material
JPH0986912A (en) Molding of fine powder of gas adsorbing material and jig for heat treatment
JP3869057B2 (en) Low density molybdenum sintered body and method for producing the same
JPH0860446A (en) Method for heat-treating carbon fiber by vapor-phase method
JPH1017904A (en) Energized sintering method
JP2001130963A (en) Method for producing isotropic high-density carbon material
JPS61122110A (en) Production of high-density carbon material
JPS603033B2 (en) Silicon nitride manufacturing method
JPH04321560A (en) Production of isotropic graphite material having high strength
JPH0458428B2 (en)
JPH0733547A (en) Production of porous silicon carbide sintered compact
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material
JP2600564B2 (en) Non-oxide surface high density sintered body and its manufacturing method
US1323623A (en) Pbocess of producing dense metal rods of fine powders
JP3094502B2 (en) Manufacturing method of carbon material
CN115521143A (en) Method for efficiently preparing high-quality graphite bipolar plate and graphite bipolar plate
JPH0543332A (en) Production of boron nitride compact
JPH11228230A (en) Production of carbon sliding member