JPS5834082A - Treatment of cyanide waste water - Google Patents

Treatment of cyanide waste water

Info

Publication number
JPS5834082A
JPS5834082A JP12938081A JP12938081A JPS5834082A JP S5834082 A JPS5834082 A JP S5834082A JP 12938081 A JP12938081 A JP 12938081A JP 12938081 A JP12938081 A JP 12938081A JP S5834082 A JPS5834082 A JP S5834082A
Authority
JP
Japan
Prior art keywords
cyanide
waste water
catalyst
added
decompose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12938081A
Other languages
Japanese (ja)
Inventor
Toshio Oda
小田 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP12938081A priority Critical patent/JPS5834082A/en
Publication of JPS5834082A publication Critical patent/JPS5834082A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To decompose cyanoferate complex salt, etc. which have been difficult to decompose so far, by adding NaOH or H2SO4 together with a catalyst to cyanide waste water, reacting it with ozone to decompose it, and then reducing it with Na2SO3. CONSTITUTION:Cyanide waste water having cyanide content below 10ppm is introduced into a pretreating vessel 1 provided with an agitator, where it is made alkaline by reaction with NaOH or H2SO4 and mixed with manganese as a catalyst. In this case, calcium as a co-catalyst may be added at needs to enhance the catalytic effect. The waste water is then decomposed by reaction with ozone in a decomposing vessel 2, introduced into a reducing vessel 3, provided with an agitator, to which Na2SO3 is added, and reduced. Thereafter, the waste water is coagulated in a coagulating vessel 4, provided with an agitator, to which a flocculant is added together with NaOH or H2SO4, and the resulting supernatant liquid is drained.

Description

【発明の詳細な説明】 本発明は、オゾン酸化法によるシアン排水の処理方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating cyanide wastewater using an ozone oxidation method.

メッキ工場等から排出される排水中には、多量のシアン
化合物を含有しており、何んらかの方法によって処理し
、水質汚濁防止法に定められた排水基準値の1.0pp
m+をクリヤーしなければ、この排水を工場外の河川等
へ排出できない。
The wastewater discharged from plating factories, etc. contains a large amount of cyanide, and must be treated in some way to reduce the wastewater to 1.0pp, which is the wastewater standard value stipulated in the Water Pollution Control Law.
Unless m+ is cleared, this wastewater cannot be discharged into rivers, etc. outside the factory.

従来、シアン排水の処理は、一般にアルカリ塩素法によ
ってなされている。この方法は、排水をアルカリ性(−
次分解PHI 0以上、二次分解P)17.5〜aO)
とし、次亜塩素酸を添加することKより、シアン化合物
を窒素と炭酸ガスに分解する方法で、反応式を次に示す
Conventionally, cyanide wastewater has been generally treated by an alkali chlorine method. This method makes the wastewater alkaline (−
Secondary decomposition PHI 0 or more, secondary decomposition P) 17.5~aO)
The reaction formula is shown below for a method in which cyanide is decomposed into nitrogen and carbon dioxide by adding hypochlorous acid.

nczoヲ添加(PH7,5〜ao )、2CNo −
+50CZ−+H1O→2COs+N@+3C1−+2
0H−(8)”i;Qこの方法は、比較的分解しゃすい
シアン化合物には非常罠良好であるが、シアノ鉄錯塩、
シアノコバルト錯塩等のシアン化合物については分解困
難で、公害上問題となる。また、この方法は、円及び次
亜塩素酸添加量を厳重に管理しないと良好な分解は困難
となる欠点も有する。
Addition of nczowo (PH7.5~ao), 2CNo −
+50CZ-+H1O→2COs+N@+3C1-+2
0H-(8)''i;Q This method is very effective for cyanide compounds which are relatively easy to decompose, but it is effective against cyanide complexes, iron cyano complexes, etc.
Cyanide compounds such as cyanocobalt complex salts are difficult to decompose and pose a pollution problem. This method also has the disadvantage that good decomposition is difficult unless the amount of yen and hypochlorous acid added is strictly controlled.

ここにおいて、本発明は、アルカリ塩素法によるこれら
の欠点に鑑^てなされたもので、分解困難なシアノ鉄錯
塩やシアノコバルト錯塩等のシアン化合物についても排
水基準値をクリヤできるシアン排水の処理方法を提供す
るものである。
The present invention has been made in consideration of these drawbacks of the alkali chlorine method, and provides a method for treating cyanide wastewater that can clear the wastewater standard value even for cyanide compounds such as cyanoiron complex salts and cyanocobalt complex salts that are difficult to decompose. It provides:

本発明に係る処理方法は、オゾンを利用した点に特徴が
あり、アルカリ塩素法と同じ反応で、シアン化合物製無
害な窒素と炭酸イオンにする方法である。反応式は次の
通りである。
The treatment method according to the present invention is characterized by the use of ozone, and is a method of converting cyanide compounds into harmless nitrogen and carbonate ions in the same reaction as the alkali chlorine method. The reaction formula is as follows.

CN−+OB −m−CN0−+OB  ・・・”” 
= 1412ONO−+301+H,O→2HCOi+
)is430m・・・・・・tls1図は本発明の排水
処理方法を説明す、るための説明図である。シアン排水
(シアン含有量10pシー以下)は、はじめに攪拌器を
もった前処理槽1に導入され、ここで排水はs Na0
a又はa=eo=と反応してアルカリ性とされる。この
前処理槽1には、)ra(H又はH2BO3の他に、触
媒作用を行なわせるための例えばマンガンが添加される
。ま瓢必要に応じて触媒をより一層活性化させ、触媒効
果を高6−イための助触媒剤として、カルシウムが添加
される。
CN-+OB -m-CN0-+OB ・・・””
= 1412ONO-+301+H,O→2HCOi+
) is430m...tls1 Figure is an explanatory diagram for explaining the wastewater treatment method of the present invention. Cyanide wastewater (cyanide content less than 10pcy) is first introduced into a pretreatment tank 1 equipped with an agitator, where the wastewater is sNa0
It is made alkaline by reacting with a or a=eo=. In addition to )ra (H or H2BO3), manganese, for example, is added to this pretreatment tank 1 in order to perform a catalytic action. Calcium is added as a cocatalyst for 6-i.

次に分解槽2において、オゾンと反応させて分解を行う
。ここで、オゾンだけでは気液接触のため、(4)式、
(6)式で示す反応が瞬時に行なわれなければ分解は困
難である0本発明においては、前処理槽1において、触
媒作用を有するマンガンを添加することにより、接触効
率を高め、完全な分解を行うようK t、ている。
Next, in the decomposition tank 2, decomposition is performed by reacting with ozone. Here, since ozone alone causes gas-liquid contact, equation (4),
Decomposition is difficult unless the reaction shown by formula (6) is instantaneously carried out. In the present invention, manganese having a catalytic action is added in the pretreatment tank 1 to increase contact efficiency and complete decomposition. K t, I'm trying to do it.

次に攪拌器をもち、Na2804が添加される還元種3
において還元され、続いて攪拌器をもち、擬集剤と、N
a0tI又はH,804が添加された擬集槽4で擬集さ
れ、上澄み液を放流する。
Next, a reduced species 3 with a stirrer and Na2804 added.
, followed by a stirrer, a flocculating agent, and N
A0tI or H,804 is aggregated in the aggregate tank 4, and the supernatant liquid is discharged.

本発明の方法による実験結果の一例を次に示曳まず、円
及び触媒添加量について、二元配置法によって実験した
結果、PH12、触媒としてマンガンを用い、その添加
量を100 p pmとした場合、5pp−フェリシア
ンイオンが741(i7ppm)分解した。なお、触媒
を添加しないと、2B’lシか分解しない。この場合の
反応式は次のように推測される。
An example of the experimental results according to the method of the present invention is shown below. First, the results of experiments using the two-way configuration method regarding circles and the amount of catalyst added were as follows: pH 12, manganese used as a catalyst, and the amount added was 100 pp pm. , 5pp-ferricyanide ion was decomposed by 741 (i7ppm). Note that 2B'l will not decompose unless a catalyst is added. The reaction formula in this case is estimated as follows.

Mn  + 20 「Mn(OH)1  −− t8)
Mll(OH)1+03−−一−−−→Mn104+0
1     ・・・−171Mn!04+OI    
        Mn10g+01     ・・・・
・・(8)Mn01+01            M
n01+01     ・・・・・・(9)MnO1+
01+NaOHNa2804          ・”
  ”’  Q(1Mn04+Fe(CN)/−6CN
O+N1+M+sO1+++ +++ allMn O
4+ CNO+H2O−m−−→ HCO7+N1+M
n01 − ・・・121次にオゾン量については、実
験より、試料としてのフェリシアンイオン量の2000
倍必要であることがわかった。なお、分解容易なシアン
化合物に対しては、シアン化合物の2倍量あればよい。
Mn + 20 "Mn(OH)1 -- t8)
Mll(OH)1+03--1---→Mn104+0
1...-171Mn! 04+OI
Mn10g+01...
...(8) Mn01+01 M
n01+01 ・・・・・・(9) MnO1+
01+NaOHNa2804・”
”' Q(1Mn04+Fe(CN)/-6CN
O+N1+M+sO1+++ +++ allMn O
4+ CNO+H2O-m--→ HCO7+N1+M
n01 - ...121Next, regarding the amount of ozone, it was determined from the experiment that the amount of ferricyanion ions in the sample was
It turned out that I needed twice as much. Note that for cyanide compounds that are easily decomposed, it is sufficient to use twice the amount of the cyanide compound.

これらの実験から、本発明に係る処理方法の条件として
は、シアン化合物が5ppmの時、pn12 、触媒(
マンガン゛)添加量1100pp、オゾン量10000
p。
From these experiments, the conditions for the treatment method according to the present invention are as follows: when the cyanide content is 5 ppm, pn12, catalyst (
Manganese) addition amount 1100pp, ozone amount 10000
p.

である。このような処理条件により、シアン化合物を含
有する排水を処理すると、これまで分解困難なシアノ鉄
錯等のシアノ化合物が含有されていても、排水基準値の
lppmをクリアーすることができた。また助触媒剤と
して、例えばカルシウムを1100pp以上添加した場
合、触媒の活性化を高めることができ、シアンの分解効
率を向上させることができる。実験によれば、助触媒剤
を1100pp以上添加した場合、フェリシアンイオン
は100−また、この助触媒剤としてアルカリ土類金属
を添加すると、これは共沈効果も優れているため、有害
重金属の処理も1好にできる。なお、助触媒剤を添加し
ない場合の分解率は90−前後である。
It is. When wastewater containing cyanide compounds was treated under such treatment conditions, it was possible to clear the wastewater standard value of lppm even if it contained cyano compounds such as cyano iron complexes that were difficult to decompose. Further, when 1100 pp or more of calcium, for example, is added as a co-catalyst, activation of the catalyst can be increased and cyanide decomposition efficiency can be improved. According to experiments, when 1100pp or more of co-catalyst is added, ferricyanion ions are reduced to 100%.Furthermore, when alkaline earth metals are added as co-catalysts, they also have an excellent coprecipitation effect, which reduces the amount of harmful heavy metals. Processing can also be done in one go. Note that the decomposition rate when no promoter is added is around 90-.

なお、上記の説明では、触媒としてマンガンを用いる場
合を例示したが、マンガンに代えて銀を用いてもよい、
また、助触媒剤としては、カルシウムの他に、バリウム
、マグネシウム、銅、銀。
In addition, in the above explanation, the case where manganese is used as a catalyst is illustrated, but silver may be used instead of manganese.
In addition to calcium, co-catalysts include barium, magnesium, copper, and silver.

アルミニウム、モリブデン、ニッケル、亜鉛等を使用す
ることも可能である。
It is also possible to use aluminum, molybdenum, nickel, zinc, etc.

以上説明したように、本発明に係る方法によれば、これ
まで分解困難であったシアノ鉄錯塩やシアノコバルト錯
塩等のシアン化合物についても分解でき、公害上問題を
生ずることもない。
As explained above, according to the method of the present invention, cyanide compounds such as cyano iron complex salts and cyano cobalt complex salts, which have been difficult to decompose up to now, can be decomposed without causing any pollution problems.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の詳細な説明するための説明図である。 1・・・前処理槽、2・・・分解槽、6・・・還元槽、
4・・・6集槽。
The figure is an explanatory diagram for explaining the present invention in detail. 1... Pretreatment tank, 2... Decomposition tank, 6... Reduction tank,
4...6 collection tanks.

Claims (1)

【特許請求の範囲】 (1)シアン排水K NaOH又はHs804と触媒と
を加えて前処理し、これをオゾンと反応させて分解させ
、分解処理後の排水をNa1aO@にて還元する各工程
を ′経てシアン排水の処理を行うことを特徴とするシ
アン排水の処理方法。 (2)シアン排水の圧は12f1以上であり、触媒添加
量は100.、−オゾン量はシアン化合物の2000倍
とする特許請求の範囲第1項記載のシアン排水の処理方
法。 13)前処理工程において、助触媒を添加するようにし
た特許請求の範囲第1項記載のシアン排水の処理方法。 (4)助触媒の添加量を1100pp以上とする特許請
求の範囲第3項記載のシアン排水の処理方法。
[Claims] (1) Each step of pretreating cyanide wastewater K by adding NaOH or Hs804 and a catalyst, reacting it with ozone to decompose it, and reducing the decomposed wastewater with Na1aO@. A method for treating cyanide wastewater, characterized in that the cyanide wastewater is treated after the treatment. (2) The pressure of cyanide wastewater is 12f1 or more, and the amount of catalyst added is 100. , - The method for treating cyanide wastewater according to claim 1, wherein the amount of ozone is 2000 times that of cyanide. 13) The method for treating cyanide wastewater according to claim 1, wherein a co-catalyst is added in the pre-treatment step. (4) The method for treating cyanide wastewater according to claim 3, wherein the amount of co-catalyst added is 1100 pp or more.
JP12938081A 1981-08-20 1981-08-20 Treatment of cyanide waste water Pending JPS5834082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12938081A JPS5834082A (en) 1981-08-20 1981-08-20 Treatment of cyanide waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12938081A JPS5834082A (en) 1981-08-20 1981-08-20 Treatment of cyanide waste water

Publications (1)

Publication Number Publication Date
JPS5834082A true JPS5834082A (en) 1983-02-28

Family

ID=15008143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12938081A Pending JPS5834082A (en) 1981-08-20 1981-08-20 Treatment of cyanide waste water

Country Status (1)

Country Link
JP (1) JPS5834082A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984084A (en) * 1997-08-08 1999-11-16 Maruyasu Kikai Co., Ltd. Curved belt conveyor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984084A (en) * 1997-08-08 1999-11-16 Maruyasu Kikai Co., Ltd. Curved belt conveyor
US6053306A (en) * 1997-08-08 2000-04-25 Maruyasu Kikai Co., Ltd. Curved belt conveyor
US6085895A (en) * 1997-08-08 2000-07-11 Maruyasu Kikai Co., Ltd. Curved belt conveyor

Similar Documents

Publication Publication Date Title
US4070281A (en) Method for treating waste water
JPH06226272A (en) Method of reducing content of organic chemical substance in waste liquid
US5573676A (en) Process and a device for the decomposition of free and complex cyanides, AOX, mineral oil, complexing agents, cod, nitrite, chromate, and separation of metals in waste waters
US4569769A (en) Wastewater treatment
CN105293775A (en) Method adopting combined technology of pre-oxidation and coagulating sedimentation to process wastewater containing thallium and ammonia-nitrogen
JP7398021B2 (en) Treatment method and treatment equipment for cyanide-containing water
CN108996642A (en) A kind of processing method of chlorine-contained wastewater
CN104445751A (en) Method for recycling and treating cyanide waste water
CA1332475C (en) Process for the treatment of effluents containing cyanide and toxic metals, using hydrogen peroxide and trimercaptotriazine
Tiwari et al. Applications of ferrate (VI) in the treatment of wastewaters
US4966715A (en) Process for the removal of cyanide from wastewaters
KR20190138129A (en) Catalyst for fenton oxidation, and process for treating wastewater using the same
JP2013056328A (en) Treatment method and treatment apparatus of cyanide-containing water
JP2020025955A (en) Treatment method of cyan-containing water
JP2021053620A (en) Treatment method for cyanide-containing wastewater
JPS6211634B2 (en)
JPS5834082A (en) Treatment of cyanide waste water
JP4666275B2 (en) Treatment method for wastewater containing sulfite ions
JP3642516B2 (en) Method and apparatus for removing COD components in water
KR100495765B1 (en) Method of preparing iron oxide catalysts for fenton oxidation and use of iron oxide catalysts prepared thereby
JPH06182344A (en) Decomposition and utilization method and device for salt and inorganic nitrogen compound-containing solution
JPS59199097A (en) Disposal of waste cement slurry
JP2847864B2 (en) Chromium-containing wastewater treatment method
JP2005313112A (en) Method for treating waste water containing cyanogen
JPS5834083A (en) Treatment of cyanide waste water