JPS5833688B2 - Manufacturing method of electrolytic capacitor - Google Patents

Manufacturing method of electrolytic capacitor

Info

Publication number
JPS5833688B2
JPS5833688B2 JP48032896A JP3289673A JPS5833688B2 JP S5833688 B2 JPS5833688 B2 JP S5833688B2 JP 48032896 A JP48032896 A JP 48032896A JP 3289673 A JP3289673 A JP 3289673A JP S5833688 B2 JPS5833688 B2 JP S5833688B2
Authority
JP
Japan
Prior art keywords
voltage
formation
electrolytic capacitor
sintered body
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48032896A
Other languages
Japanese (ja)
Other versions
JPS49119151A (en
Inventor
正晴 大野
武彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP48032896A priority Critical patent/JPS5833688B2/en
Publication of JPS49119151A publication Critical patent/JPS49119151A/ja
Publication of JPS5833688B2 publication Critical patent/JPS5833688B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明(まタンタル、チタン、ニオブ等の酸化膜が弁作
用を有する金属粉末をシンターしたいわゆる焼結体の電
解コンデンサに適用されるものであり、該焼結体の内部
と外部の酸化皮膜の厚さ、および組成が異る構造をもっ
た電解コンデンサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applied to a so-called sintered electrolytic capacitor in which a metal powder having a valve action is sintered with an oxide film of tantalum, titanium, niobium, etc. The present invention relates to a method of manufacturing an electrolytic capacitor having a structure in which the thickness and composition of the internal and external oxide films are different.

従来の電解コンデンサは誘電体としての酸化皮膜を形成
する際、リン酸、硫酸、硝酸等の非金属元素の酸素酸を
電解液として、電気化学的に陽極酸化し、しかも、焼結
体の内部、外部の皮膜の厚さを均一にするため、定電圧
エージング数時間行っている。
In conventional electrolytic capacitors, when forming an oxide film as a dielectric, electrochemical anodic oxidation is performed using a non-metallic oxygen acid such as phosphoric acid, sulfuric acid, or nitric acid as an electrolyte. In order to make the thickness of the external film uniform, constant voltage aging was performed for several hours.

その後、この皮膜上に二酸化マンガンあるいは硫酸のよ
うな固体、液体電解質層を、更にその上にグラファイト
、銀ペースト等の導電体層を設けている。
Thereafter, a solid or liquid electrolyte layer such as manganese dioxide or sulfuric acid is provided on this film, and a conductive layer such as graphite or silver paste is further provided on top of the solid or liquid electrolyte layer.

このような構造のものは 直流電圧を印加すると、陰極
層により、瞬時の電圧を緩和し、酸化皮膜により電流通
過を阻止するが、その洩れ電流は、化成直後のものより
も非常に大きく、耐圧も著しく降下する。
When a direct current voltage is applied to a structure like this, the cathode layer relaxes the instantaneous voltage, and the oxide film blocks the passage of current, but the leakage current is much larger than that of a structure immediately after formation, and the withstand voltage is also decreases significantly.

そのため、信頼性を増すためには、皮膜を厚くせねばな
らず、化成電圧を定格電圧の8〜4倍にしている。
Therefore, in order to increase reliability, the coating must be made thicker, and the forming voltage is increased to 8 to 4 times the rated voltage.

それ故、所定の容量を得るためには、表面積の犬なる、
すなわち形状の大型の焼結体を使用せざるをえない。
Therefore, in order to obtain a given capacity, the surface area must be
In other words, a large-sized sintered body must be used.

しかしながら、その洩れ電流の増大、破壊電圧の降下は
、二酸化マンガン、二酸化鉛、その他電解質を設ける際
の熱的、化学的衝撃のためによるものであるが、とりわ
け、その破壊部分は、殆んど、焼結体それ自身の表面近
傍であることが多い。
However, the increase in leakage current and the drop in breakdown voltage are due to the thermal and chemical shocks that occur when manganese dioxide, lead dioxide, and other electrolytes are provided. , often near the surface of the sintered body itself.

この現象を考察してみると、例えばタンタル固体電解コ
ンデンサの場合には、陰極として二酸化マンガンのよう
な半導体を用いるが、焼結体の場合、等何曲には第1図
に示すように、容量と直列に入った抵抗が、無数に並列
になっているモデルが考えられる。
Considering this phenomenon, for example, in the case of tantalum solid electrolytic capacitors, a semiconductor such as manganese dioxide is used as the cathode, but in the case of sintered bodies, as shown in Figure 1, A model can be considered in which an infinite number of resistors are connected in series with a capacitor in parallel.

この直列抵抗は、焼結体の表面近傍はど小さく、中心部
はど大きいことが、容易に図からも類推される。
It can be easily inferred from the figure that this series resistance is smaller near the surface of the sintered body and larger at the center.

ここで実際に25V/4.7μFのタンタル電解コンデ
ンサ単体に種々の直列抵抗を接続し、5■/秒の速度で
昇圧し、数回マイクロ破壊させ、その後、洩れ電流の変
化を測定した結果を第2図に示す。
Here, we actually connected various series resistors to a single 25V/4.7μF tantalum electrolytic capacitor, boosted the voltage at a rate of 5μ/sec, caused micro-destruction several times, and then measured the change in leakage current. Shown in Figure 2.

さらに上記と同条件で昇圧、コンデンサが完全に破壊短
絡する電圧を最高ブレークダウン電圧として、種々の直
列抵抗の場合についてのそれを第3図に示す。
Furthermore, under the same conditions as above, the voltage at which the capacitor is completely destroyed and short-circuited is taken as the maximum breakdown voltage, and the voltage is shown in FIG. 3 for various series resistances.

図中の直列抵抗ルは定格電圧1■当りの抵抗であり、例
えばR8二0.5 、Q/Vとはz5Vxo、5Q=1
2.5ffの抵抗を直列に接続した場合のことを意味す
る。
The series resistance in the figure is the resistance per rated voltage, for example R820.5, and Q/V is z5Vxo, 5Q=1
This means that a 2.5ff resistor is connected in series.

この図から明らかなごとく、直列抵抗を入れた方が、洩
れ電流の劣化が少く、直列抵抗を増すに従い、最高ブレ
ークダウン電圧、以後単にブレークダウン電圧と呼ぶも
上昇する。
As is clear from this figure, when a series resistor is included, the leakage current deteriorates less, and as the series resistor is increased, the maximum breakdown voltage (hereinafter simply referred to as breakdown voltage) also increases.

すなわち、直列抵抗の大きい方がブレークダウン発生時
、外部回路から流入する電力を抑制するため皮膜への衝
撃が少ないと考えられる。
In other words, it is thought that when a breakdown occurs, the larger the series resistance is, the smaller the impact on the film is because it suppresses the power flowing in from the external circuit.

かかる理由から、焼結体コンデンサの場合、電圧を印加
することにより表面近傍の皮膜劣化が、内部に比して太
きいと考えられる。
For this reason, in the case of a sintered capacitor, it is thought that the film deterioration near the surface is greater when a voltage is applied than in the inside.

本発明は、この点に注目し、焼結体の外部すなわち、表
面近傍の酸化皮膜を、内部のものより厚くすることによ
り上記欠点を防ぐことを目的とした製造方法のものであ
る。
The present invention focuses on this point and is a manufacturing method that aims to prevent the above-mentioned drawbacks by making the oxide film on the outside of the sintered body, that is, near the surface, thicker than that on the inside.

この焼結体自身の内部、外部の皮膜の厚さを、制御する
には、段階的化成法にて可能となる。
The thickness of the internal and external coatings of this sintered body itself can be controlled by a stepwise chemical conversion method.

すなわち、先ず第−化成として長時間、所定の化成電圧
にて焼結体の内外部の酸化皮膜を均一な厚さで形成する
That is, first, as a first chemical formation, an oxide film is formed on the inside and outside of the sintered body to a uniform thickness at a predetermined formation voltage for a long time.

次に焼結体の内部よりも外部の方の酸化皮膜を厚くする
ための第二化成は第−化成電圧よりも高い化成電圧と高
い電流密度で、第−化成時間よりも短い時間で行う。
Next, the second chemical formation to make the oxide film thicker on the outside than the inside of the sintered body is performed at a higher voltage and current density than the first formation voltage, and for a shorter time than the first formation time.

この第二化成として電極反応においてイオンの易動度が
小さいアルミン酸ソーダ、スズ酸ソーダのような電解液
を用いて化成することが望ましい。
As the second chemical formation, it is desirable to use an electrolytic solution such as sodium aluminate or sodium stannate, which has low ion mobility in the electrode reaction.

次に本発明による一実施例として、タンタル固体電解コ
ンデンサについて図面を参照して説明する。
Next, as an example of the present invention, a tantalum solid electrolytic capacitor will be described with reference to the drawings.

試料として、タンタル粉末を加圧成型し、それを10−
5關Hg以上の真空度で、2000℃、30分間焼結し
た外形寸法6φ×6.8mm、重量1.6g。
As a sample, tantalum powder was pressure-molded and 10-
Sintered at 2000°C for 30 minutes in a vacuum of 5 Hg or higher, external dimensions 6φ x 6.8mm, weight 1.6g.

プレス密度Dg9.0の円柱型ペレットを使用した。Cylindrical pellets with a press density Dg of 9.0 were used.

試料の不純物は、化成皮膜に大きく影響を与えるため、
フッ酸、トリクレン等で充分洗浄した。
Impurities in the sample greatly affect the chemical conversion coating, so
It was thoroughly washed with hydrofluoric acid, trichloride, etc.

先ず第一化成は0.02%H3PO4浴中で電流密度1
mA/−で化成電圧95Vまで定量流化成した。
First, the first chemical treatment was performed at a current density of 1 in a 0.02% H3PO4 bath.
Constant flow chemical formation was performed at mA/- to a chemical formation voltage of 95V.

化成電圧に到達後、2時間定電圧化威し、焼結体の内部
、外部皮膜を均一化させた。
After reaching the formation voltage, the voltage was kept constant for 2 hours to make the internal and external coatings of the sintered body uniform.

その後2 10 M/lのアルミン酸す) IJウムを含む電
解液中で10mA/−と高い電流密度で種々の化成電圧
(100〜200V)まで化成した。
Thereafter, anodization was carried out in an electrolytic solution containing 210 M/l of aluminic acid at a high current density of 10 mA/- to various anodizing voltages (100 to 200 V).

この場合、各化成電圧に到達すると同時に化成は終了さ
せた。
In this case, the formation was terminated at the same time as each formation voltage was reached.

次に、皮膜上で硝酸マンガンを200℃にて熱分解させ
、二酸化マンガンを付着させ、更に導電層として、グラ
ファイト、銀ペーストを設けた。
Next, manganese nitrate was thermally decomposed on the film at 200°C, manganese dioxide was attached, and graphite and silver paste were further provided as a conductive layer.

以上、本発明方法にて試作した電解コンデンサの多孔質
焼結体のひとつの孔部の拡大断面図を第4図に示す。
FIG. 4 shows an enlarged cross-sectional view of one hole in the porous sintered body of the electrolytic capacitor prototyped using the method of the present invention.

1は弁作用を有するタンタル等の金属、2はその金属の
酸化皮膜、3は電解質層、4はグラファイト、銀ペース
ト等の導電層である。
1 is a metal such as tantalum having a valve action, 2 is an oxide film of the metal, 3 is an electrolyte layer, and 4 is a conductive layer such as graphite or silver paste.

同図から明らかなように酸化皮膜2の厚みは焼結体の表
面側では厚く、焼結体の内部すなわち孔の奥の方では薄
くなっている。
As is clear from the figure, the thickness of the oxide film 2 is thicker on the surface side of the sintered body, and thinner inside the sintered body, that is, deeper into the pores.

なお同図では孔が電解質層3で埋められている。Note that in the figure, the holes are filled with an electrolyte layer 3.

第5図には、第1化成電圧を95Vと一定にし、第2化
戒電圧を120〜200Vと変化させた場合におけるブ
レークダウン電圧を示したが、外部皮膜を厚くするに従
い、著しくブレークダウン電圧が向上していることがわ
かる。
Figure 5 shows the breakdown voltage when the first formation voltage is kept constant at 95V and the second formation voltage is varied from 120 to 200V. It can be seen that the results have improved.

しかも耐パルスに対しても強い。第1表に、第二化成の
各化成電圧と、静電容量の値を示す。
Moreover, it is strong against pulses. Table 1 shows each formation voltage and capacitance value of the second formation.

なお、表においてVfは第一化成電圧(内部化成電圧)
を表わしVf’は第二化成電圧(外部化成電圧)を表わ
す。
In addition, in the table, Vf is the first formation voltage (internal formation voltage)
, and Vf' represents the second formation voltage (external formation voltage).

第二化成によって土族される化成膜は焼結体表面近傍で
あるので、化成電圧を高くしても静電容量の減少は少な
い。
Since the chemical film formed by the second chemical formation is near the surface of the sintered body, the capacitance decreases little even if the chemical formation voltage is increased.

もし、内部と外部の膜厚を均一にしたならば、V f
’/V fを高くするとVf’/Vfの値の逆数を掛け
た値の静電容量となる。
If the internal and external film thicknesses are made uniform, V f
When '/Vf is increased, the capacitance becomes a value multiplied by the reciprocal of the value of Vf'/Vf.

例えばVf’/Vf= 2.0 (第1化成が1oov
で第2化戒が200V)のとき本発明の場合は44.8
0μFであるのに対し、従来法では23.75μFとな
る。
For example, Vf'/Vf= 2.0 (first chemical formation is 1oov
In the case of the present invention, when the second conversion command is 200V), it is 44.8
While it is 0 μF, it is 23.75 μF in the conventional method.

すなわち、容量減少を少なくして、ブレークダウン電圧
を著しく上げる効果がある。
That is, it has the effect of reducing the capacitance reduction and significantly increasing the breakdown voltage.

結果として、定格電圧に対する化成電圧比を低くするこ
とができる。
As a result, the formation voltage ratio to the rated voltage can be lowered.

定格電圧は通常ブレークダウン電圧の1/2として設計
する。
The rated voltage is usually designed to be 1/2 of the breakdown voltage.

すなわち、ブレークダウン電圧70Vなら定格電圧は3
5Vとする。
In other words, if the breakdown voltage is 70V, the rated voltage is 3
Set it to 5V.

本発明はVf’/Vf = 2.0とすると、プレーク
ダウンン電圧は90Vとなり、定格電圧45Vまで上昇
できる。
In the present invention, when Vf'/Vf = 2.0, the breakdown voltage is 90V and can be increased to the rated voltage of 45V.

もし、同じ容量、定格電圧にするなら、本発明により化
成電圧は従来の35/45=77.8φ程度でよくなり
、その分生型になる。
If the capacitance and rated voltage are the same, the present invention allows the formation voltage to be about 35/45=77.8φ compared to the conventional method, making it a regenerative type.

本発明はタンタルはもとよりチタン、シリコニウム、ニ
オブ等の弁作用を有するどんな金属にも適用でき、その
効果は極めて太きい。
The present invention can be applied to any metal having valve action, such as tantalum, titanium, siliconium, niobium, etc., and its effects are extremely significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、焼結体電解コンデンサの等価回路を示すブロ
ック図、第2図はコンデンサ単体に種々の直列抵抗を変
えて電圧印加した時のブレークダウン電圧を示した図、
第3図はブレークダウンによるLC変化の直列抵抗依存
性を示す図、第4図は本発明による電解コンデンサの模
型的な断面図、第5図は内部化成電圧(Vf)と外部化
成電圧(Vf’)の比に対するブレークダウン電圧の関
係図を示す。 1・・・・・・弁作用を有する金属、2・・・・・・酸
化皮膜、3・・・・・・電解質層、4・・・・・・導電
層。
Fig. 1 is a block diagram showing the equivalent circuit of a sintered electrolytic capacitor, Fig. 2 is a diagram showing the breakdown voltage when voltage is applied to the capacitor by changing various series resistances,
Fig. 3 is a diagram showing the series resistance dependence of LC change due to breakdown, Fig. 4 is a schematic cross-sectional view of an electrolytic capacitor according to the present invention, and Fig. 5 is a diagram showing the internal formation voltage (Vf) and external formation voltage (Vf). ') shows a diagram showing the relationship between breakdown voltage and ratio. DESCRIPTION OF SYMBOLS 1... Metal having valve action, 2... Oxide film, 3... Electrolyte layer, 4... Conductive layer.

Claims (1)

【特許請求の範囲】[Claims] 1 弁作用金属の多孔質焼結体を作成する工程と、前記
焼結体を陽極酸化して酸化皮膜を形成する工程とを有す
る電解コンデンサの製造方法においで、前記陽極酸化工
程が前記焼結体の孔の内部と外部とでほぼ均一な厚さの
酸化皮膜を形成する第1の工程と、前記第1の工程の後
に前記孔の内部よりも外部の方の酸化皮膜の厚さを大き
く形成する第2の工程とからなることを特徴とする電解
コンデンサの製造方法。
1. A method for manufacturing an electrolytic capacitor comprising a step of creating a porous sintered body of a valve metal, and a step of anodizing the sintered body to form an oxide film, wherein the anodizing step A first step of forming an oxide film with a substantially uniform thickness on the inside and outside of the body pore, and after the first step, the thickness of the oxide film on the outside of the pore is made larger than the inside of the pore. A method for manufacturing an electrolytic capacitor, comprising a second step of forming.
JP48032896A 1973-03-20 1973-03-20 Manufacturing method of electrolytic capacitor Expired JPS5833688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48032896A JPS5833688B2 (en) 1973-03-20 1973-03-20 Manufacturing method of electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48032896A JPS5833688B2 (en) 1973-03-20 1973-03-20 Manufacturing method of electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS49119151A JPS49119151A (en) 1974-11-14
JPS5833688B2 true JPS5833688B2 (en) 1983-07-21

Family

ID=12371641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48032896A Expired JPS5833688B2 (en) 1973-03-20 1973-03-20 Manufacturing method of electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS5833688B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267759A (en) * 1975-12-03 1977-06-04 Mitsubishi Electric Corp Hybrid integrated circuit unit
JPS58147023A (en) * 1982-02-25 1983-09-01 日本電気ホームエレクトロニクス株式会社 Method of producing solid electrolytic condenser
JPS58157126A (en) * 1982-03-15 1983-09-19 日本電気ホームエレクトロニクス株式会社 Solid electrolytic condenser
JPS58218112A (en) * 1982-05-24 1983-12-19 日本電気ホームエレクトロニクス株式会社 Method of producing solid electrolytic condenser

Also Published As

Publication number Publication date
JPS49119151A (en) 1974-11-14

Similar Documents

Publication Publication Date Title
JP2580980B2 (en) Tantalum solid electrolytic capacitor and method of manufacturing the same
EP1683168B1 (en) Solid electrolyte capacitor
US5135618A (en) Process for manufacturing a solid state electrolytic capacitor
JPS5833688B2 (en) Manufacturing method of electrolytic capacitor
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JP2657932B2 (en) Method for manufacturing solid electrolytic capacitor
JP3198518B2 (en) Method for manufacturing solid electrolytic capacitor
JP2004508726A (en) Electrode and capacitor with said electrode
JPH06168855A (en) Multilayer solid electrolytic capacitor and fabrication thereof
US3443164A (en) Rolled aluminum slug capacitor
JP2005340714A (en) Method of manufacturing solid electrolytic capacitor
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JPH06151258A (en) Solid electrolytic capacitor
JPS63268235A (en) Manufacture of solid electrolytic capacitor
JPH04137517A (en) Manufacture of solid electrolytic capacitor
JP3401447B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2775762B2 (en) Solid electrolytic capacitors
JPH033311A (en) Manufacture of solid electrolytic capacitor
EP1909298B1 (en) Method for producing solid electrolytic capacitor
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06151255A (en) Solid electrolytic capacitor
JPS63146425A (en) Manufacture of solid electrolytic capacitor
JPH07183177A (en) Capacitor and its manufacture
JPH03285321A (en) Solid electrolytic capacitor