JPS58157126A - Solid electrolytic condenser - Google Patents

Solid electrolytic condenser

Info

Publication number
JPS58157126A
JPS58157126A JP57041416A JP4141682A JPS58157126A JP S58157126 A JPS58157126 A JP S58157126A JP 57041416 A JP57041416 A JP 57041416A JP 4141682 A JP4141682 A JP 4141682A JP S58157126 A JPS58157126 A JP S58157126A
Authority
JP
Japan
Prior art keywords
layer
capacitor element
oxide layer
capacitor
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57041416A
Other languages
Japanese (ja)
Inventor
川嶋 裕司
小田 富太郎
雅裕 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57041416A priority Critical patent/JPS58157126A/en
Priority to KR1019830000413A priority patent/KR900007684B1/en
Publication of JPS58157126A publication Critical patent/JPS58157126A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Primary Cells (AREA)
  • Thermistors And Varistors (AREA)
  • Fuel Cell (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は固体電解コンデンサに関し、特にコンデンサエ
レメントにおける表層部の酸化層の厚膜化による漏洩電
流特性の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to solid electrolytic capacitors, and particularly to improving leakage current characteristics by thickening the oxide layer on the surface layer of a capacitor element.

一般にこの種固体電解コンデンサは例えば第1図〜第2
図に示すように、タンタル、ニオブ、アルミニウムなど
のように弁作用を有する金属粉末1円柱状に加圧成形し
焼結してなるコンデンサニレメン)Avc予め弁作用を
有する金属線を@極り分に第1の外部リード部材Cを溶
接すると共に、第2の外部リード部材りを、コンデンサ
エレメントAの周面に酸化層E、半導体層F、グラファ
イト層Gを介して形成された電極引出し層Hに半田付n
I−,かつコンデンサニレメン)Aを含む主要部分を樹
脂材Kにて被覆して構成さrしている。
In general, this type of solid electrolytic capacitor is shown in Figures 1 to 2, for example.
As shown in the figure, a capacitor is made by press-molding metal powder such as tantalum, niobium, aluminum, etc. into a cylindrical shape and sintering it. At the same time, the first external lead member C is welded to the electrode lead-out layer formed on the circumferential surface of the capacitor element A via an oxide layer E, a semiconductor layer F, and a graphite layer G. Solder to H
The main portion including the capacitor (I) and capacitor element (A) is covered with a resin material K.

とCろで、コンデンサエレメントA(7)fi化MEは
コンデンサニレメン)Aを燐酸水溶液などの化成液に浸
漬し・コンデンサニレメン)Aか正、化成敗が負となる
ように所定の直流電圧を長時間に亘って印加することに
よって形成さnる関係で、コンデンサエレメントAの表
層部及び深層部cH膜厚のほぼ均一な酸化層Eが形成さ
れる。そして酸化層りには半導体層Fが形成さ扛るため
に、それから酸化層Eへの酸素補給効果によって耐圧特
性の優れたコンデンサを得ることができる。
At C filter, capacitor element A (7) fi conversion ME is capacitor element) A is immersed in a chemical solution such as phosphoric acid aqueous solution, capacitor element A) A is positive, and a specified direct current is set so that the chemical failure is negative. Since the oxide layer E is formed by applying a voltage for a long time, an oxide layer E having a substantially uniform thickness is formed in the surface layer and the deep layer of the capacitor element A. Since the semiconductor layer F is formed on the oxide layer, a capacitor with excellent breakdown voltage characteristics can be obtained due to the effect of supplying oxygen to the oxide layer E.

しかし乍ら、このコンデンサは等価的には例えば第3図
に示すように、酸化層Eによるコンデンサ分と半導体層
F、グラファイト層Gの抵抗分との直列回路として表わ
すことができるものであるが、コンデンサニレメン)A
が極く微細な多孔質に構成されていることもあって、そ
nの深層部における酸化層Eによって構成されるコンデ
ンサの一方の電極としてのグラファイトNGの電極引出
し層Hに至るまでの経路が長く、その分だけ直列抵抗分
も増加することになるし、特fグラファイト層Gが充分
に形成さnていない場合にはさらに増加する。その反面
、表層部においてはグラファイト層Gのil&引出し層
HK至る経路がそnの膜厚程度ないしそれに近似する程
度となるために、グラファイト層Gによる直列抵抗分は
深層部に比し格段に小さくなる。
However, this capacitor can be equivalently represented as a series circuit consisting of the capacitor component formed by the oxide layer E and the resistance components formed by the semiconductor layer F and graphite layer G, as shown in FIG. , capacitor element) A
Because it has an extremely fine porous structure, the path to the electrode lead layer H of graphite NG, which serves as one electrode of the capacitor, is formed by the oxide layer E in the deep layer of the capacitor. If the length is long, the series resistance will increase accordingly, and in particular, if the graphite layer G is not sufficiently formed, it will further increase. On the other hand, in the surface layer, the path of the graphite layer G to the il & extraction layer HK is about the thickness of the n layer, or approximately that, so the series resistance due to the graphite layer G is much smaller than in the deep layer. Become.

従って、コンデンサニレメン)Aに、陽極リードB及び
電極引出し層Hを介して直流電圧を印加しな場合、直列
抵抗分の大きい深層部よりむしろ直列抵抗分の小さい表
層部のコンデンサ部におけに、コンデンサニレメン)A
に欠陥部が存在する場合KFi深層部よりむしろ電圧分
担の大きい表層部において劣化ないし破壊が生じ易く、
こt′Lに伴って漏洩電流特性、耐圧特性も損なわれ易
い。
Therefore, if a DC voltage is not applied to the capacitor element A through the anode lead B and the electrode lead layer H, the capacitor part in the surface layer where the series resistance is small rather than the deep part where the series resistance is large. , capacitor element) A
If a defect exists in the KFi, deterioration or destruction is more likely to occur in the surface layer where the voltage is shared rather than in the deep layer.
Leakage current characteristics and breakdown voltage characteristics are also likely to be impaired due to this t'L.

それ故に、本発明者らはコンデンサエレメントの表層部
に深層部より厚膜の酸化層を形成できれば、単位膜厚当
りの電圧分担を軽減でき、仮に表層部に欠陥部が存在し
ていても劣化ないし破壊が生じ難いのではないかと考え
、徹底的に追究した処、化成液として塩基性溶液を用い
ることにより、はぼ目的を達成できることを見出した。
Therefore, the present inventors believe that if a thicker oxide layer can be formed on the surface layer of the capacitor element than in the deeper layer, the voltage sharing per unit film thickness can be reduced, and even if there are defects on the surface layer, deterioration will occur. After thorough investigation, we found that the purpose could be achieved by using a basic solution as the chemical conversion solution.

即ち、化成液として塩基性溶液が酸化層の生成に主要な
機能を呈する水酸イオン(OH)に富むことに着目して
種々の塩基性溶液を化成液として用いた場合の化成時間
に対する酸化層の生成膜厚の関係について検討した処、
第4図に示す結果が得られた。尚、コンデンサエレメン
トFHタンタル粉末を3.5φX 4 mmの円柱状に
加圧成形し焼結したものを、化成液には濃度が0.01
モルの炭酸アンモニウム溶液((NH4) t COs
  2H雪0)、鋤酸アンモニウム溶液((NH4)t
・○−3BtOs −8HtO)  、アルミン酸ナト
リウム溶液(1JaAlot )  、燐酸水溶液(参
考)をそれぞれ用い、電流密度を40IIllA/9に
設定した。
That is, focusing on the fact that basic solutions as chemical conversion liquids are rich in hydroxide ions (OH), which play a major role in the formation of oxidized layers, we investigated the relationship between the formation time and the oxidation layer when various basic solutions were used as chemical conversion liquids. After considering the relationship between the thickness of the produced film,
The results shown in FIG. 4 were obtained. In addition, the capacitor element FH tantalum powder was pressure-formed into a cylindrical shape of 3.5φ x 4 mm and sintered, and the chemical liquid had a concentration of 0.01.
Molar ammonium carbonate solution ((NH4) t COs
2H snow 0), ammonium oxalate solution ((NH4)t
・○-3BtOs -8HtO), a sodium aluminate solution (1JaAlot), and a phosphoric acid aqueous solution (reference) were used, and the current density was set to 40IIllA/9.

同図によrば、炭酸アンモニウム溶液、#111mアン
モニウム溶液、アルミン酸ナトリウム溶液を化成液とし
たものでは酸化層(TILtOs )の化成時間に対す
る生成速度が早く、10〜20分で1150A程度に達
しているのに対し、燐酸水溶液、(酸性溶液)では同一
の膜厚を得るのに60分もの化成時間が必要であること
を示している。そして、化成処理の完了したコンデンサ
エレメントを真二つに分断した処、それの表層部におけ
る化成色はすべての化成液についてほぼ同じであったか
、深層部においては塩基性溶液を用いたものでは殆んど
イヒ成色は認められなかったのに対し・燐酸水溶液て゛
は表層部、深層部共に同じ化成色であった0又、塩基性
溶液を用いた場合、化成時の電流密度、化成電圧を高め
ることによってコンデンサエレメントの表層部での酸化
層の生成をより短時間でかつ、集中的に行わせうること
も確認した0このようなことから、塩基性溶液を化成液
とすることによって、コンデンサエレメントの表層部に
は深層部に比し厚膜の酸化層を選択的に形成できること
が理解できる。従って、表層部の選択的な厚膜化がコン
デンサ特性例えば漏洩電流特性に対してどのような影響
を与えるのかについτ検討した処、第5図に示す結果が
得られた。
According to the same figure, when ammonium carbonate solution, #111m ammonium solution, and sodium aluminate solution were used as chemical conversion liquids, the formation rate of the oxide layer (TILtOs) was fast relative to the formation time, reaching about 1150A in 10 to 20 minutes. On the other hand, it is shown that a phosphoric acid aqueous solution (acidic solution) requires as much as 60 minutes of formation time to obtain the same film thickness. When a capacitor element that had been chemically treated was divided into two halves, the chemical color in the surface layer was almost the same for all chemical liquids, and in the deep layer, it was almost the same in the case where a basic solution was used. While no color formation was observed in the phosphoric acid aqueous solution, the color formation was the same in both the surface and deep layers.In addition, when using a basic solution, increasing the current density and formation voltage during formation It was also confirmed that the formation of an oxidized layer on the surface layer of the capacitor element could be done more quickly and intensively. From this point of view, by using the basic solution as a chemical liquid, it was possible to form an oxide layer on the surface layer of the capacitor element. It can be seen that a thicker oxide layer can be selectively formed in the deeper portions than in the deeper portions. Therefore, we investigated how the selective thickening of the surface layer affects capacitor characteristics, such as leakage current characteristics, and the results shown in FIG. 5 were obtained.

同図によれば、表層部の深層部に対する酸化層の膜厚比
(表層部の酸化層の膜厚/深層部の酸化ごとを示してい
る。これは表層部の酸化層を厚膜化することにより、単
位膜厚当りの電圧分担が軽減され、劣化ないし破壊が抑
制されたものと推察される。
According to the figure, the thickness ratio of the oxide layer to the deep layer in the surface layer (thickness of the oxide layer in the surface layer/each oxidation in the deep layer) is shown. It is presumed that this reduces the voltage share per unit film thickness and suppresses deterioration or destruction.

本発明はこのような事実に基いて具体化されたもので、
弁作用を有する金属粉末にて構成し、かつそnより弁作
用を有する金属部材を陽極IJ −vとして導出してな
るコンデンサエレメントに酸化層、半導体層を形成した
ものにおいて、上記コンデンサエレメントにおける表層
部の酸化層の膜厚を深層部の酸化層の膜厚の1.5倍以
上に設定したことを特徴とするものである。
The present invention has been realized based on these facts,
In a capacitor element formed of a metal powder having a valve action and from which a metal member having a valve action is derived as an anode IJ-v, an oxide layer and a semiconductor layer are formed on the surface layer of the capacitor element. The film thickness of the oxide layer in the deep part is set to be at least 1.5 times the film thickness of the oxide layer in the deep part.

本発明の一実施例を第6図〜第7図を参照し1説明すれ
ば、1は弁作用を有する金属粉末にて構成されたコンデ
ンサエレメントであって、例えば弁作用を有する金属粉
末を円柱状に加圧成形し焼結して形成されている。この
コンデンサエレメントlからは弁作用を有する金属部材
例えば金属線が陽極リード2と。て導出されている。尚
、陽極リード2はコンデンサエレメント1の加圧成形に
先立って、それの中心に植立して導出する他、コンデン
サエレメント1の局面に溶接して導出することもできる
、つそして、コンデンサエレメント1の深層部1aには
叛化層3.が、表層部1bには酸化層3・の1.5倍以
上の膜厚を有する酸化層3雪カニそれぞれ形成さnlお
り、酸化層3+ 、 3m上には半導体層4.グラファ
イト層5が形成さnている。さらにコンデンサエレメン
トlの局面のグラファイト層上には銀ペーストなどの導
電部材によって電極引出し層6が形成されている。一方
、陽極り一ド2のコンデンサニレメン)lからの導出部
分には例えばL形の第1の外部リード部材7が、屈曲部
7aか交叉するように溶接さtている。この第1の外部
リード部材7と同方向に延びる第2の外部リード部材8
はその一端がコンデンサエレメント1の電極引出し層6
に半田付けさnている。そして、コンデンサエレメント
1を含む主要部分は樹脂材9にて外装されている。尚、
外装はモールド法の他、浸漬法、粉体塗装法などによっ
て行うこともできるし、用途などによっては第1.第2
には深層部1aに対する膜厚比が15倍以上の酸化層3
.が形成されているので、仮に電圧分担の大によって劣
化ないし破壊に起因する漏洩電流の不    1良発生
率を著しく減少でき、コンデンサとしての品位を高める
ことができる。
One embodiment of the present invention will be described with reference to FIGS. 6 and 7. Reference numeral 1 denotes a capacitor element made of metal powder having a valve action. It is formed by pressure forming into a columnar shape and sintering it. From this capacitor element 1, a metal member having a valve function, such as a metal wire, is connected to the anode lead 2. It is derived as follows. In addition, the anode lead 2 can be planted at the center of the capacitor element 1 and led out prior to pressure forming of the capacitor element 1, or it can be welded to the surface of the capacitor element 1 and led out. In the deep layer 1a, there is a silica layer 3. However, on the surface layer 1b, oxide layers 3 and 3 are formed, each having a thickness 1.5 times or more that of the oxide layer 3, and on the oxide layers 3+ and 3m, a semiconductor layer 4. A graphite layer 5 is formed. Further, on the graphite layer on the curved surface of the capacitor element 1, an electrode lead layer 6 is formed of a conductive material such as silver paste. On the other hand, an L-shaped first external lead member 7, for example, is welded to the lead-out portion of the anode lead 2 from the capacitor element 7 so as to intersect with the bent portion 7a. A second external lead member 8 extending in the same direction as this first external lead member 7
has one end connected to the electrode lead layer 6 of the capacitor element 1.
It is soldered to the The main portion including the capacitor element 1 is covered with a resin material 9. still,
In addition to the molding method, the exterior packaging can also be done by dipping, powder coating, etc. Depending on the application, etc. Second
The oxide layer 3 has a thickness ratio of 15 times or more to the deep layer 1a.
.. As a result, even if the voltage sharing is large, the incidence of leakage current defects caused by deterioration or destruction can be significantly reduced, and the quality of the capacitor can be improved.

又、コンデンサの漏洩電流特性などの劣化要因がコンデ
ンサニレメン)lの表層部1bにほぼ集中することから
、深層部1aの酸化層3.の膜厚を一層輩くできる。こ
のために、静電容量を増加させることかできる。例えば
静電容量を一定にすれば、静電容量の増加分に見合う分
だ性金属粉末の使用量を減少でき、コンデンサエレメン
トの小形化のみならず、コスト低減をも計ることができ
る。
In addition, since the deterioration factors such as the leakage current characteristics of the capacitor are almost concentrated in the surface layer 1b of the capacitor element 1, the oxidized layer 3. The film thickness can be further increased. For this purpose, the capacitance can be increased. For example, if the capacitance is kept constant, the amount of dispersible metal powder used can be reduced in proportion to the increase in capacitance, making it possible not only to downsize the capacitor element but also to reduce costs.

次に具体的実施例について説明する。Next, specific examples will be described.

実施例1 タンタル粉末を3.5φX4mの円柱状に加圧成形し焼
結してなる。コンデンサエレメントを濃度が0.1容量
呪でかつPHが2.48の燐WI永溶液に浸漬し、コン
デンサエレメントより導出した05φ調のり電流密度は
コンデンサエレメントの単位重量(lχの酸化層(Ta
g Os )が得らtた。次にこのコンデンサエレメン
トを純水πて煮沸洗浄l乾燥した後、濃度が帆1容量鳴
でかつPHが8.45の1刀酸アンモニウム溶液に浸漬
L 210 Vの直流電圧計印加する。
Example 1 Tantalum powder was press-molded into a cylindrical shape of 3.5φ×4m and sintered. A capacitor element is immersed in a phosphorus WI permanent solution with a concentration of 0.1 capacity and a pH of 2.48, and the 05φ scale current density derived from the capacitor element is determined by the unit weight of the capacitor element (lχ oxide layer (Ta
gOs) was obtained. Next, this capacitor element was boiled and washed with pure water, dried, and then immersed in an ammonium monotate solution having a concentration of 1 volume and a pH of 8.45, and a DC voltage of 210 V was applied using a voltmeter.

尚電流密度は90 m tv’qに設定した。そして、
コンデンサエレメントの端子電圧が210 V K到達
後、さらに5分間化成処理した処、表層部にのみ330
0Xの酸化層(Ta、O,)が形成できた。尚、狂体の
化成処理時間は15分間に設定した。以−通常の方法に
てタンタル固体電解フンデンプf 1作する。
The current density was set at 90 m tv'q. and,
After the terminal voltage of the capacitor element reached 210 V K, chemical conversion treatment was performed for another 5 minutes, and 330 V was applied only to the surface layer.
An 0X oxide layer (Ta, O,) was formed. Incidentally, the chemical conversion treatment time for the crazy body was set to 15 minutes. Hereinafter, a tantalum solid electrolyte starch f1 was prepared using a conventional method.

次にこのコンデンサを温度が650.相対湿度が95%
の雰囲気に無負荷状−で放置し、500時間、 100
0時間経過後に46Vで3分間充電し、静電容臆、漏洩
亀流を測定した処、下表に示す結果が得られた。
Next, this capacitor is heated to a temperature of 650. relative humidity is 95%
Left unloaded in an atmosphere of 500 hours, 100
After 0 hours, the battery was charged at 46V for 3 minutes, and the electrostatic capacity and leakage current were measured, and the results shown in the table below were obtained.

尚、従来品は濃度が0.1容量%かつPHが2.48ノ
燐酸水溶液にコンデンサエレメントを浸漬シ、:L40
 Vの直流電圧を印加して化成処理したものであり、漏
洩電流は初期値を示す。
In addition, for the conventional product, the capacitor element is immersed in a phosphoric acid aqueous solution with a concentration of 0.1% by volume and a pH of 2.48.
The chemical conversion treatment was performed by applying a DC voltage of V, and the leakage current shows the initial value.

上表より明らかなように、本発明品はコンテン1α従来
品に比し、漏洩電流及び無負荷耐湿時の漏洩電流の不良
発生率を格段に改善できる。
As is clear from the table above, the product of the present invention can significantly improve the failure rate of leakage current and leakage current during no-load humidity resistance compared to the conventional Content 1α product.

又、これらのコンデンサに定格電圧(35V)を印加し
、雰囲気温度を125°Cに維持して500時間経過後
における漏洩電流の不良発生率を測定した処、従来品で
は5%であったが、本発明品Fio%であった。
In addition, we applied the rated voltage (35V) to these capacitors, maintained the ambient temperature at 125°C, and measured the leakage current failure rate after 500 hours, which was 5% for conventional products. , the invention product Fio%.

尚、コンデンサエレメントの表層部の酸化層は4000
χ程度が限界で、それ以上に形成することは化成電圧に
よつ′を酸化層が破壊されるという現象のために困難で
あるCとを確認した。従って、この実施例において、表
層部の深層部に対する酸化層ノ膜厚比u a ホ”−5
倍(’ooo/ ”O” ) カ上”となる。
The oxidation layer on the surface of the capacitor element is 4000
It was confirmed that the limit is about χ, and it is difficult to form a layer larger than that due to the phenomenon that the oxide layer is destroyed by the formation voltage. Therefore, in this example, the thickness ratio of the oxide layer to the deep layer in the surface layer is u a H''-5
twice ('ooo/"O")".

実施例2 実施例1において、硼酸アンモニウム溶液に代え、濃度
が0.1容量%で、かつPHが11.05のアルミン酸
ナトリウム溶液を用い、コンデンサエレメントの端子電
圧が210vに到達後、さらに12過後)の不良発生率
は0%であった。
Example 2 In Example 1, a sodium aluminate solution with a concentration of 0.1% by volume and a pH of 11.05 was used in place of the ammonium borate solution, and after the terminal voltage of the capacitor element reached 210V, a further 12 The defectiveness rate was 0%.

施例3 実施例1において、tlIilliIIアンモニウム溶
液に代え、濃度が0.1容量呪でかつPKが9.17の
炭酸アンモニウム溶液を用い、直流電圧を190 V印
加し、コンデンサエレメントの端子電圧が190vπ到
達後、さらに15分間化成処理した処、表層部と深層部
との膜厚比は1.88 (3020/1600A’ )
であった。
Example 3 In Example 1, an ammonium carbonate solution with a concentration of 0.1 volume and a PK of 9.17 was used instead of the tlIilliII ammonium solution, a DC voltage of 190 V was applied, and the terminal voltage of the capacitor element was 190 Vπ. After reaching this point, chemical conversion treatment was performed for another 15 minutes, and the film thickness ratio between the surface layer and the deep layer was 1.88 (3020/1600A')
Met.

そして、無負荷耐湿時(1000時間経過後)の不良発
生率は1.2%であった。
The failure rate during no-load humidity resistance (after 1000 hours) was 1.2%.

実施例4 実施例1におい又、燐酸水溶液と硼酸アンモニウム溶液
による化成処理順序を前後させ、最初にコンデンサエレ
メントの表層部に厚膜の酸化Jilヲ形成した処、実施
例1とほぼ同様の効果が得られた。
Example 4 In Example 1, the order of the chemical conversion treatment using the phosphoric acid aqueous solution and the ammonium borate solution was changed, and a thick oxide film was first formed on the surface layer of the capacitor element, but almost the same effect as in Example 1 was obtained. Obtained.

尚、本発明において、厚膜の酸化層を形成するための化
成液は塩基性溶液にのみ制約されることなく、電流密度
などの設定如何によっては酸性溶液も使用しうる。又、
化成電圧は膜厚比を適宜に厚比を有する酸化層を形成す
ることによって、表層部における電圧分担を軽減でき、
劣化、破壊などに起因する漏洩電流特性などを効果的に
改善できる。
In the present invention, the chemical solution for forming a thick oxide layer is not limited to a basic solution, and an acidic solution may also be used depending on settings such as current density. or,
By forming an oxide layer with an appropriate film thickness ratio, the voltage distribution in the surface layer can be reduced.
Leakage current characteristics caused by deterioration, destruction, etc. can be effectively improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の側断面図、第2図は要部拡大し、第3
FAは等価回路図、第4図は化成時間と酸化層の生成膜
厚との関係を示す図、第5図は酸化層の膜厚と漏洩電流
の不良発生率との関係を示す図、第6図は本発明の一実
施例を示す側断面図、第7図は第6図の要部拡大図であ
る。 図中、1はコンデンサエレメント、laは深層部、1b
は表層部、2は陽極リード、3+ 、 3gは酸化層、
4は半導体層である。
Figure 1 is a side sectional view of the conventional example, Figure 2 is an enlarged view of the main parts, and Figure 3 is a side sectional view of the conventional example.
FA is an equivalent circuit diagram, Figure 4 is a diagram showing the relationship between the formation time and the thickness of the oxide layer, Figure 5 is a diagram showing the relationship between the thickness of the oxide layer and the failure rate of leakage current. FIG. 6 is a side sectional view showing one embodiment of the present invention, and FIG. 7 is an enlarged view of the main part of FIG. 6. In the figure, 1 is the capacitor element, la is the deep part, and 1b
is the surface layer, 2 is the anode lead, 3+, 3g is the oxide layer,
4 is a semiconductor layer.

Claims (1)

【特許請求の範囲】[Claims] 弁作用を有する一属粉末に1構成し、かつそれより弁作
用を有する金属部材を陽極リードとして導出してなるコ
ンデンサエレメントに酸化層、半導体層を形成したもの
において、上記コンデンサエレメントにおける表層部の
酸化層の膜厚を深層部の酸化層の膜厚の1.5倍以上に
設定したことを特徴とする固体電解コンデンサ。
In a capacitor element formed of a monolithic powder having a valve action and a metal member having a valve action derived from it as an anode lead, an oxide layer and a semiconductor layer are formed on the capacitor element. A solid electrolytic capacitor characterized in that the thickness of the oxide layer is set to be at least 1.5 times the thickness of the oxide layer in the deep layer.
JP57041416A 1982-03-15 1982-03-15 Solid electrolytic condenser Pending JPS58157126A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57041416A JPS58157126A (en) 1982-03-15 1982-03-15 Solid electrolytic condenser
KR1019830000413A KR900007684B1 (en) 1982-03-15 1983-02-03 Solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57041416A JPS58157126A (en) 1982-03-15 1982-03-15 Solid electrolytic condenser

Publications (1)

Publication Number Publication Date
JPS58157126A true JPS58157126A (en) 1983-09-19

Family

ID=12607746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57041416A Pending JPS58157126A (en) 1982-03-15 1982-03-15 Solid electrolytic condenser

Country Status (2)

Country Link
JP (1) JPS58157126A (en)
KR (1) KR900007684B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839336A (en) * 1971-09-28 1973-06-09
JPS49119151A (en) * 1973-03-20 1974-11-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839336A (en) * 1971-09-28 1973-06-09
JPS49119151A (en) * 1973-03-20 1974-11-14

Also Published As

Publication number Publication date
KR840003910A (en) 1984-10-04
KR900007684B1 (en) 1990-10-18

Similar Documents

Publication Publication Date Title
JP3881480B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US4121949A (en) Method of making a cathode electrode for an electrolytic capacitor
JPS58157126A (en) Solid electrolytic condenser
JP4803741B2 (en) Manufacturing method of solid electrolytic capacitor
CA1041620A (en) Cathode electrode for an electrical device and method
JPS6334917A (en) Capacitor
JPH05326341A (en) Manufacture of solid electrolytic capacitor
JP2874423B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JPH0777180B2 (en) Method for manufacturing solid electrolytic capacitor
JPH07230937A (en) Solid electrolytic capacitor
JPS58147023A (en) Method of producing solid electrolytic condenser
US4016465A (en) Cathode electrode for an electrolytic capacitor and method of making same
JPS63124511A (en) Aluminum solid electrolytic capacitor
JP3367221B2 (en) Electrolytic capacitor
JPS62185307A (en) Solid electrolytic capacitor
JPH08162372A (en) Manufacture of electrolytic capacitor
JP3082463B2 (en) Solid electrolytic capacitors
JPH02256224A (en) Manufacture of electrolytic capacitor
JPH06204099A (en) Solid-state electrolytic capacitor
JPS63146425A (en) Manufacture of solid electrolytic capacitor
JP4119167B2 (en) Manufacturing method of capacitor element used for solid electrolytic capacitor
JPS58218111A (en) Method of producing solid electrolytic condenser
JPS6323309A (en) Manufacture of winding type solid electrolytic capacitor
JPH03141630A (en) Manufacture of solid electrolytic capacitor
JPH01276712A (en) Solid electrolytic capacitor