JPS5833164B2 - Hollow granular percarbonate and its manufacturing method - Google Patents

Hollow granular percarbonate and its manufacturing method

Info

Publication number
JPS5833164B2
JPS5833164B2 JP55091261A JP9126180A JPS5833164B2 JP S5833164 B2 JPS5833164 B2 JP S5833164B2 JP 55091261 A JP55091261 A JP 55091261A JP 9126180 A JP9126180 A JP 9126180A JP S5833164 B2 JPS5833164 B2 JP S5833164B2
Authority
JP
Japan
Prior art keywords
percarbonate
carbonate
hollow
granular
mother liquor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55091261A
Other languages
Japanese (ja)
Other versions
JPS5717409A (en
Inventor
良和 森井
一也 大辻
常司 竹田
吉隆 中谷
順一 田村
通雄 東脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Soap Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Soap Co Ltd filed Critical Kao Soap Co Ltd
Priority to JP55091261A priority Critical patent/JPS5833164B2/en
Priority to US06/277,547 priority patent/US4440732A/en
Priority to DE19813125638 priority patent/DE3125638A1/en
Priority to FR8112950A priority patent/FR2486056B1/en
Priority to GB8120659A priority patent/GB2079263B/en
Priority to MX188162A priority patent/MX159267A/en
Publication of JPS5717409A publication Critical patent/JPS5717409A/en
Publication of JPS5833164B2 publication Critical patent/JPS5833164B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/055Peroxyhydrates; Peroxyacids or salts thereof
    • C01B15/10Peroxyhydrates; Peroxyacids or salts thereof containing carbon
    • C01B15/106Stabilisation of the solid compounds, subsequent to the preparation or to the crystallisation, by additives or by coating

Description

【発明の詳細な説明】 本発明は新規な形状及び構造を有する中空の顆粒状過炭
酸塩及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hollow granular percarbonate having a novel shape and structure and a method for producing the same.

更に詳しくは、溶解速度が大きく、溶解法を残さずに溶
解する能力を有し、かつ長期間保存しても有効酸素の消
失の少ない安定な中空顆粒状の過炭酸塩及びかかる特徴
的性質を有する中空顆粒状過炭酸塩の製造方法に関する
More specifically, we need a stable hollow granular percarbonate that has a high dissolution rate, has the ability to dissolve without leaving any dissolution residue, and has little loss of effective oxygen even when stored for a long period of time, and has such characteristic properties. The present invention relates to a method for producing hollow granular percarbonate having the following properties.

又かかる過炭酸塩は中空の顆粒状であるため製造時のス
ラリーの脱水性及び製品としての粉体物性の優れたもの
である。
Moreover, since the percarbonate is in the form of hollow granules, it has excellent dehydration properties of slurry during production and powder physical properties as a product.

一般に過炭酸塩は、単独または界面活性剤等と配合して
、悪臭や、有害ガスの発生しない酸素系漂白剤として用
いられることが多い。
In general, percarbonates are often used alone or in combination with surfactants, etc., as oxygen-based bleaching agents that do not emit bad odors or harmful gases.

その漂白刃は塩素系のものに比べてマイルドであり、色
、柄物等に対して、バランスのとれた漂白刃を発揮する
ので、好んで用いられる。
Its bleaching blade is milder than chlorine-based ones, and it is preferred because it provides a well-balanced bleaching effect on colors, patterns, etc.

布地、特に色、柄物の漂白には、漂白刃が適度であるこ
とが必要なばかりではなく、布地のどの部分にも、等し
い漂白刃の働くことが不可欠である。
For bleaching fabrics, especially colored and patterned fabrics, it is not only necessary that the bleaching blade be moderate, but it is also essential that the bleaching blade work equally on all parts of the fabric.

さもないと、むらや局所的な色落ち等を生じ、布地の価
値をはなはだしく損うことになる。
Otherwise, unevenness and localized discoloration will occur, which will greatly reduce the value of the fabric.

過炭酸塩は通常粉末、球晶状または顆粒状に作られ、使
用に際して数多の水溶液として用いられる。
Percarbonates are usually prepared in powder, spherulite or granular form and are used in a number of aqueous solutions.

この水溶液に布地を浸漬する際、もし過炭酸塩が完全に
溶解して居なければ、過炭酸塩粒子が布地に付着し、そ
こでの選択的漂白をおこして、色むらや、はなはだしい
場合には布地の損耗を引きおこす。
If the percarbonate is not completely dissolved when the fabric is immersed in this aqueous solution, the percarbonate particles will adhere to the fabric and cause selective bleaching there, resulting in uneven color and, in extreme cases, Causes wear and tear on the fabric.

布地浸漬後、攪拌を続けるならば、このようなことはお
きないが、その使用形態としては、浸漬、静置の場合が
大半である。
If the fabric is continued to be stirred after dipping, this problem will not occur, but in most cases, the fabric is used by dipping and then allowing it to stand still.

従って、これを防ぐため、過炭酸塩を均質に溶解させる
ことがきわめて大切である。
Therefore, to prevent this, it is extremely important to homogeneously dissolve the percarbonate.

過炭酸塩結晶は、その−次粒子の径が1間を越えると、
溶解速度が非常におそくなるため、完全溶解まで数分間
液を攪拌するか、あるいは特に温湯な用いるかしなけれ
ばならない。
When the diameter of the secondary particle of percarbonate crystal exceeds 1.
The rate of dissolution is very slow, so the solution must be stirred for several minutes or particularly hot water must be used to achieve complete dissolution.

この不便さを解消するため、過炭酸塩微結晶を用いるこ
とが考えられる。
In order to eliminate this inconvenience, it is possible to use percarbonate microcrystals.

溶解速度を充分に早くするためには、結晶子の粒径な1
00μ以上にしてはならない。
In order to make the dissolution rate sufficiently fast, the crystallite particle size must be 1
Must not exceed 00μ.

しかしながら、このような結晶子を持つ過炭酸塩の増扱
いは極めてむづかしい。
However, it is extremely difficult to handle percarbonate having such crystallites.

すなわち、過炭酸塩のような発熱的に分解する性質をも
つ微粉体の貯蔵、輸送、充填等には常に危険と困難とが
つき1とい、また、使用に際しても微粉によるのどや鼻
への刺激を避けることができない。
In other words, the storage, transportation, and filling of fine powders that decompose exothermically, such as percarbonates, are always dangerous and difficult1, and even when used, the fine powders may irritate the throat and nose. cannot be avoided.

このような微結晶過炭酸塩の取扱性を改善するため、こ
れ筺でにも特開昭50−84500号公報に開示せらる
る造粒法等の工夫がみられるが、それによっても、微粉
体製造時の取扱い、すなわち、脱水、乾燥等の困難さは
いささかも改善されることはない。
In order to improve the handling properties of such microcrystalline percarbonate, the granulation method disclosed in Japanese Unexamined Patent Publication No. 50-84500 has been devised; The difficulties in handling during manufacturing, ie, dehydration, drying, etc., have not been improved in the slightest.

そこで本発明者らは、過炭酸塩の粒子を太きくし、なお
かつ大きな溶解速度を有するという相反する性質を同時
に具備する過炭酸塩を得るべく鋭意努力研究し、溶解速
度を少しも減することなく、過炭酸塩凝集体及びこの様
な凝集体を晶析によって作り出す、新しい方法を見出し
本発明を完成するに至った。
Therefore, the present inventors conducted intensive research to obtain a percarbonate that has the contradictory properties of thickening the percarbonate particles and having a high dissolution rate, without reducing the dissolution rate in the slightest. The inventors discovered percarbonate aggregates and a new method for producing such aggregates by crystallization, and completed the present invention.

即ち、本発明は粒子の内部が中空であり、かつその殻部
分が結晶性過炭酸塩から構成された中空顆粒状過炭酸塩
を提供するものであり、さらにその製造方法として炭酸
塩を6.0ないし15.0重量%及び過酸化水素を1.
5ないし6,0重量%含有する母液水溶液を調製し、こ
の母液水溶液組成を炭酸塩が6.0ないし15.0重量
%及び過酸化水素が1.5ないし6.0重量%で、かつ
過酸化水素3モルに対し炭酸塩が2モル以上である範囲
内に維持するような割合で、粒状の炭酸塩と過酸化水素
水溶液とを同時に又は交互に添加し、過炭酸塩を晶析さ
せることを特徴とする中空顆粒状過炭酸塩の製造方法を
提供するものである。
That is, the present invention provides hollow granular percarbonate particles whose insides are hollow and whose shell portions are composed of crystalline percarbonate, and furthermore, as a method for producing the same, carbonate is prepared in 6. 0 to 15.0% by weight and 1.0 to 15.0% by weight of hydrogen peroxide.
An aqueous mother liquor solution containing 5 to 6.0 wt. Crystallizing the percarbonate by adding granular carbonate and an aqueous hydrogen peroxide solution simultaneously or alternately at a ratio such that the carbonate is maintained within a range of 2 moles or more per 3 moles of hydrogen oxide. The present invention provides a method for producing hollow granular percarbonate characterized by the following.

本発明の中空顆粒状過炭酸塩の製造方法を過炭酸ナトリ
ウムを例として更に詳しく説明する。
The method for producing hollow granular percarbonate of the present invention will be explained in more detail using sodium percarbonate as an example.

過炭酸す) IJウムの場合、本発明の中空顆粒状粒子
は第1図において示されたB点の近傍においてのみ生成
する。
In the case of IJium (percarbonate), the hollow granular particles of the present invention are produced only in the vicinity of point B shown in FIG.

第1図はNa2 C03−H202H203成分系の相
図を示す三角図表であシ、B点はNa2CO3,1,5
H202なる組成を持つ結晶(PC)の飽和溶液を示す
点であって、共存塩等の影響のない場合には表1におい
て例示せられた組成を持つ。
Figure 1 is a triangular diagram showing the phase diagram of the Na2C03-H202H203 component system, and point B is Na2CO3,1,5.
This point indicates a saturated solution of crystal (PC) having the composition H202, and has the composition exemplified in Table 1 when there is no influence of coexisting salts.

表−1 B点のNa2CO3およびH2O2濃度(共存塩を含1
ぬ場合) 温度、(ONa2CO3(wt%)H2O2(wt%)
57.8 10 8.1 15 8.4 20 8.7 25 9.0 30 9.7 3.75 3.90 4.04 4.19 4.33 4.60 母液組成がB点よりもH2O2に富む場合には、中空粒
子は生成しない。
Table 1 Na2CO3 and H2O2 concentration at point B (including coexisting salts)
temperature, (ONa2CO3 (wt%) H2O2 (wt%)
57.8 10 8.1 15 8.4 20 8.7 25 9.0 30 9.7 3.75 3.90 4.04 4.19 4.33 4.60 Mother liquor composition is more H2O2 than point B If enriched, no hollow particles will be produced.

たとえば20℃においてNa2CO36,0%、H2O
221,2%を示す第1図中の0点の組成を母液にして
、これにN a 2 C03顆粒とH2O2溶液を同時
添加した場合、生成するのは、未反応N a 2 C0
3を核とし、その表面に過炭酸す) IJウムの微細結
晶が晶出した顆粒である。
For example, at 20℃ Na2CO36.0%, H2O
When Na 2 C03 granules and H2O2 solution are simultaneously added to the mother liquor using the composition at point 0 in Figure 1, which indicates 221.2%, unreacted Na 2 C0 is produced.
It is a granule in which microcrystals of IJium are crystallized, with 3 as the core and percarbonate on the surface.

未反応Na2CO3が含1れているため、有効酸素濃度
は低く、吸湿性を有し、かつ粒子溶解速度は中空状顆粒
に比べて著しく遅い。
Since it contains unreacted Na2CO3, the effective oxygen concentration is low, it is hygroscopic, and the particle dissolution rate is significantly slower than that of hollow granules.

母液組成がB点よりある限度以上にN a 2 C03
に富む場合も同様に、中空状顆粒は生成しない。
If the mother liquor composition exceeds a certain limit from point B, N a 2 C03
Similarly, hollow granules are not produced when the granule is rich in .

たとえば20℃においてNa2 CO322,0%、H
2021,4fbを示す第1図中のA点を母液に選び、
同様の操作を加えた場合、生成するのは単なる過炭酸ソ
ーダの微結晶である。
For example, at 20°C Na2 CO3 22.0%, H
Point A in Figure 1 showing 2021,4fb was selected as the mother liquor,
When a similar operation is applied, what is produced is simply microcrystals of soda percarbonate.

このため、結晶のろ過操作に著しく困難を来し、乾燥も
容易ではない。
For this reason, it is extremely difficult to filter the crystals, and drying them is also not easy.

微結晶であるため生成結晶の溶解速度は良好であり、有
効酸素量も理論値に近いものとなるが、粉体物性を考慮
すると、実用上価値が低い。
Since it is a microcrystal, the dissolution rate of the formed crystal is good and the amount of effective oxygen is close to the theoretical value, but it has little practical value when considering the powder properties.

従って、本発明の中空顆粒状過炭酸ソーダの生成する母
液領域は極めて限られた範囲のものであって、その範囲
は重量パーセント単位C以下同じ)で、Na2CO3が
6.0〜15.OfoでH2O2が1.5〜6゜o%の
中になければならず、かつ、H2O23モルに対してN
a2CO3が2モル以上である範囲内にあることが必須
である。
Therefore, the mother liquor region produced by the hollow granular soda percarbonate of the present invention is within a very limited range, and the range is (the same below the weight percent unit C), and the Na2CO3 content is 6.0 to 15. Ofo, H2O2 must be in the range of 1.5 to 6°o%, and N to 3 moles of H2O2
It is essential that a2CO3 is in a range of 2 moles or more.

更にこの範囲はN a 2 C03が7.0〜13.0
%、H2O2が3.0〜5.0係であることが好捷しく
、また、N a 2 C03が8.0〜11.5係、H
2O2が3.5〜4.5係の範囲が最も好ましい。
Furthermore, in this range, N a 2 C03 is 7.0 to 13.0
%, H2O2 preferably ranges from 3.0 to 5.0, and N a 2 C03 preferably ranges from 8.0 to 11.5, H
The most preferred range is 2O2 of 3.5 to 4.5.

Na2CO3とH2O2との添加は、母液水溶液組成が
常にこの濃度範囲に保持され続ける様にその添加比率を
調整しなければならないが、この様な条件を満足する限
9両者を同時に添加しても、交互に添加してもよく、又
連続的に添加しても間歇的に添加してもよい。
When adding Na2CO3 and H2O2, the addition ratio must be adjusted so that the mother liquor aqueous solution composition is always maintained within this concentration range, but as long as these conditions are satisfied9, even if both are added at the same time, They may be added alternately, continuously, or intermittently.

しかしながら濃度調整の正確さからは、N a 2 C
03とH2O2とを同時に、しかも連続的に添加する方
法が最も好ましい。
However, from the viewpoint of accuracy of concentration adjustment, Na 2 C
The most preferred method is to add 03 and H2O2 simultaneously and continuously.

添加速度については、落下点においてN a 2 C0
3粒子が凝集を起こさず、かつ落下点近傍での母液組成
が好ましくない領域に突入して系の攪拌によって直ちに
元に復さねいような状態になる速度であってはならない
Regarding the addition rate, Na 2 C0 at the drop point
The velocity must not be such that the three particles do not agglomerate and the composition of the mother liquor near the drop point enters an unfavorable region and does not return to its original state immediately by stirring the system.

母液組成が前述のようにA点、B点、C点と変わること
によって、生成する過炭酸ソーダの結晶形が大きく変化
する原因は、N a 2 COaの溶解速度、過炭酸ソ
ーダの析出速度、および、析出までの誘導期間の長さに
関係がある。
As the mother liquor composition changes from point A to point B to point C as described above, the crystal form of the generated soda percarbonate changes greatly due to the dissolution rate of Na 2 COa, the precipitation rate of sodium percarbonate, and the length of the induction period before precipitation.

第1図で示される曲線は、平衡時のものであって、水沫
のように、常にNa2CO3とH2O2溶液を添加し続
ける系にあっては、平衡は成立して居ないと考えられる
The curve shown in FIG. 1 is at equilibrium, and it is considered that equilibrium is not established in a system such as water droplets in which Na2CO3 and H2O2 solutions are constantly added.

系の一方においてはNa2CO3の溶液が、また一方に
おいては過炭酸ソーダの析出があり、その間には一時的
な過飽和状態が存在する。
On one side of the system there is a solution of Na2CO3 and on the other side a precipitate of sodium percarbonate, with a temporary supersaturation state in between.

これを微視的に見るならば、昔ず加えられたNa2CO
3顆粒が表面から母液中に溶解して行く。
If we look at this microscopically, we can see that Na2CO was added a long time ago.
3 granules dissolve into the mother liquor from the surface.

このN a 2 CO3の溶解に比してH2O2の溶解
、拡散は問題にならないくらい早いので、H20□濃度
は系全体にわたってほぼ均質とみて差支えないであろう
Compared to the dissolution of Na 2 CO3, the dissolution and diffusion of H2O2 is so fast that it is not a problem, so it can be safely assumed that the H20□ concentration is almost uniform throughout the system.

一方溶解したNa2CO3は粒子表面から沖合いに向け
て拡散して行く。
On the other hand, dissolved Na2CO3 diffuses from the particle surface toward the offshore.

拡散によって溶解熱を周囲に渡し、一定の誘導期の後に
過炭酸ソーダ結晶が析出する。
The heat of dissolution is transferred to the surroundings by diffusion, and after a certain induction period, sodium percarbonate crystals are precipitated.

この誘導期の長さは過飽和度に依存する。The length of this lag period depends on the degree of supersaturation.

前述のA点においては、沖合母液中のH2O2濃度が希
薄であり過飽和度が低い。
At the aforementioned point A, the concentration of H2O2 in the offshore mother liquor is dilute and the degree of supersaturation is low.

このため、過炭酸ソーダ析出1での誘導期は長くなり、
その間に、Na2 Co3の拡散面は、もとの粒子外形
をとどめぬほどにくずれてし1う。
Therefore, the induction period in sodium percarbonate precipitation 1 becomes longer,
During this time, the diffusion surface of Na2Co3 collapses to such an extent that the original particle external shape is no longer retained.

特に、このくずれの早さは、系の攪拌が激しい場合に顕
著である。
Particularly, the rapidity of this collapse is noticeable when the system is vigorously agitated.

その結果析出したものはきわめて微細な結晶となる。The resulting precipitate becomes extremely fine crystals.

一方、C点においては、沖合母液のH2O2濃度が高い
ためN a 2 C03がわずかに溶は出してもその過
飽和度が大きくなり、過炭酸ソーダ析出の誘導期は極め
て短いものとなる。
On the other hand, at point C, since the concentration of H2O2 in the offshore mother liquor is high, even if Na2C03 is slightly eluted, its degree of supersaturation becomes large, and the induction period for precipitation of sodium percarbonate becomes extremely short.

そのため、Na2CO3のすぐ表面上に過炭酸ソーダ皮
膜が形成される。
Therefore, a sodium percarbonate film is formed immediately on the surface of Na2CO3.

一旦、過炭酸ソーダ皮膜が形成されると、Na2CO3
を溶解させるための水の侵入、およびNa2CO3溶液
の浸出が阻害され、それ以上の反応が起こIりK< く
なる。
Once the sodium percarbonate film is formed, Na2CO3
The intrusion of water to dissolve the Na2CO3 solution and the leaching of the Na2CO3 solution are inhibited, and further reactions occur, resulting in K<.

その結果得られる結晶は、未反応Na2CO3を核とし
、表面に過炭酸ソーダを晶出させた顆粒となる。
The resulting crystals are granules with unreacted Na2CO3 as the core and sodium percarbonate crystallized on the surface.

B点近傍においては、Na2CO3溶出の速度と、過炭
酸ソーダ析出までの誘導期間とが極めてよくバランスさ
れている。
Near point B, the rate of Na2CO3 elution and the induction period until precipitation of sodium percarbonate are extremely well balanced.

すなわち、溶出したNa2CO3の拡散面が、もとの顆
粒外形をくずさぬ間に過炭酸ソーダが析出するが、核の
N a 2 C03表面と過炭酸ソーダ析出面との間に
空隙ができて、水の侵入とNa2CO3の浸出とが阻害
されることはない。
That is, sodium percarbonate is precipitated while the diffusion surface of the eluted Na2CO3 does not destroy the original granule shape, but voids are created between the Na2C03 surface of the core and the sodium percarbonate precipitation surface. Water ingress and Na2CO3 leaching are not inhibited.

このため、過炭酸ソーダ析出面を中心に、その内側およ
び外側に微結晶が析出し、過炭酸ソ−ダ層が肥厚する。
For this reason, microcrystals are precipitated on the inside and outside of the sodium percarbonate precipitation surface, and the sodium percarbonate layer becomes thick.

このようにして核のNa2CO3粒子の溶出は終シまで
完遂され、その結果、中空状の完全な過炭酸ソーダ顆粒
が生成する。
In this way, the elution of the core Na2CO3 particles is completed to the end, and as a result, complete hollow sodium percarbonate granules are produced.

本発明の方法の最大の特徴は、このように原料核Na2
CO3から母液中に溶解、拡散してゆく拡散面を乱さぬ
よう、はどよい位置で過炭酸ソーダ微結晶を析出させる
技法にあるのである。
The greatest feature of the method of the present invention is that the raw material core Na2
The key to this is the technique of precipitating the soda percarbonate microcrystals at just the right location so as not to disturb the diffusion surface where CO3 dissolves and diffuses into the mother liquor.

また、このような中空状顆粒の生成機構からみて、系の
攪拌の条件、原料顆粒の粒径および添加速度等が重要な
因子となる。
In addition, from the viewpoint of the formation mechanism of such hollow granules, the stirring conditions of the system, the particle size of the raw material granules, the addition rate, etc. are important factors.

一方、添加するH2O2溶液の濃度や晶析温度は殆んど
問題とならない。
On the other hand, the concentration of the H2O2 solution added and the crystallization temperature hardly matter.

即ち、本発明の方法においてもう一つの重要な要件は、
一定範囲の大きさをもった粒状炭酸ソーダを過酸化水素
水溶液と共に添加するという点にある。
That is, another important requirement in the method of the present invention is that
The point is that granular soda carbonate having a certain size range is added together with an aqueous hydrogen peroxide solution.

前述の説明からも明らかな様に、本発明の方法において
は加えた炭酸ソーダの粒子の外側に過炭酸ソーダの結晶
が成長する(一部は内側にも向って生成するが)ため、
得られる中空顆粒状過炭酸ソーダの直径は原料炭酸ソー
ダの直径よりやや大きめのものとなり、内部の中空部分
が原料炭酸ソーダの直径と同−又は少し小さな直径のも
のとなる。
As is clear from the above explanation, in the method of the present invention, soda percarbonate crystals grow on the outside of the added soda particles (although some of them also grow inward).
The diameter of the obtained hollow granular soda percarbonate is slightly larger than the diameter of the raw material soda carbonate, and the hollow portion inside has a diameter that is the same as or slightly smaller than the diameter of the raw material soda carbonate.

従ってこの様な過炭酸ソーダを得るためには原料の粒状
炭酸ソーダが直径50〜2000ミクロン(A)の範囲
のものである必要があり、100〜1000μが望まし
い。
Therefore, in order to obtain such sodium percarbonate, the granular soda carbonate as a raw material must have a diameter in the range of 50 to 2000 microns (A), preferably 100 to 1000 microns.

50μ未満では十分な中空の顆粒が得られず、2000
μを越えるものでは内部の炭酸ソーダを完全に溶解した
中空状のものとすることが困難となる。
If it is less than 50μ, sufficient hollow granules cannot be obtained;
If it exceeds μ, it will be difficult to form a hollow shape in which the soda carbonate inside is completely dissolved.

尚、粒状炭酸ソーダの形状は球状である必要はなく、立
方体、直方体その他いかなる形状のものであってもよい
Note that the shape of the granular soda carbonate does not have to be spherical, and may be any shape such as a cube, a rectangular parallelepiped, or the like.

攪拌速度については、レイノズル数(Re)10万以下
がよく3万以下が望ましい。
Regarding the stirring speed, the Raynozzle number (Re) is preferably 100,000 or less, preferably 30,000 or less.

生成した過炭酸ンーダスラリーの晶析系外ヘノ抜き出し
は、任意に可能である。
The generated percarbonate slurry can be extracted from the crystallization system at any time.

すなわち、完全連続式に、たえずスラリーを抜き出す方
法、半連続式に、少量ずつ細口にもわけて抜き出す方法
、および、バッチ式に一定量の過炭酸ソーダ析出を行な
いその後で全量抜き出す方法等である。
In other words, there are a completely continuous method in which the slurry is constantly extracted, a semi-continuous method in which the slurry is extracted in small portions, and a batch method in which a certain amount of sodium percarbonate is precipitated and then the entire amount is extracted. .

生成した過炭酸ソーダ結晶の母液中での濃度もまた大切
な因子である。
The concentration of the formed sodium percarbonate crystals in the mother liquor is also an important factor.

これが高すぎると、過炭酸ソーブ晶出時のN a 2
COs拡散面が乱され易くなり、かつ、生成顆粒相互の
衝突によって、破砕が起こり、微粉末の発生が多くなる
If this is too high, Na 2 during crystallization of percarbonate sorb
The COs diffusion surface becomes easily disturbed, and the produced granules collide with each other, causing crushing and increasing the generation of fine powder.

この上限濃度ば40wt%であり、望ましくは、3ow
t%以下である。
This upper limit concentration is 40 wt%, preferably 3 ow
t% or less.

論理上その下限は存在しないが、実質上は装置の大きさ
と関係するためiowt%以下でない方が好ましい。
Although there is no logical lower limit, it is preferably not less than iowt% because it is practically related to the size of the device.

上述の中空顆粒の生成は、数分以内に完遂されるが、更
に10分〜3時間程度、熟成を行なうことが望ましい。
Although the formation of the hollow granules described above is completed within a few minutes, it is desirable to further ripen for about 10 minutes to 3 hours.

これによってバルク中に生成した極めて微細な結晶によ
るろ過の妨害、粉塵の発生分解の加速等が防止されると
共に、未反応Na2CO3の反応が完遂される。
This prevents obstruction of filtration due to extremely fine crystals generated in the bulk, acceleration of generation and decomposition of dust, and completes the reaction of unreacted Na2CO3.

半連続または連続的にスラリーを晶析装置から抜き出す
場合には、別途に熟成装置を設けるのが効率的である。
When the slurry is extracted semi-continuously or continuously from the crystallizer, it is efficient to provide a separate ripening device.

その場合、晶析装置での平均滞留時間は10分〜3時間
、望1しくば30分〜2時間、熟成装置での平均滞留時
間は10分〜3時間、望1しくは30分〜1時間を設け
ることが好ましい。
In that case, the average residence time in the crystallizer is 10 minutes to 3 hours, preferably 30 minutes to 2 hours, and the average residence time in the ripening device is 10 minutes to 3 hours, preferably 30 minutes to 1 hour. It is preferable to provide time.

その場合、熟成装置における温度を晶析装置の温度より
も50℃以内、望1しくば5〜15℃だけ低く保つこと
によって、母液中のH2O2の分解が抑制され、好まし
い結果を生む。
In that case, by keeping the temperature in the ripening device within 50° C., preferably by 5 to 15° C., lower than the temperature in the crystallizer, decomposition of H2O2 in the mother liquor is suppressed and favorable results are produced.

また温度差により、中空状過炭酸ソーダの表面に新たに
過炭酸ソーダ結晶が析出して厚みが増し、粒子濃度が向
上する。
Furthermore, due to the temperature difference, new sodium percarbonate crystals are precipitated on the surface of the hollow sodium percarbonate, increasing the thickness and improving the particle concentration.

更に、晶析時に発生する熱量を除去するにあたシ、これ
によってその負荷を一部品析装置に負わすことが可能と
々す、冷却効率が向上する。
Furthermore, when removing the amount of heat generated during crystallization, it is possible to place part of the load on the component analyzer, thereby improving cooling efficiency.

上述の連続および半連続晶析において、滞留時間、母液
中の過炭酸ソーダ結晶濃度、および母液組成を同時にコ
ントロールするにはNa2CO3とH2O2の添加速度
、および過炭酸ソーダスラリー析出速度の王者をコント
ロールするだけでは不充分である。
In the continuous and semi-continuous crystallization described above, in order to simultaneously control the residence time, the concentration of sodium percarbonate crystals in the mother liquor, and the composition of the mother liquor, it is necessary to control the addition rate of Na2CO3 and H2O2, and the rate of precipitation of the soda percarbonate slurry. alone is not enough.

そのため、一定組成の水または母液をH202、Na2
CO3と共に独立に晶析装置に加えたり除いたりする
必要がある。
Therefore, water or mother liquor of a certain composition can be mixed with H202, Na2
It must be added to and removed from the crystallizer independently along with CO3.

このコントロールを最も効果的に行なうには、晶析、熟
成を終ったスラリーの脱水時に発生するf液をリサイク
ルさせることである。
The most effective way to control this is to recycle the f liquid generated during dehydration of the slurry that has undergone crystallization and aging.

更にリサイクルフローの中に、必要に応じて母液を増量
あるいは減量させる工夫をすれば、系のマスバランスは
完遂される。
Furthermore, if measures are taken to increase or decrease the amount of mother liquor in the recycling flow as necessary, the mass balance of the system can be achieved.

また、もしパッチ弐晶析を行なう場合には、脱水P液の
組成および量を必要に応じて補正した後次のサイクルに
進むとよい。
Furthermore, if patch crystallization is to be performed, the composition and amount of the dehydrated P solution may be corrected as necessary before proceeding to the next cycle.

このスラリー脱水母液゛のリサイクルに際し、その温度
を熟成槽より更に低下させておくことは、母液中の過炭
酸ソーダの分解を防ぎ、晶析熱負荷を分散させるという
意味において前述の如く有効である。
When recycling this slurry dehydrated mother liquor, lowering its temperature further than that of the aging tank is effective as described above in the sense of preventing the decomposition of sodium percarbonate in the mother liquor and dispersing the heat load of crystallization. .

ただしその温度差が余り大きくなると、新たに過炭酸ソ
ーダまたはNa2CO3の含水塩結晶が発生し、取扱い
困難となる。
However, if the temperature difference becomes too large, new hydrated salt crystals of sodium percarbonate or Na2CO3 will be generated, making handling difficult.

熟成装置との温度差は20℃以内、車重しくは10℃以
内にすべきである。
The temperature difference with the aging device should be within 20°C, and the weight of the vehicle should be within 10°C.

以上0様に本発明の中空顆粒状過炭酸塩の製造法は、今
迄に知られていない全く新しい原理に基づくものであり
、得られる顆粒状過炭酸塩は粒子の内部が中空であり、
直接晶析によって得られるものであるのでその粒子の殻
部分が結晶性過炭酸塩から構成され成長した過炭酸塩の
結晶が凝集した構造となっている。
As described above, the method for producing hollow granular percarbonate of the present invention is based on a completely new principle unknown until now, and the granular percarbonate obtained is hollow inside the particle.
Since it is obtained by direct crystallization, the shell portion of the particle is composed of crystalline percarbonate, and has a structure in which grown percarbonate crystals aggregate.

結晶の状態は結晶の生ずる際の条件によシ種々変るが、
晶癖変更剤としてケイ酸塩類を添加すると針状結晶が得
られ、アミノポリカルボン酸塩類を添加すると板状結晶
が多くなる。
The state of crystals varies depending on the conditions under which they are formed, but
When silicates are added as a crystal habit modifier, needle-like crystals are obtained, and when aminopolycarboxylic acid salts are added, plate-like crystals increase.

過炭酸塩の寸法は添加する粒状炭酸塩の大きさに依存す
るが、平均粒子径が100μないし2000μのものが
良好に得られる。
The size of the percarbonate depends on the size of the granular carbonate added, but one with an average particle size of 100μ to 2000μ can be obtained satisfactorily.

この様な本発明の中空顆粒状過炭酸塩は結晶性の中空構
造をもつで9・るため粒子の脱水性、取扱性が極めて容
易であり、そのうえ球晶状や内部に空間のない中づ1り
の顆粒状の結晶に比べて溶解速度が極めて早く完全に溶
解する時間は通常の顆粒の過炭酸塩に比べておよそ1/
3ないし115である。
Since the hollow granular percarbonate of the present invention has a crystalline hollow structure, it is extremely easy to dehydrate and handle the particles. The dissolution rate is extremely fast compared to granular crystals, and the time for complete dissolution is approximately 1/1 of that of normal granular percarbonate.
3 to 115.

本発明の方法に類似した晶析による過炭酸塩の製造法と
して、英国特許第568754号明細書に記載された方
法がある。
A method for producing percarbonate by crystallization similar to the method of the present invention is the method described in British Patent No. 568,754.

この方法は、母液中に無水の又は結晶性の炭酸ソーダと
過酸化水素水溶液を同時に又は交互に添加して過炭酸ソ
ーダを得る点で類似するが、晶析する母液組成が本発明
と全く異った濃度であり、添加する炭酸ソーダも特に一
定の大きさの粒子状のものを要求しているものではなく
、又前述のような本発明の特徴的技法を考慮したもので
もなく、これから本発明の結晶性の中空粒子の発生をみ
ることは考えられない。
This method is similar in that sodium percarbonate is obtained by simultaneously or alternately adding anhydrous or crystalline sodium carbonate and an aqueous hydrogen peroxide solution to the mother liquor, but the composition of the mother liquor to be crystallized is completely different from that of the present invention. It does not require that the added soda be in the form of particles of a certain size, nor does it take into account the characteristic technique of the present invention as described above. It is inconceivable to see the generation of crystalline hollow particles of the invention.

以上に述べた新しい原理に基づく中空顆粒状の過炭酸塩
の製造に際し、トリポリリン酸ソーダ、メタリン酸ソー
ダ等のリン酸塩類、あるいはメタ珪酸ソーダ等の珪酸塩
類を過炭酸塩の安定剤として添加して製造することもで
きるが、これらの安定剤に更にマグネシウム塩類、好1
しくは硫酸マグネシウムを併用すると、過炭酸塩の安定
化効果は相乗的に増大し、その効果は添加濃度と共に増
加する。
When producing hollow granular percarbonate based on the new principle described above, phosphates such as sodium tripolyphosphate and sodium metaphosphate, or silicates such as sodium metasilicate are added as stabilizers for the percarbonate. However, in addition to these stabilizers, magnesium salts, preferably 1.
Alternatively, when combined with magnesium sulfate, the stabilizing effect of percarbonate increases synergistically, and its effect increases with the concentration added.

しかしながら、安定剤の添加濃度には上限が存在する。However, there is an upper limit to the concentration of stabilizer added.

すなわち珪酸塩類にあっては、その添加濃度を250
mmol S iA9炭酸塩以上にすると、中空顆粒の
他に針状微結晶過炭酸塩が多く発生するようになり、ス
ラリーの脱水性および過炭酸塩の粉体物性が低下する。
In other words, for silicates, the addition concentration is 250
When the carbonate concentration is more than mmol SiA9, a large amount of acicular microcrystalline percarbonate will be generated in addition to hollow granules, and the dehydration properties of the slurry and the powder physical properties of the percarbonate will deteriorate.

更に500 mmolS i/kg炭酸塩以上になると
過炭酸塩顆粒の溶解速度が著しく遅くなり、本来の特長
が全く失われてしすう。
Further, when the concentration exceeds 500 mmol Si/kg carbonate, the dissolution rate of the percarbonate granules becomes extremely slow, and the original characteristics are completely lost.

またリン酸塩にあっては500 mmolP/lcg炭
酸塩1では珪酸塩と同様のことが生じる。
Also, in the case of phosphates, the same thing as silicates occurs at 500 mmolP/lcg carbonate 1.

ノこれを越えると、珪酸塩の場合と異なり、中空顆粒の
発生が阻害されるが、水沫の特長が失なわれるという意
味でやはり同様である。
If this is exceeded, unlike in the case of silicates, the formation of hollow granules is inhibited, but the same is true in the sense that the characteristics of water droplets are lost.

これらのことから、珪酸塩およびまたはリン酸塩の添加
量は500 mmol S i及び/又はP/に9炭酸
塩以下、;車重しくは20〜100 mmol S i
及び/又はP/に9炭酸塩の範囲にするのが良い。
From these facts, the amount of silicate and/or phosphate added is 500 mmol Si and/or P/9 carbonates or less; vehicle weight is 20 to 100 mmol Si
and/or P/ is preferably in the range of 9 carbonates.

マグネシウム塩の添加量が増大すると不溶物を生じ、好
1しくない効果を与えることは公知のことである。
It is known that increasing the amount of magnesium salt added results in the formation of insoluble matter, which has undesirable effects.

そこで本発明の実施に当ってはマグネシウム塩の添加量
は150mmo1MIA9炭酸塩以下、望ましくは10
〜50 mmol M?A9炭酸塩の範囲とするがよい
Therefore, in carrying out the present invention, the amount of magnesium salt added should be 150 mmol 1 MIA9 carbonate or less, preferably 10 mmol
~50 mmol M? It should be in the range of A9 carbonate.

以上の様にこれらの安定剤の添加はその添加量の増加と
ともに過炭酸塩の安定性は向上するが、安定剤の添加量
が多い場合には本発明の中空顆粒状の過炭酸塩の製造の
場合には、その形状及び結晶性が乱れやすくなり、かつ
溶解速度が低下するという好1しくない傾向が見られる
As described above, the stability of percarbonate improves as the amount of these stabilizers increases, but when the amount of stabilizers added is large, the production of hollow granular percarbonate of the present invention becomes difficult. In this case, there is an unfavorable tendency that the shape and crystallinity become easily disordered and the dissolution rate decreases.

このような場合に、この反応系にエチレンジアミン四酢
酸C以下EDTAという)のNa、Ca、又はM2塩を
添加し、過炭酸塩の晶出をEDTAのN a s Ca
又はMt塩の存在下に行わしめることによシ上記の欠点
が改善せられる。
In such a case, Na, Ca, or M2 salts of ethylenediaminetetraacetic acid (hereinafter referred to as EDTA) are added to the reaction system to prevent crystallization of percarbonate.
Alternatively, the above-mentioned drawbacks can be improved by carrying out the reaction in the presence of Mt salt.

即ち、安定剤の多量添加による結晶性の低下が抑えられ
、同時にその溶解速度も、安定剤の低添加量の際の値に
回復する。
That is, the decrease in crystallinity due to the addition of a large amount of stabilizer is suppressed, and at the same time, the dissolution rate is restored to the value when a small amount of stabilizer is added.

即ち、この様なEDTAのNa、Ca又はMt塩は一種
の晶癖変更剤として作用するものであシ、過炭酸塩の結
晶性を変化させて再び溶解性の優れたものとする0これ
らの添加濃度は安定剤の添加濃度に応じて0.5〜25
0molAg炭酸塩、更に望1しくは 2〜50mmo
lA19炭酸塩の範囲が効果的である。
That is, such Na, Ca or Mt salts of EDTA act as a kind of crystal habit modifier, and change the crystallinity of percarbonate to make it highly soluble again. Addition concentration is 0.5 to 25 depending on the addition concentration of stabilizer.
0 mol Ag carbonate, more preferably 2 to 50 mmo
A range of lA19 carbonates is effective.

なお、これらEDTAの塩に関しては、従来より、過炭
酸塩を安定剤として公知のものであるが、本法における
ような中空顆粒状過炭酸塩の結晶性を向上させる働きに
ついてそれを示唆するような現象は知られて居ない。
Regarding these EDTA salts, percarbonate is conventionally known as a stabilizer, but this seems to suggest that it works to improve the crystallinity of hollow granular percarbonate as used in this method. This phenomenon is not known.

水沫において、これが使用される最大の目的は過炭酸塩
の結晶性を改善する働きにおいてであり、単に安定剤と
しての働きでないことは例示されている通りであり、明
らかである。
In water droplets, it is clear that the primary purpose of its use is to improve the crystallinity of percarbonate, and not merely as a stabilizer, as has been exemplified.

次に実施例によって本発明を説明する。Next, the present invention will be explained by examples.

実施例 1 炭酸ソーダ8.8wt%、過酸化水素4.4wt%、残
部水からなる母液408.1.@に50係過酸化水素溶
液131.0.@と、70メツシュ通過100メツシュ
残留の顆粒状無水炭酸ソーダ118.3.@を、30分
間にわたり、一定速度で同時に連続して添加した。
Example 1 A mother liquor of 408.1% consisting of 8.8wt% soda carbonate, 4.4wt% hydrogen peroxide, and the balance water. @ 50% hydrogen peroxide solution 131.0. @ and granular anhydrous soda carbonate passed through 70 meshes and remained at 100 meshes 118.3. were added simultaneously and continuously at a constant rate over a period of 30 minutes.

この間、直径6cIrLの攪拌翼を用いて33.8rp
mの速度で攪拌を続けた、。
During this time, using a stirring blade with a diameter of 6cIrL, the rotation rate was 33.8rp.
Stirring was continued at a speed of m.

このときのレイノルズ数は2.0X103であった。The Reynolds number at this time was 2.0×103.

。また、母液温度を20.0±0.1℃になるように外
部冷却にょシ制御した。
. Further, external cooling was controlled so that the mother liquor temperature was 20.0±0.1°C.

過酸化水素と炭酸ソーダの添加終了後更に15分間同条
件で熟成した。
After the addition of hydrogen peroxide and soda carbonate was completed, the mixture was further aged for 15 minutes under the same conditions.

このスラリーを900Gで3分間遠心脱水したところ、
182.4.@のケークと、424.89の回収母液が
得られた0回収母液中の過酸化水素および炭酸ソーダの
濃度は夫々4.58および7.21wt係であった。
When this slurry was dehydrated by centrifugation at 900G for 3 minutes,
182.4. The concentrations of hydrogen peroxide and soda carbonate in the @ cake and the zero recovered mother liquor from which 424.89 recovered mother liquors were obtained were 4.58 and 7.21 wt, respectively.

ケークを60℃で2時間通風乾燥し、153.0.@の
白色の結晶性顆粒を得た。
The cake was air-dried at 60°C for 2 hours to a temperature of 153.0. White crystalline granules of @ were obtained.

得られた顆粒の大半が中空状のものであシ、一部に結晶
性微粉や、その凝集粒子の混在が観察された。
Most of the obtained granules were hollow, and a mixture of crystalline fine powder and agglomerated particles thereof was observed in some parts.

この顆粒の粒度分布を第2図に示した(斜線で示したグ
ラフ)。
The particle size distribution of the granules is shown in FIG. 2 (shaded graph).

図中に、原料炭酸ソーダの粒度分布についても併せて示
しである。
The figure also shows the particle size distribution of the raw material soda carbonate.

原料の炭酸ソーダの重量平均粒径180μに対し、得ら
れた過炭酸ソーダ顆粒は240μであった。
The weight average particle size of the raw material soda carbonate was 180μ, whereas the obtained soda percarbonate granules had a weight average particle size of 240μ.

また、その有効酸素濃度は14.7%、みかけ密度0,
45f/CrfL3であった。
In addition, the effective oxygen concentration is 14.7%, the apparent density is 0,
It was 45f/CrfL3.

この顆粒2tを、直径5cIrLのシャーレ中で20r
nlの水に、攪拌しながら溶解させたところ、完全溶解
筐で27秒かかった。
2 tons of these granules were placed in a petri dish with a diameter of 5 cIrL for 20 r.
When it was dissolved in nl of water with stirring, it took 27 seconds for complete dissolution.

この時水温は20℃、撹拌棒は長さ3CII11径0.
6cIrLの回転子、攪拌速度ij、300 rpmで
あった。
At this time, the water temperature was 20°C, and the stirring rod had a length of 3 CII, 11 mm, and a diameter of 0.
6cIrL rotor, stirring speed ij, 300 rpm.

一方、これと同条件で市販品過炭酸ソーダ(平均粒子径
220μ、みかけ密度0.729/CrIL3の中づま
9顆粒状過炭酸ソーダ)の溶解時間を同一の条件で測定
したところ、165秒を必要とした。
On the other hand, when we measured the dissolution time of commercially available sodium percarbonate (average particle size 220μ, apparent density 0.729/CrIL3 Nakazuma 9 granular sodium percarbonate) under the same conditions, we found that it was 165 seconds. I needed it.

実施例 2 炭酸ソーダ9.6wt%、過酸化水素4.4wt%、残
部水からなる母液424tに58係過酸化水素水溶液6
2.1.@と、24メツシュ通過、32メツシユ残留の
顆粒状無水炭酸ソーダ16.5.@を母液中の炭酸ソー
ダの濃度を9.2〜10.5%、過酸化水素の濃度を3
.8〜4.5係の範囲に維持する様な割合でNa2CO
3を1回あたり、2.55.@、58係過酸化水素を同
じ<2.07.@づつ、夫々3・0回に分けて交互に6
0分間にわたり母液中に添加L7た。
Example 2 To 424 tons of mother liquor consisting of 9.6 wt% of soda carbonate, 4.4 wt% of hydrogen peroxide, and the balance water, 6% of hydrogen peroxide aqueous solution was added.
2.1. @ and granular anhydrous soda carbonate passed through 24 meshes and remained at 32 meshes 16.5. The concentration of soda carbonate in the mother liquor is 9.2-10.5%, and the concentration of hydrogen peroxide is 3%.
.. Na2CO in a proportion that maintains the ratio between 8 and 4.5.
3 per time, 2.55. @, 58 hydrogen peroxide same <2.07. @, divided into 3 and 0 times each, alternately 6 times
L7 was added into the mother liquor over a period of 0 minutes.

この間、直径6(mの攪拌翼を用いて83.5rpmの
速度で攪拌を続けた。
During this time, stirring was continued at a speed of 83.5 rpm using a stirring blade with a diameter of 6 (m).

攪拌におけるレイノルズ数は1.0X10’であった。The Reynolds number during stirring was 1.0 x 10'.

また、母液を、外部からの冷却により、常に25.0+
0.1℃になるように温度制御を行なった。
In addition, the mother liquor is constantly cooled to 25.0+ by external cooling.
The temperature was controlled to be 0.1°C.

過酸化水素水と炭酸ソーダの添加終了後、更に30分間
、同温度、同攪拌速度で熟成した。
After the addition of the hydrogen peroxide solution and soda carbonate was completed, the mixture was further aged for 30 minutes at the same temperature and stirring speed.

得られたスラリーを900Gで3分間遠心脱水したとこ
ろ95.5.@のケークと、451.7@の回収母液と
を得た。
The resulting slurry was dehydrated by centrifugation at 900G for 3 minutes and the result was 95.5. A cake of @ and a recovered mother liquor of 451.7 @ were obtained.

回収母液中の過酸化水素および炭酸ソーダ濃度は夫々4
.05及び10.15wt係であった。
The concentrations of hydrogen peroxide and soda carbonate in the recovered mother liquor were each 4
.. They were 05 and 10.15wt.

ケークを60℃で2時間通風乾燥したところ、78.3
fの白色の結晶性顆粒が得られた。
When the cake was dried with ventilation at 60℃ for 2 hours, the result was 78.3
White crystalline granules of f were obtained.

このうちの代表的な顆粒の走査電子顕微鏡写真(倍率1
00倍)を第5図及び、第4図に示す。
A scanning electron micrograph of a typical granule among these (magnification: 1
00 times) are shown in FIGS. 5 and 4.

第3図は平面、第4図はその断面の写真である。FIG. 3 is a plan view, and FIG. 4 is a cross-sectional photograph.

このものはX線回折パターンより、過炭酸ナトリウムで
あることが判明した。
This material was found to be sodium percarbonate based on the X-ray diffraction pattern.

その有効酸素濃度は13、s%、重量平均粒径は480
μ、みかけ密度は、0.44f/cm3であった。
Its effective oxygen concentration is 13, s%, and the weight average particle size is 480.
μ, apparent density was 0.44 f/cm3.

また、実施例1と同じ方法により溶解時間を測定したと
ころ、61秒で完全溶解した。
Further, when the dissolution time was measured using the same method as in Example 1, complete dissolution occurred in 61 seconds.

比較例 1 炭酸ソーダ22.owt%、過酸化水素1.4wt%、
残部水からなる母液(第1図A点)416@に5゜優遇
酸化水素水溶液75.29と24メツシュ通過32メツ
シュ残留の顆粒状無水炭酸ソーダ85.9tを60分間
にわたり、一定速度で連続して同時添加した。
Comparative example 1 Soda carbonate 22. owt%, hydrogen peroxide 1.4wt%,
To 416 @ of the mother liquor (point A in Figure 1) consisting of the remainder water, 75.29 tons of 5° preferential hydrogen oxide aqueous solution and 85.9 tons of granular anhydrous soda carbonate that passed through 24 meshes and remained on 32 meshes were continuously added at a constant speed for 60 minutes. and added at the same time.

この間直径6に771の攪拌翼を用いて169rpmの
速度で攪拌を続けた。
During this time, stirring was continued at a speed of 169 rpm using a stirring blade of diameter 6 and 771.

攪拌におけるレイノルズ数は1.0X104であった。The Reynolds number during stirring was 1.0×104.

また、外部冷却により、系の温度を25.0±0.1℃
に保持した。
In addition, by external cooling, the temperature of the system can be reduced to 25.0±0.1℃.
was held at

過酸化水素水と炭酸ソーダの添加終了後更に60分間条
件で熟成した。
After the addition of the hydrogen peroxide solution and soda carbonate was completed, the mixture was further aged for 60 minutes.

このスラリーを900 Gテ3分間遠心脱水したところ
、195.6.@のケークと、368.7.@の回収母
液が得られた。
When this slurry was dehydrated by centrifugation at 900 G for 3 minutes, the result was 195.6. @ cake and 368.7. A recovered mother liquor of @ was obtained.

回収母液中の過酸化水素および炭酸ソーダの濃度は夫々
1.92wt係および19.3wt係であった。
The concentrations of hydrogen peroxide and soda carbonate in the recovered mother liquor were 1.92 wt and 19.3 wt, respectively.

ケークを60℃で2時間通風乾燥し、136.5.@の
白色粉末を得た。
The cake was air-dried at 60° C. for 2 hours and 136.5. A white powder of @ was obtained.

粉末は微結晶からなり、中空顆粒は全く存在しなかった
The powder consisted of microcrystals and no hollow granules were present.

有効酸素濃度は11.r%、1次粒子の平均粒径は80
μ以下であった。
The effective oxygen concentration is 11. r%, average particle size of primary particles is 80
It was less than μ.

筐た、みかけ密度は0.37 f/cm3であった。The apparent density of the casing was 0.37 f/cm3.

比較例 2 炭酸ソーダ6、owt%、過酸化水素21.2wt’%
、残部水からなる母液(第1図C点)424.0.@に
58係過酸化水素水107.2.@、70メツシュ通過
、100メツシユ残留の顆粒状無水炭酸ソーダ84.2
pを60分かけて一定速度で同時添加した。
Comparative example 2 Soda carbonate 6, owt%, hydrogen peroxide 21.2wt'%
, the remainder consisting of water (point C in Figure 1) 424.0. @58 Hydrogen peroxide solution 107.2. @, 70 meshes passed, 100 meshes remaining granular anhydrous soda 84.2
p was simultaneously added at a constant rate over 60 minutes.

この間直径6crrLの攪拌翼を用いて11.5 rp
mの速度で攪拌を続けた。
During this time, using a stirring blade with a diameter of 6 crrL, the rotation rate was 11.5 rp.
Stirring was continued at a speed of m.

このときのレイノルズ数は2.0X103であった。The Reynolds number at this time was 2.0×103.

また、母液温度を25.0+0.1℃になるよう外部冷
却を行なった。
Further, external cooling was performed so that the mother liquor temperature was 25.0+0.1°C.

添加終了後、同条件で更に60分間熟成した。After the addition was completed, the mixture was further aged for 60 minutes under the same conditions.

このスラリーを900Gで3分間遠心脱水したところ、
93.6.@のケークと、483.59の回収母液を得
た。
When this slurry was dehydrated by centrifugation at 900G for 3 minutes,
93.6. A cake of @ and a recovered mother liquor of 483.59 were obtained.

回収母液中の過酸化水素および炭酸ソーダの濃度は夫々
21.5および4.swt%であった。
The concentrations of hydrogen peroxide and soda carbonate in the recovered mother liquor were 21.5 and 4.5, respectively. It was swt%.

ケークを60℃で2時間乾燥させて、乾燥ケーク89.
0.@を得た。
Dry the cake at 60°C for 2 hours to obtain a dried cake of 89.
0. Got @.

その構成粒子は白色顆粒状であったが、中空状ではなく
、未反応炭酸ソーダ粒子を核に持つ、中づ昔りの2重構
造を持つものであった。
The constituent particles were in the form of white granules, but they were not hollow, but had a double-layered structure with unreacted soda carbonate particles at the core.

有効酸素濃度は5.3係、と他の例に比べて極めて低く
、一方、みかけ密度は1.04と著しく大きいものであ
った。
The effective oxygen concentration was 5.3, which was extremely low compared to other examples, and the apparent density was 1.04, which was extremely high.

比較例 3 炭酸ソーダs、swt係、過酸化水素4.2 w を係
、残部水からなる母液1500#に58幅過酸化水素水
237.@、16メツシユ通過、200メツシユ残留の
顆粒状無水炭酸ソーダ287tの添加を同時開始した。
Comparative Example 3 A mother liquor of 1500 # containing soda carbonate, swt, 4.2 w of hydrogen peroxide, and the remainder water was added with 237.5 w of hydrogen peroxide solution. At the same time, addition of 287 tons of granular anhydrous soda carbonate, which had passed through 16 meshes and remained at 200 meshes, was started.

両者共一定速度で添加し、過酸化水素は30分、炭酸ソ
ーダは60分で添加を終了した。
Both were added at a constant rate, and the addition of hydrogen peroxide was completed in 30 minutes and the addition of soda carbonate was completed in 60 minutes.

この場合は、添加開始後30分間は過炭酸ソーダの生成
に必要な炭酸ソーダと過酸化水素の割合に比べて炭酸ソ
ーダの添加量が少ない割合で両成分が添加されるため、
母液組成が次第に過酸化水素の濃度の高い方に移行し、
例えば、添加開始15分後の母液組成は炭酸ソーダ7.
4係、過酸化水素7.0’l)となり、また30分後は
夫々6.2係及び9.2係となった。
In this case, for 30 minutes after the start of addition, both components are added at a rate where the amount of soda carbonate added is smaller than the ratio of soda carbonate and hydrogen peroxide required to generate soda percarbonate.
The mother liquor composition gradually shifts to a higher concentration of hydrogen peroxide,
For example, the mother liquor composition 15 minutes after the start of addition is 7.
4 parts and 7.0'l of hydrogen peroxide), and 30 minutes later, they became 6.2 parts and 9.2 parts, respectively.

従って、この場合は過炭酸ソーダの生成反応の大部分は
本発明の母液組成の領域外の過酸化水素の濃度の高い領
域で行われていたことになる。
Therefore, in this case, most of the reaction for producing sodium percarbonate was carried out in a region with a high concentration of hydrogen peroxide outside the region of the mother liquor composition of the present invention.

添加終了後30分間熟成を行なった。After the addition was completed, aging was carried out for 30 minutes.

この全期間にわたって外部からの冷却により温度を20
+0.1℃に制御した。
During this entire period, the temperature was maintained at 20°C by external cooling.
The temperature was controlled at +0.1°C.

攪拌には直径5、5 cmの攪拌翼を用い、98 rp
mにて行なった。
A stirring blade with a diameter of 5.5 cm was used for stirring at 98 rpm.
It was held at m.

スラリーを900Gで3分間遠心脱水したところ、36
8.6.@のケークと1650@の母液が得られた。
When the slurry was dehydrated by centrifugation at 900G for 3 minutes, 36
8.6. A @ cake and a 1650 @ mother liquor were obtained.

最終母液組成は炭酸ソーダと過酸化水素夫々8.2係、
9.0係であった。
The final mother liquor composition is 8.2 parts each of soda carbonate and hydrogen peroxide,
I was in charge of 9.0.

ケークを60℃で90分乾燥し、324tの白色顆粒を
得た。
The cake was dried at 60°C for 90 minutes to obtain 324t of white granules.

この中に中空顆粒は殆んど存在せず、未反応炭酸ソーダ
顆粒を核とする中づ1り顆粒が大部分であった。
There were almost no hollow granules, and most of the granules were hollow granules with unreacted sodium carbonate granules as the core.

この有効酸素濃度は6.8係、みかけ密度は0.98で
あった。
The effective oxygen concentration was 6.8, and the apparent density was 0.98.

実施例 3 晶癖変更剤を用いて中空顆粒状過炭酸ソーダを製造した
Example 3 Hollow granular soda percarbonate was produced using a crystal habit modifier.

本実施例における添加剤の形態は夫々硫酸マグネシウム
15.owt%、EDTA、4Na42、Owt係、3
号珪酸ソーダ38.Owt係の水溶液であって、以下の
要領で予め母液中に添加しておいた。
The additives in this example were in the form of magnesium sulfate 15. owt%, EDTA, 4Na42, Owt%, 3
Sodium silicate No. 38. This was an aqueous solution of Owt, which was added to the mother liquor in advance in the following manner.

すなわち約1100@のイオン交換水に顆粒状無水炭酸
ソーダ192tを攪拌溶解させた。
That is, 192 tons of granular anhydrous soda carbonate was stirred and dissolved in about 1,100 liters of ion-exchanged water.

これに60係過酸化水素水102.5.@を加えた後必
要に応じて、3号珪酸ソーダ(38多品)9.92.@
、および/又はEDTA、4Na塩(42係品) 6.
43 y、および/又は硫酸マグネシウム(15係品)
12.5.@を遂次添加し、最後にイオン交換水で全体
の重量を1500.@とじた。
Add to this 60% hydrogen peroxide solution 102.5%. After adding @, if necessary, add No. 3 sodium silicate (38 many types) 9.92. @
, and/or EDTA, 4Na salt (42 items) 6.
43 y, and/or magnesium sulfate (item 15)
12.5. @ was added sequentially, and finally the total weight was reduced to 1500. @ closed.

ここで、特に硫酸マグネシウムを添加する場合には、攪
拌を続けながらも徐々に添加し、自沈の発生を抑えた。
Here, especially when adding magnesium sulfate, it was added gradually while stirring was continued to suppress the occurrence of scuttling.

温度を20℃±0.1℃に保ちながら、この母液に10
0〜24 meshの顆粒状無水炭酸ソーダ252.6
.@と60.O優遇酸化水素水溶液202、!Inを9
0分かけて同時添加した。
While maintaining the temperature at 20℃±0.1℃, add 10% to this mother liquor.
0-24 mesh granular anhydrous soda 252.6
.. @ and 60. O preferential hydrogen oxide aqueous solution 202,! In 9
They were added simultaneously over 0 minutes.

その間レイノルズ数1.0X104で攪拌を続けた。During this time, stirring was continued at a Reynolds number of 1.0×104.

生成スラリーを900Gで3分間遠心脱水し、得られた
ケークを60℃で120分乾燥した。
The resulting slurry was centrifugally dehydrated at 900 G for 3 minutes, and the resulting cake was dried at 60° C. for 120 minutes.

生成顆粒はいずれも白色結晶性で、中空状であった。All of the produced granules were white crystalline and hollow.

その他に、相当量の微細結晶が発生していたので、その
結晶の形態を走査電子顕微鏡により観察した。
In addition, since a considerable amount of fine crystals were generated, the morphology of the crystals was observed using a scanning electron microscope.

ケークの脱水性は微結晶の形態に依存しており、針状結
晶に比べ板状結晶の方が好ましいものであった。
The dehydration properties of the cake depended on the morphology of the microcrystals, and plate-like crystals were more preferable than needle-like crystals.

得られた結果を表2に示す。The results obtained are shown in Table 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭酸ソーダー過酸化水素−水からなる三成分系
の相図を示す三角図表、第2図は実施例1で用いた原料
炭酸ソーダ及び得られた顆粒の粒度分布を示すグラフ、
第3図及び第4図は実施例2で得られた中空顆粒の顕微
鏡写真で、第3図は平面、第4図は断面の写真である。
Figure 1 is a triangular diagram showing the phase diagram of a three-component system consisting of sodium carbonate, hydrogen peroxide and water; Figure 2 is a graph showing the particle size distribution of the raw material soda carbonate used in Example 1 and the resulting granules;
FIGS. 3 and 4 are microscopic photographs of the hollow granules obtained in Example 2, with FIG. 3 being a plan view and FIG. 4 being a cross-sectional view.

Claims (1)

【特許請求の範囲】 1 粒子の内部が中空であり、かつその殻部分が結晶性
過炭酸塩から構成された中空顆粒状過炭酸塩。 2 殻部分が板状結晶または針状結晶の過炭酸塩である
特許請求の範囲第1項記載の中空顆粒状過炭酸塩。 3 平均粒子径が100ないし2000μである特許請
求の範囲第1項又は第2項記載の中空□顆粒状過炭酸塩
。 4 過炭酸塩が過炭酸ナトリウムである特許請求の範囲
第1項ないし第3項のいずれか1項に記載の中空顆粒状
過炭酸塩。 5 炭酸塩を6.0ないし15.0重量%及び過酸化水
素を1.5ないし6.0重量%含有する母液水溶液を調
製し、この母液水溶液組成を炭酸塩が6.0ないし15
.0重量%及び過酸化水素が1.5ないし6.0重量%
で、かつ過酸化水素3モルに対し炭酸塩が2モル以上で
ある範囲内に維持するような割合で、粒状の炭酸塩と過
酸化水素水溶液と同時に又は交互に添加し、過炭酸塩を
晶析させることを特徴とする中空顆粒状過炭酸塩の製造
方法。 6 維持すべき母液水溶液組成が、炭酸塩7.0ないし
13.0重量%、過酸化水素3.0ないし5.0重量%
である特許請求の範囲第5項記載の中空顆粒状過炭酸塩
の製造方法。 7 添加する粒状炭酸塩の平均粒子径が50ないし20
00μである特許請求の範囲第5項又は第6項記載の中
空顆粒状過炭酸塩の製造方法。 8 粒状の炭酸塩と過酸化水素水溶液とを同時にかつ連
続的に添加し、晶析した過炭酸塩を連続的又は間歇的に
反応系より抜き出す特許請求の範囲第7項記載の中空顆
粒状過炭酸塩の製造方法。 9 炭酸塩が炭酸す) IJウムである特許請求の範囲
第5項ないし第8項のいずれか1項に記載の中空顆粒状
過炭酸塩の製造方法。 10母液水溶液中にエチレンジアミン四酢酸のN a
# Ca又はMt塩及びリン酸塩及び/又は珪酸塩を添
加する第5項ないし第9項のいずれか1項に記載の中空
顆粒状過炭酸塩の製造方法。
[Scope of Claims] 1. A hollow granular percarbonate whose interior is hollow and whose shell portion is composed of crystalline percarbonate. 2. The hollow granular percarbonate according to claim 1, wherein the shell portion is a plate-like or needle-like crystal percarbonate. 3. Hollow □ granular percarbonate according to claim 1 or 2, which has an average particle diameter of 100 to 2000μ. 4. The hollow granular percarbonate according to any one of claims 1 to 3, wherein the percarbonate is sodium percarbonate. 5 Prepare an aqueous mother liquor solution containing 6.0 to 15.0% by weight of carbonate and 1.5 to 6.0% by weight of hydrogen peroxide, and change the composition of this aqueous mother liquor solution to 6.0 to 15% by weight of carbonate.
.. 0% by weight and hydrogen peroxide from 1.5 to 6.0% by weight
The percarbonate is crystallized by adding granular carbonate and an aqueous hydrogen peroxide solution at the same time or alternately at a ratio such that the amount of carbonate is maintained within the range of 2 moles or more per 3 moles of hydrogen peroxide. A method for producing hollow granular percarbonate, the method comprising: 6 The mother liquor aqueous solution composition to be maintained is 7.0 to 13.0% by weight of carbonate and 3.0 to 5.0% by weight of hydrogen peroxide.
A method for producing a hollow granular percarbonate according to claim 5. 7 The average particle size of the granular carbonate to be added is 50 to 20
A method for producing a hollow granular percarbonate according to claim 5 or 6, wherein the hollow granular percarbonate has a particle size of 00μ. 8. Hollow granular filter according to claim 7, in which granular carbonate and hydrogen peroxide aqueous solution are added simultaneously and continuously, and the crystallized percarbonate is continuously or intermittently extracted from the reaction system. Method for producing carbonates. 9. The method for producing a hollow granular percarbonate according to any one of claims 5 to 8, wherein the carbonate is carbonate. 10 Na of ethylenediaminetetraacetic acid in mother liquor aqueous solution
# The method for producing hollow granular percarbonate according to any one of items 5 to 9, which comprises adding Ca or Mt salt and phosphate and/or silicate.
JP55091261A 1980-07-04 1980-07-04 Hollow granular percarbonate and its manufacturing method Expired JPS5833164B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP55091261A JPS5833164B2 (en) 1980-07-04 1980-07-04 Hollow granular percarbonate and its manufacturing method
US06/277,547 US4440732A (en) 1980-07-04 1981-06-26 Hollow granular percarbonate
DE19813125638 DE3125638A1 (en) 1980-07-04 1981-06-30 "HELL, GRAINED PERCARBONATE"
FR8112950A FR2486056B1 (en) 1980-07-04 1981-07-01 HOLLOW GRANULAR PERCARBONATE AND PROCESS FOR THE PREPARATION THEREOF
GB8120659A GB2079263B (en) 1980-07-04 1981-07-03 Hollow granular percarbonate
MX188162A MX159267A (en) 1980-07-04 1981-07-08 IMPROVEMENTS TO THE PROCEDURE FOR PREPARING HOLLOW GRANULAR PERCARBONATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55091261A JPS5833164B2 (en) 1980-07-04 1980-07-04 Hollow granular percarbonate and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5717409A JPS5717409A (en) 1982-01-29
JPS5833164B2 true JPS5833164B2 (en) 1983-07-18

Family

ID=14021469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55091261A Expired JPS5833164B2 (en) 1980-07-04 1980-07-04 Hollow granular percarbonate and its manufacturing method

Country Status (6)

Country Link
US (1) US4440732A (en)
JP (1) JPS5833164B2 (en)
DE (1) DE3125638A1 (en)
FR (1) FR2486056B1 (en)
GB (1) GB2079263B (en)
MX (1) MX159267A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742512A (en) * 1980-08-28 1982-03-10 Mitsubishi Gas Chem Co Inc Production of sodium percarbonate
JPS58208105A (en) * 1982-05-31 1983-12-03 Nippon Peroxide Co Ltd Manufacture of fine adduct of hydrogen peroxide to sodium carbonate
JPS58182855U (en) * 1982-05-31 1983-12-06 マツダ株式会社 car roof molding
JPS58195594U (en) * 1982-06-21 1983-12-26 有限会社荻野工業所 toilet paper stocker
JPS60149391A (en) * 1984-01-17 1985-08-06 Kubota Ltd Preparation of hydrogen gas from organic waste water
FR2746386B1 (en) 1996-03-19 1998-04-24 Atochem Elf Sa NOVEL SODIUM PERCARBONATE AND PROCESS FOR OBTAINING IT
JP2995470B1 (en) * 1998-09-03 1999-12-27 オリエンタル ケミカル インダストリーズ Composition of sodium percarbonate with improved solubility
KR100366556B1 (en) 2000-04-26 2003-01-09 동양화학공업주식회사 Granular coated sodium percarbonate and process for preparing them
CA3176359A1 (en) * 2020-04-24 2021-10-28 Andre Vieira Gomes Hollow core granules, products incorporating the granules, and methods of preparing the granules
CN115159548B (en) * 2022-07-14 2023-11-10 山东天力能源股份有限公司 Continuous crystallization process of sodium percarbonate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2495C (en) * 1915-08-18
BE463513A (en) * 1943-08-09
DE1058675B (en) * 1955-03-03 1959-06-04 Kurt Lindner Dr Self-acting cleaning, washing and washing aids
FR2237833B1 (en) * 1973-07-20 1976-04-30 Ugine Kuhlmann
FR2242328B1 (en) * 1973-08-28 1976-05-07 Ugine Kuhlmann
JPS5315717B2 (en) * 1973-12-20 1978-05-26
FR2355774A1 (en) * 1976-03-29 1978-01-20 Air Liquide PROCESS FOR PREPARING SODIUM PERCARBONATE IN REGULAR RHOMBOEDRIC CRYSTALS
DE2644147C3 (en) * 1976-09-30 1983-05-19 Degussa Ag, 6000 Frankfurt Process for the production of a compact, coarse-grained sodium percarbonate
AT356627B (en) * 1976-10-22 1980-05-12 Treibacher Chemische Werke Ag METHOD FOR PRODUCING SODIUM PERCARBONATE
DE2723563A1 (en) * 1977-05-25 1978-11-30 Air Liquide Regular rhombohedric crystalline sodium percarbonate - obtd. by addn. of conc. hydrogen peroxide to decahydrate suspension with polycarboxylic polymer present
US4171280A (en) * 1977-11-03 1979-10-16 The Clorox Company Powder percarbonate bleach and formation thereof
FR2410627A1 (en) * 1977-12-02 1979-06-29 Ugine Kuhlmann Sodium percarbonate compsns. stable to storage in washing powders - prepd. from sodium carbonate hydrate, hydrogen peroxide and additive
DE2800760C2 (en) * 1978-01-09 1983-01-27 Degussa Ag, 6000 Frankfurt Process for the production of sodium percarbonate from a soda solution or suspension

Also Published As

Publication number Publication date
US4440732A (en) 1984-04-03
GB2079263A (en) 1982-01-20
MX159267A (en) 1989-05-22
JPS5717409A (en) 1982-01-29
FR2486056B1 (en) 1988-02-19
DE3125638A1 (en) 1982-06-16
FR2486056A1 (en) 1982-01-08
DE3125638C2 (en) 1990-04-05
GB2079263B (en) 1984-09-12

Similar Documents

Publication Publication Date Title
US4146571A (en) Preparation of sodium percarbonate
JPS5833164B2 (en) Hollow granular percarbonate and its manufacturing method
US5851420A (en) Process for manufacturing granular sodium percarbonate
US3883640A (en) Sodium percarbonate crystals
US3677697A (en) Method of producing sodium percarbonate
JP2004509828A (en) Sodium percarbonate-fluid bed granules and method for producing the same
EP0107870B1 (en) Production of magnesium nitrate solutions
US4943419A (en) Process for recovering alkali metal titanium fluoride salts from titanium pickle acid baths
JP2984764B2 (en) Method for producing granular sodium metasilicate hydrous crystals
JPH0139962B2 (en)
US1660053A (en) Prepared calcium chloride and method of making same
US5759507A (en) Process for production of dense soda ash from soda ash fines
US3598524A (en) Production of sodium perborate
US3941723A (en) Crystallized alkali metal silicate with sequestering agents
JPS6096511A (en) Production of stabilized granular sodium percarbonate
CN110965122A (en) Preparation method of layered octahedral aragonite crystal and obtained product
JP3305111B2 (en) Stabilized sodium percarbonate particles and method for producing the same
JPS61256920A (en) Sectorial magnesium oxysulfate and its production
CN112758897B (en) Preparation method of sodium percarbonate
JP4635310B2 (en) Neutral sodium sulfate composition and method for producing the same
US4246430A (en) Method for producing crystals of sorbic acid
US2795485A (en) Crystallized alkali metasilicate hydrates
JP3889724B2 (en) Method for producing granular sodium percarbonate
JPS58208105A (en) Manufacture of fine adduct of hydrogen peroxide to sodium carbonate
JP3340319B2 (en) Method for producing fibrous magnesium borate hydroxide and fibrous magnesium pyroborate