JPS58208105A - Manufacture of fine adduct of hydrogen peroxide to sodium carbonate - Google Patents

Manufacture of fine adduct of hydrogen peroxide to sodium carbonate

Info

Publication number
JPS58208105A
JPS58208105A JP9143082A JP9143082A JPS58208105A JP S58208105 A JPS58208105 A JP S58208105A JP 9143082 A JP9143082 A JP 9143082A JP 9143082 A JP9143082 A JP 9143082A JP S58208105 A JPS58208105 A JP S58208105A
Authority
JP
Japan
Prior art keywords
sodium carbonate
hydrogen peroxide
weight
mother liquor
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9143082A
Other languages
Japanese (ja)
Other versions
JPS6236962B2 (en
Inventor
Yoshiro Ito
伊藤 芳郎
Yasuo Osada
長田 康男
Eiji Usu
薄 栄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Peroxide Co Ltd
Original Assignee
Nippon Peroxide Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Peroxide Co Ltd filed Critical Nippon Peroxide Co Ltd
Priority to JP9143082A priority Critical patent/JPS58208105A/en
Publication of JPS58208105A publication Critical patent/JPS58208105A/en
Publication of JPS6236962B2 publication Critical patent/JPS6236962B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Detergent Compositions (AREA)

Abstract

PURPOSE:To manufacture fine crystals of the adduct of hydrogen peroxide to sodium carbonate by adding Na2CO3 and H2O2 to mother liquor contg. Na2CO3, H2O2 and a silicic acid compound as a stabilizer for H2O2 by a restricted amount basing on the amount of Mg<++> and by reacting the compounds. CONSTITUTION:Na2CO3 and H2O2 are simultaneously added to mother liquor contg. 7-20wt% Na2CO3, 1.5-6wt% H2O2 in 1.3-0.2 molar ratio between Na2CO3 and H2O2, an Mg compound such as MgSO4 as a stabilizer for H2O2 by 0.001-0.5wt% expressed in terms of Mg<++>, and a water soluble silicic acid compound such as sodium silicate as a stabilizer for H2O2 by 0.003-0.1% expressed in terms of Si in <=12 molar ratio of Si to Mg<++>, and the compounds are reacted to obtain a slurry contg. fine crystals of the adduct (PC) of hydrogen peroxide to sodium carbonate. Fine seed crystals of PC are inoculated into the slurry to manufacture PC as a superior oxygen type bleaching agent.

Description

【発明の詳細な説明】 本発明は微細な炭酸ナトリウム過酸化水素付加物(2N
a2CO3−3H202以下pcと称す。)の製造方法
に関する 酸素系漂白剤として近年重要性を増しつつあ
るPCは、通常取扱いの容易な粒状品として製造される
。この粒状形態を与える方法の一つとして、粉末状結晶
を造粒する方法があり、造粒原料としてはなるべく微細
な粉末状PCを用いるのが望ましい3、炭酸ナトリウム
溶液あるいは炭酸ナトリウム懸濁液と過酸化水素水溶液
との反応によりPCを製造する方法は公知であるが、単
にこの反応を行、て微細な粉末状PCを得ようとした場
合、結晶は微細な針状形として晶析し2、結晶懸濁スラ
リーの粘性を増加させる結果、原料として母液中に供給
される過酸化水素水溶液?よひ炭酸ナトリウムあるいは
その水溶液は反応母液中への速やかな分散が阻害され、
局部的な濃度上昇がもたらされるために一層の液状悪化
が起り、晶析した結晶を全量濾過分離し、その後再び反
応を行うといったバッチ式の製造を行わねばならず、製
造効率が非常に悪いといった工業的に重大な問題が存在
するのみならず、このような状態で得られる結晶は脱水
性が悪く、分離されるケーキは極めて大きな活水率を有
する欠点があり、−[−業的実施が難しい、このため既
知の方法はもっばらポリリン酸塩あるいはポリアクリル
酸塩のようなポリ電解質を用い、結晶の粒子化あるυ・
は粗大化を行い製造操作性を同上させるとともンこ、流
動性、抗摩耗性良好なPCを得る方法を提供することに
努められ、微細な結晶の生成は濾過性その他に支障を与
えるものとして忌避されて来た。1−かじながらそのよ
うに粗大化したPCは、本来造粒等の目的に適したもの
ではなく、さらに造粒を行っても造粒粒子が互来有する
べき高溶解速度、高分散性といった特性が十分に発揮さ
れない。と2tらの理由から既知の方法は微細な粉末状
P Cの工業的製法としては、不適当なものであり利用
することが出来ない。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a fine sodium carbonate hydrogen peroxide adduct (2N
a2CO3-3H202 is hereinafter referred to as pc. PC, which has been gaining importance in recent years as an oxygen bleaching agent, is usually manufactured as a granular product that is easy to handle. One method for providing this granular form is to granulate powdered crystals, and it is desirable to use as fine a powdered PC as possible as the granulation raw material3. A method for producing PC by reaction with an aqueous hydrogen peroxide solution is known, but if one attempts to obtain fine powdered PC by simply carrying out this reaction, the crystals will crystallize in the form of fine needles. , the aqueous hydrogen peroxide solution fed into the mother liquor as a raw material, resulting in an increase in the viscosity of the crystal suspension slurry? The rapid dispersion of sodium carbonate or its aqueous solution into the reaction mother liquor is inhibited.
As a result of the local concentration increase, the liquid quality deteriorates even further, and batch-type production has to be performed in which all of the crystallized crystals are separated by filtration and the reaction is then carried out again, resulting in very poor production efficiency. Not only are there serious problems industrially, but the crystals obtained under such conditions have poor dehydration properties, and the separated cake has an extremely high water activity, making it difficult to carry out commercially. For this reason, known methods mostly use polyelectrolytes such as polyphosphates or polyacrylates to reduce the particle size of the crystals.
Efforts have been made to provide a method for obtaining PC with good flowability and anti-wear properties by coarsening it to improve manufacturing operability, and the formation of fine crystals will impede filterability and other properties. It has been avoided as such. 1- PC that has become coarse in this way is not originally suitable for purposes such as granulation, and even if granulated, the characteristics such as high dissolution rate and high dispersibility that granulated particles should have mutually is not fully demonstrated. For the reasons of 2t et al., the known method is unsuitable and cannot be used as an industrial method for producing fine powdered PC.

そのため木発明者らは微細なPCを良好な製造操作性の
もとに製造し得る方法に関し、鋭意研究の結果、目的と
するPCをスラリー状態および脱水性良好な状態で工業
的に容易に実施し得る方法を見し・出し完成するに至っ
た。
Therefore, as a result of intensive research into a method for producing fine PC with good manufacturing operability, the inventors of the wood industry found that the desired PC can be easily produced industrially in a slurry state and in a state with good dehydration properties. I found a way to do it, and finally completed it.

即し、本発明は炭酸ナトリウムおよび過酸化水素を含翁
する母液中に於て、炭酸ナトリウムと過酸化水素とを供
給反応させPCを晶析させる際に、Mg+を添加共存才
せるこ七、さらには過酸化水素安定illとしてこの系
に添加ヒワるケイ酸化合物の添加共存蓋をMg+に対し
限だ的に使用することによって晶析する結晶を変性改質
し、製造操作性良好な状態で連続式あるいは回分式に微
細なPCを製造させる万床に関するものである。
Accordingly, the present invention provides a method for adding and coexisting Mg+ when sodium carbonate and hydrogen peroxide are supplied and reacted in a mother liquor containing sodium carbonate and hydrogen peroxide to crystallize PC. Furthermore, by limiting the use of a coexistence lid with a silicate compound added to this system as a hydrogen peroxide stabilizer for Mg+, the crystals that crystallize are modified and modified, resulting in good production operability. This invention relates to a machine for producing fine PC in a continuous or batch manner.

従来、Mg+はpcf)安定剤として加えられるケイ酸
化合物と併用するこ七り二よって、よりその安定性を改
善する安定剤として使用され、一般的にこの目的で添加
されているうしかし、例えば、特開昭52−11789
7号によればM g++は粒子の堅ざを増大させる目的
で、特開昭53−146996号では粒子の自由流動性
と抗摩耗性を向上させる目的でも使用さとている。しか
しながら、これらは他の強力な改質剤との併用によって
行われる方法であり、その使用目的、方法、そして得ら
れるPCの形態ともに本発明と大きく異なるものである
Conventionally, Mg+ has been used as a stabilizer to further improve its stability by using it in combination with a silicic acid compound added as a pcf stabilizer, and is generally added for this purpose, but for example, , Japanese Patent Publication No. 52-11789
According to No. 7, M g++ is used for the purpose of increasing the hardness of the particles, and in JP-A-53-146996, it is also used for the purpose of improving the free flow properties and anti-wear properties of the particles. However, these methods are carried out in combination with other strong modifiers, and their purpose of use, method, and form of the obtained PC are largely different from the present invention.

Iv! g 〜添加共存は実施例2〜3に見るように結
晶の脱水性、スラリー状態の屯箕に十分な作用を有する
ことが見い出されたが、それのみを改質剤として実用上
の利用価値を持って使用するためには、特定の条件を模
さなけれはならないこともまた見い出された。即ちPC
の貯蔵中の安定性を十分なものとし、また製造中の過酸
化水素の分解損失を避けるためには、ケイ酸化合物の共
存が必須であり、Mg″のみではこの目的を達すること
は出来ないうこのため反応系にはケイ酸化合物の添加共
存をよぎなくされるが、この添加共存によってMg+?
はその結晶変性、改質の効果を著るしく阻害され、その
量的な関係によっては全くその効果の発現が期待できな
くなるのである。このような不都合を回避し、微細な粉
末状PCを工業的価値を持って製造するためには、この
両者間さらには他の反応晶析条件との間に特定の関係を
満足する必要がある。
IV! Although it was found that the addition and coexistence of g ~ had a sufficient effect on the dehydration of crystals and the slurry state of tunki as shown in Examples 2 and 3, it was not found to have practical utility as the only modifier. It has also been found that in order to have and use it, certain conditions must be simulated. That is, PC
In order to ensure sufficient stability during storage and to avoid decomposition loss of hydrogen peroxide during production, the coexistence of a silicic acid compound is essential, and Mg'' alone cannot achieve this purpose. Due to the presence of silica, it is impossible to add and coexist a silicic acid compound to the reaction system, but due to this addition and coexistence, Mg+?
The effect of crystal modification and modification is significantly inhibited, and depending on the quantitative relationship, the effect cannot be expected to be expressed at all. In order to avoid such inconveniences and produce fine powdered PC with industrial value, it is necessary to satisfy a specific relationship between the two and other reaction crystallization conditions. .

本発明によれば、管理された組成を有する母液中に7!
1体炭酸ナトリウムもしくはその水溶液と過酸化水素水
溶液とを連続あるいは断続的に供給し、反応容器内で攪
拌を行いつつ反応、さらには目的とするPCを晶析させ
、これを連続的、あるいは断続的、あるいは全量を抜出
すバッチ式的な方法で容器内から抜出し、常法に従って
固液分離を行し・、濾液を直ちに、あるいは組成を調整
した後容器内に再循環させる方法に於て、母液組成は炭
酸ナトリウム濃度について、7〜20重量%、好ましく
は9〜・17重量%、過酸化水素濃度につり・て、15
〜6重量%、好ましくは2〜4重量%であり、炭酸すk
 IJウムに対する過酸化水素のモル比は、供給さiる
炭酸ナト’)ラムが水溶液状態である場合には特に限定
されないが、固形状である場合には13〜02、好まし
くはo9以1に管理する。
According to the invention, 7! in the mother liquor with a controlled composition!
Monolithic sodium carbonate or its aqueous solution and hydrogen peroxide aqueous solution are supplied continuously or intermittently, and the reaction is performed while stirring in the reaction vessel, and the desired PC is crystallized, and this is continuously or intermittently fed. In a method in which the filtrate is extracted from the container by a batch method in which the target or the entire amount is extracted, solid-liquid separation is performed according to a conventional method, and the filtrate is recycled into the container immediately or after adjusting the composition. The mother liquor composition has a sodium carbonate concentration of 7 to 20% by weight, preferably 9 to 17% by weight, and a hydrogen peroxide concentration of 15% by weight.
-6% by weight, preferably 2-4% by weight, carbonated sugar
The molar ratio of hydrogen peroxide to IJ is not particularly limited when the supplied sodium carbonate is in an aqueous solution state, but when it is in a solid state, it is between 13 and 02, preferably between 0 and 1. to manage.

モル比に於て、上限を上回る場合には原子状粗大PCの
部分的な形成が行われ望ましくな(・、Mg++濃度に
ついてはo、ooi〜o5重量%、望ましくは0002
重量%以上であり、水溶状Si濃度は0003〜0,1
重量%であり、かつMg+に対するSi0モル比が12
以下好ましくは8以下となるように維持させる。供給さ
れる炭酸ナトリウムの形態は水溶状あるいは兵状、粉末
状の固形無水、含水炭酸ナトリウムI7)いずれでも実
施し得るが、水溶液の場合には粗大な粒子状過炭酸ナト
リウムの生成しにくい利点を有する反面、母液の過剰増
加カ起るため母液の循環使用に際して濃縮または一部廃
棄を行わねばならず、特に望まfx、 ’7・限りは固
形無水炭酸ナトリウムを用いるのが有利であり、供給さ
nる過酸化水素濃度についても母液量変動を起さないよ
うに選定して使用することが必要となる。一般的には4
0重量?0ないし80重量%の過酸化水素水溶液を用い
るのが望ましい1、Mg+の供給は実質的にMg++を
与え1.かつ過酸化水素の分解に対し不活性なマグネシ
ウム化合物であれば、特にその種類は限定されないが、
一般的には硫酸マグネシウム、塩化マグネシウムのよう
な水溶性マグネシウム塩を水溶液もしくは過酸化水素水
溶液に溶解し、反応母液中へ連続あるいは断続的に添加
される。
When the molar ratio exceeds the upper limit, partial formation of atomic coarse PC occurs, which is undesirable.
% by weight or more, and the water-soluble Si concentration is 0003 to 0.1
% by weight, and the molar ratio of Si0 to Mg+ is 12
It is preferably maintained at 8 or less. The sodium carbonate to be supplied can be in the form of an aqueous solution, solid powder, anhydrous sodium carbonate, or hydrated sodium carbonate17), but an aqueous solution has the advantage of being difficult to produce coarse particulate sodium percarbonate. On the other hand, since an excessive increase in the mother liquor occurs, it is necessary to concentrate or partially discard the mother liquor when recycling the mother liquor.In particular, it is advantageous to use solid anhydrous sodium carbonate as long as it is desired. It is also necessary to select and use the hydrogen peroxide concentration so as not to cause variations in the amount of mother liquor. Generally 4
0 weight? Preferably, a 0 to 80% by weight aqueous hydrogen peroxide solution is used. 1. The supply of Mg+ provides substantially Mg++; 1. The type of magnesium compound is not particularly limited as long as it is inert to the decomposition of hydrogen peroxide.
Generally, a water-soluble magnesium salt such as magnesium sulfate or magnesium chloride is dissolved in an aqueous solution or an aqueous hydrogen peroxide solution, and the solution is added continuously or intermittently to the reaction mother liquor.

結晶を変性改質し、ステ1j−状態、脱水性改善のため
の十分な効果を得るためにはMg+″の添加量は供給さ
れる炭酸ナトリウムに対し100:0.01〜100:
1.0好ましくは100:0.02以上であり、この添
加によってPLの結晶は針状形から板状形へとその中間
的な形を含めて変化し、スラリー状態、脱水性悪化の王
因をなす結晶相互間の絡みから解除される結果、スラリ
ー状態および脱水性が極めて改善されるへしかし、公知
のようにPCの安定性を実用上十分なものとするために
は安定剤としてケイ酸化合物の添加が必須であってこの
添加により安定性は向上されるものの上記のMg+によ
る改質効果は著るしく阻害される。そのためケイ酸化合
物の添加量は、Mg+の添加量に関連して限定した範囲
内で使用され、かつ生成するPCが実用上十分な安定性
を有する量でなければならない。この目的のだめのケイ
酸化合物供給量は供給される炭酸ナトリウム重量に対し
、水溶性Siとして、100 :0.02〜100 :
0.5好マ1゜イは、100:0.04〜100:0.
2であり、かつMg との間にモル比に於てS i/M
g++が25以下好ましくは10以下である必要がある
In order to obtain a sufficient effect for modifying the crystals and improving the ST1j- state and dehydration property, the amount of Mg+'' added should be 100:0.01 to 100:1 to the supplied sodium carbonate.
1.0 is preferably 100:0.02 or more, and this addition causes the PL crystals to change from a needle-like shape to a plate-like shape, including intermediate shapes, which is the main cause of slurry state and deterioration of dehydration properties. As a result, the slurry state and dehydration properties are greatly improved as a result of the disentanglement between the crystals forming the PC. Addition of a compound is essential, and although stability is improved by this addition, the above-mentioned modification effect by Mg+ is significantly inhibited. Therefore, the amount of the silicic acid compound added must be within a limited range in relation to the amount of Mg+ added, and the amount must be such that the produced PC has sufficient stability for practical use. The amount of silicic acid compound supplied for this purpose is 100:0.02 to 100: as water-soluble Si to the weight of sodium carbonate supplied.
0.5 good ma 1 degree is 100:0.04~100:0.
2, and the molar ratio between Si/M and Mg is
g++ must be 25 or less, preferably 10 or less.

ケイ酸化合物としては、水力゛ラス、メタケイ酸ナトリ
ウムのような各種水溶性ケイ酸ナトリウムあるいはケイ
酸マグネシウム又はコロイド状シリカ等、公知の安定剤
を用いて行うことが出来るが難あるいは不溶性ケイ酸化
合物については添加されるその大部分が実質的に不溶状
態で母液中に懸濁するのみであるから上記の数値は絶対
量としててはなく水溶状態分、あるいは実質的に母液中
で溶解する部分を対象として理解すべきである。これら
のケイ酸化合物は通常水溶液として反応母液中あるいは
循環される母液中に連続又は断続的に供給される。炭酸
ナトリウム、過酸化水素 M g++、ケイ酸化合物の
反応容器中への供給は母液中の各成分組成が、維持すべ
き範囲内にあるように調節されながら行われる。
As the silicic acid compound, it is possible to use known stabilizers such as hydrolase, various water-soluble sodium silicates such as sodium metasilicate, magnesium silicate, or colloidal silica, but difficult or insoluble silicic acid compounds can be used. Since most of the added substances are suspended in the mother liquor in a substantially insoluble state, the above values are not absolute amounts, but represent the water-soluble portion or the portion that essentially dissolves in the mother liquor. It should be understood as an object. These silicic acid compounds are usually fed continuously or intermittently as an aqueous solution into the reaction mother liquor or into the circulated mother liquor. The sodium carbonate, hydrogen peroxide Mg++, and silicate compound are fed into the reaction vessel while being controlled so that the composition of each component in the mother liquor is within the range to be maintained.

以上の方法によって供給された炭酸ナトリウム及び過酸
化水素は母液中で反応し、PCとして晶析成長して行く
が、原料の供給速度が結晶の晶析速度を上回って行われ
る場合には過渡的に高過飽和系が形成されるために結晶
は、優性な針状結晶となって急激に析出し目的を達する
ことが出来な1・・2このため連続的あるいは断続的に
供給される炭酸ナトリウムの供給速度は、母液に対し単
位時間当り、] 00 :50以下望ましくは100 
: 30す下で行うのが良く、また変性改質された結晶
について十分な晶析速度を得、過度の過飽和系形成をさ
けるためには母液中に懸濁する結晶が十分な表面積を有
し、それらに対して晶析量に相当した結晶成長が行われ
ることが好ましい。この観点から母液中のPC存在量は
、原則として大きい方が有利となるが大きすぎる場合に
は結晶間の摩擦等による物理的刺激もまた増加する結果
、針状結晶の発生を誘発させ易くなるため、その濃度は
、200 f/l〜400 y/lに調節されるように
スラリーを反応容器から抜き出すのが好ましい。連続的
な反応晶析に於て、絶えず安定した粒度な有する結晶を
得るためには、また一定した新結晶核の生成が必要とな
るが、これは過飽和度のみならず他の種々の要因によっ
て大ぎく影響を受けるためそのコントロールは必ずしも
容易なものではない、そのため本発明を実施するに際し
ては、過飽和度の影響を低減させ、結晶の粒度や大きさ
をある程度広い範囲で操作コントロールする目的から、
微細なPCを種結晶として反応晶析系に供給する、いわ
ゆる接種の方法を行うことによって結晶の粒度あるいは
大きさのフントロールをより確実に行わせることが出来
る。
Sodium carbonate and hydrogen peroxide supplied by the above method react in the mother liquor and crystallize and grow as PC, but if the raw material supply rate exceeds the crystallization rate, transient Due to the formation of a highly supersaturated system, the crystals become predominant needle-shaped crystals and rapidly precipitate, making it impossible to achieve the purpose.1.2 For this reason, sodium carbonate supplied continuously or intermittently The feeding rate is 00:50 or less, preferably 100% per unit time for the mother liquor.
: It is recommended that the crystals suspended in the mother liquor have a sufficient surface area in order to obtain a sufficient crystallization rate for the modified crystals and to avoid the formation of an excessively supersaturated system. , it is preferable that crystal growth be performed on them in an amount corresponding to the amount of crystallization. From this point of view, it is generally advantageous to have a larger amount of PC present in the mother liquor, but if it is too large, physical stimulation due to friction between crystals will also increase, making it easier to induce the formation of needle-like crystals. Therefore, it is preferable to extract the slurry from the reaction vessel so that its concentration is adjusted to 200 f/l to 400 y/l. In continuous reaction crystallization, in order to constantly obtain crystals with a stable grain size, it is necessary to constantly generate new crystal nuclei, but this depends not only on the degree of supersaturation but also on various other factors. It is not necessarily easy to control the supersaturation level as it is greatly influenced by the degree of supersaturation.Therefore, when carrying out the present invention, in order to reduce the influence of the degree of supersaturation and to control the grain size and size of the crystals over a fairly wide range,
By carrying out a so-called inoculation method in which fine PC is supplied as a seed crystal to the reaction crystallization system, control of the grain size or size of the crystals can be carried out more reliably.

こO−)目的で用し・る種結晶には、望ましくは板状の
結晶を乾式、あるいは湿式法など常法によって粉砕した
ものを、粉体のまま、もしくは循環母液に懸濁させた状
態で反応容器内に供給するか、あるいは反応スラリーの
一部をそのまま湿式粉砕して反応容器内に循環させる方
法で用いるっ使用ト九る種結晶量は目的とする結晶粒度
等によって特に限定されるものではないが、大音の使用
は製造効率の低下をまねくため、一般には供給する炭酸
ナトリウム重量に対し1:2以下好ましくは1:05以
下で行うのが望ましい。
The seed crystals used for this purpose are preferably plate-shaped crystals that have been pulverized by a conventional method such as a dry or wet method, either as a powder or suspended in a circulating mother liquor. The amount of seed crystals used is particularly limited depending on the desired crystal grain size, etc. Although it is not a problem, the use of loud noise leads to a decrease in production efficiency, so it is generally desirable to use a volume of 1:2 or less, preferably 1:05 or less, based on the weight of sodium carbonate to be supplied.

原料の供給速度、反応容器内のスラリー液量、スラリー
濃度、スラリー抜出し速度などから求めろnる結晶の平
均滞留時間は、種々の条件を総合したものとして重要で
あり、短かすぎる場合には晶析に対する過度の過飽和系
形成によって結晶の変性改質に悪影響が出るのみならず
、特に炭酸ナトリウムの供給が固形状で行われる場合に
ついては、完全なる反応の進行が明害される。この理由
から滞留時間は長時間であることが理論的に望ましいの
であるが、これは単位時間あるいは反応装置容量当りの
製造効率低下につながるため工業的には有利ではなく、
この意味での上限を有する。
The average residence time of crystals, which can be determined from the raw material supply rate, the amount of slurry in the reaction vessel, the slurry concentration, the slurry withdrawal speed, etc., is important as it is a comprehensive consideration of various conditions, and if it is too short, Formation of an excessively supersaturated system for crystallization not only adversely affects the modification of crystals, but also impairs the complete progress of the reaction, especially when sodium carbonate is fed in solid form. For this reason, it is theoretically desirable for the residence time to be long, but this is not advantageous industrially because it leads to a decrease in production efficiency per unit time or reactor capacity.
It has an upper limit in this sense.

本発明に於ては滞留時間として20分〜4時間、好ま゛
しくは40分以上で実施される。反応晶析が行われる段
階での液温度は、10℃〜40℃好ましくは15″C〜
30°Cに保たれるように必要に応じて冷却が行われる
が、40°Cを超える場合には著るしい過酸化水素の損
失を招くため好ましくない、一方低すぎる場合には、供
給される炭酸ナトリウムが固形状のものについて、原料
の反応容器内での完全な溶解が困難となり、反応が不十
分のまま排出される。
In the present invention, the residence time is 20 minutes to 4 hours, preferably 40 minutes or more. The liquid temperature at the stage of reaction crystallization is 10°C to 40°C, preferably 15″C to
Cooling is performed as necessary to maintain the temperature at 30°C; however, if the temperature exceeds 40°C, it is undesirable because it will cause a significant loss of hydrogen peroxide, while if it is too low, the hydrogen peroxide will not be supplied. If the sodium carbonate used is solid, it will be difficult to completely dissolve the raw material in the reaction vessel, and the reaction will be insufficient and it will be discharged.

このためこの段階での温度は必要十分な温度を維持せね
ばならない7 しかし、PCは高温側で高溶解度を示す
ため必然的に高温側では、母液中の過酸化水素濃度を高
める事となり、単位母液量当りの過酸化水素損失を大き
くする。、二のような不都合を避けるためには、反応温
度は反応が完全に行われる必要最低の温度にとどめ、望
むならば、反応後抜出さhたスラリーを二次的に冷却し
て母液中に溶解tているPCをさらに晶析させ、過酸化
水素濃度を低減させるなどの方法をとるのが有利である
8本方法の実施によりで得られる結晶の大きさは300
ミクロン以下85〜98%、150ミクロン以下45〜
80%の微細な粉末状結晶であり、造粒その他の原料と
して好適なPCである。
Therefore, the temperature at this stage must be maintained at a necessary and sufficient temperature.7 However, since PC exhibits high solubility at high temperatures, the hydrogen peroxide concentration in the mother liquor inevitably increases at high temperatures. Increase hydrogen peroxide loss per volume of mother liquor. In order to avoid the disadvantages mentioned above, the reaction temperature should be kept at the lowest temperature necessary for complete reaction, and if desired, the slurry drawn out after the reaction may be cooled secondarily and added to the mother liquor. It is advantageous to further crystallize the dissolved PC and reduce the hydrogen peroxide concentration.The crystal size obtained by implementing this method is 300.
85-98% below micron, 45-98% below 150 micron
It is 80% fine powder crystal and is suitable as a raw material for granulation and other purposes.

本方法を実施するに際しては、安定剤としてケイ酸化合
物以外に公知の安定剤例えばピロリノ酸ナトリウム、ト
リポリリン酸ナトリウム等のす5・化合物類あるいはE
DTA等の有機キレート剤を併用してさらに安定性の向
上をはかることも出来るが、こ太、らによる安定化効果
は本質的には金Eの錯化封鎖に基くものであり、 Mg
”をも部分的に封鎖し・Sol g ++による効果を
低減させる。このため不法に於てこれらを併用する場合
には、その併用量とMg+封鎖能力に応じてMg+の添
加共存量を増加させて実施することが望ましい、又、本
方法を実施するに際しては、へ干すメタリン酸ナトリウ
ムやポリアクリル酸ナトリウム等のポリ電解質のような
公知の結晶改質剤を併用し得るが、特に望まない限91
こ本方法於てはその添加を全く必要としな(・。
When carrying out this method, in addition to the silicic acid compound, known stabilizers such as sodium pyrrolinoate, sodium tripolyphosphate, etc. or compounds such as E
Although it is possible to further improve the stability by using an organic chelating agent such as DTA, the stabilizing effect by Kota et al. is essentially based on complexation and sequestration of gold E, and Mg
It also partially blocks Sol g ++ and reduces the effect of Sol g ++. Therefore, when using these together illegally, the amount of Mg + added and coexisting should be increased depending on the combined amount and Mg + sequestering ability. In addition, when carrying out this method, known crystal modifiers such as polyelectrolytes such as sodium metaphosphate and sodium polyacrylate can be used together, but unless particularly desired. 91
This method does not require its addition at all.

以下に本発明を実施例により説明する。The present invention will be explained below using examples.

比較例1 ゛ 炭酸ナトリウム139重量%、過酸化水素2.6重量%
、SiO,003重量%の組成を有する母液(資)lを
直径40側の反応容器に入れ直径226mの攪拌羽によ
ってl 3 Q i、p、mの速度で攪拌を行い、液温
度を25°Cに維持しながら粒状無水炭酸ナトリウムを
6. OI’l/)Ir、 60重量%過酸化水素49
79/Hr、3号ケイ酸ナトリウムの20亀量%水溶液
を100 ?、/4irの速度で反応容器内に連続的に
供給したう反応開始後25分にはスラリーの粘性が増加
し、供給される炭酸ナトリウムが液面下に分散されず、
液面上で固化したためそれ以上の反応続行は不可能であ
った。広いでこのスラリーを容器から抜出し、遠心分離
器により1200Gで2分間脱水したところその脱水ケ
ーキは29.4%の含水率を示した。
Comparative Example 1 Sodium carbonate 139% by weight, hydrogen peroxide 2.6% by weight
, SiO,003% by weight was put into a reaction vessel with a diameter of 40 mm and stirred at a speed of l 3 Q i, p, m using a stirring blade with a diameter of 226 m, and the liquid temperature was kept at 25°. Add granular anhydrous sodium carbonate while maintaining at 6.C. OI'l/)Ir, 60% by weight hydrogen peroxide 49
79/Hr, 20% aqueous solution of No. 3 sodium silicate at 100? , /4ir continuously into the reaction vessel, the viscosity of the slurry increased 25 minutes after the start of the reaction, and the supplied sodium carbonate was not dispersed below the liquid surface.
Since it solidified on the liquid surface, it was impossible to continue the reaction any further. The slurry was taken out from the container using a wide sieve and dehydrated using a centrifuge at 1200 G for 2 minutes, and the dehydrated cake showed a water content of 29.4%.

実施例1 炭酸ナトリウム13.9重量%、過酸化水素26重量%
、Mg+O,OO7重量%、Si0.004重量%の組
成を有する母液を用い、さらに200重量%のMg5O
,水溶液を122 f/Hrの速度で連続的に供給した
以外は、比較例1と同一条件下で反応させた。反応1時
間後にスラリーを抜出し、1200Gで2分間脱水を行
ったケーキは含水率14.8%であった 実施例2 炭酸ナトリウム139重量%、過酸化水素2.6重量%
、へ4g0.013重量%、SiO,007重量%の組
成を有する母液を用い、さらに200重量%のMgSO
4水溶液を234 f/Hrの速度で連続的に供給1−
た以外は、比較例1と同一条件下で反応を行った。反応
開始1時間後にスラリーを抜出し、2分間の遠心脱水で
のケーキ含水率は12.5%であった 実施例3 炭酸+トリウム139重量%、過酸化水素2.6重量%
、Mg” 0. OO5重量%の組成を有する母液30
Jを直径40国の反応容器に入れ直径22C+++の攪
拌羽によって10 Or、p、mの速度で攪拌を沼、液
温度を20°Cに維持しながら粒状無水炭酸ナトリウム
57に9/Hr、60重量%過酸化水素4.66 iV
’Hr 。
Example 1 Sodium carbonate 13.9% by weight, hydrogen peroxide 26% by weight
, Mg + O, OO 7% by weight, Si 0.004% by weight, and further 200% by weight Mg5O
The reaction was carried out under the same conditions as in Comparative Example 1, except that the aqueous solution was continuously supplied at a rate of 122 f/Hr. After 1 hour of reaction, the slurry was taken out and dehydrated at 1200G for 2 minutes.The cake had a moisture content of 14.8%.Example 2 Sodium carbonate 139% by weight, hydrogen peroxide 2.6% by weight
, using a mother liquor having a composition of 4g 0.013% by weight, SiO, 007% by weight, and further 200% by weight MgSO
4 Aqueous solution is continuously supplied at a rate of 234 f/Hr 1-
The reaction was carried out under the same conditions as in Comparative Example 1 except for the following. The slurry was taken out 1 hour after the start of the reaction, and the moisture content of the cake after 2 minutes of centrifugal dehydration was 12.5%. Example 3 Carbonate + thorium 139% by weight, hydrogen peroxide 2.6% by weight
, Mg” 0. Mother liquor 30 with a composition of 5% by weight of OO
J was placed in a reaction vessel with a diameter of 40 mm and stirred at a speed of 10 Or, p, m using a stirring blade with a diameter of 22 C++. While maintaining the liquid temperature at 20 °C, it was added to granular anhydrous sodium carbonate 57 at 9/Hr, 60 °C. wt% hydrogen peroxide 4.66 iV
'Hr.

200重量%のMg5O,水溶液を150 f/Hr、
3号ケイ酸ナトリウムの50重量%水溶液を110 P
/Hrの速度で反応容器に連続的に、また、反応母液組
成が炭酸ナトリウムについて13.5〜15.0重量%
、過酸化水素について2.5〜3.5重量%となるよう
に調節しながら供給し、反応容器内のスラリー濃度が2
50 f/73を維持するようにスラリーを連続的に容
器から抜出し、遠心分離機で結晶濾過分離した後、濾液
は反応容器内に循環させる方法で連続的な反応晶析を行
った。4時間後に於いて得られた脱水後ケーキは含水率
143%であり・乾燥後の結晶は、300ミクロン以下
95.2重量%、150ミクロン以下68.7重量%、
有効酸素含有率は146%であった。
200 wt% Mg5O, aqueous solution at 150 f/Hr,
50% by weight aqueous solution of No. 3 sodium silicate at 110P
/Hr, and the reaction mother liquor composition was 13.5-15.0% by weight for sodium carbonate.
, hydrogen peroxide was supplied while adjusting the concentration to be 2.5 to 3.5% by weight, and the slurry concentration in the reaction vessel was 2.5% to 3.5% by weight.
The slurry was continuously drawn out from the container so as to maintain the temperature of 50 f/73, and after crystal filtration and separation using a centrifuge, the filtrate was circulated into the reaction container for continuous reaction crystallization. The dehydrated cake obtained after 4 hours had a moisture content of 143%. The crystals after drying were 95.2% by weight of 300 microns or less, 68.7% by weight of 150 microns or less,
The effective oxygen content was 146%.

実施例4 炭酸す) IJウム15.5重量%、過酸化水素2.4
重量%、Mg++’0.013重量%の組成を有する母
液を用い、液温瞠を27°Cに維持しながら粒状無水炭
酸す) 11ウム7.0 轡乍r、60重量%過酸jヒ
水素s、 s 4 ’l/用rs 20.0重量%のM
g5O,水溶液222?、/kl、r、3号ケイ酸ナト
リウムの50重量%水溶液84 f’/Hr  の速度
で反応容器に供給し、反応母液組成が炭酸ナトリウムに
ついて14.5〜16.0重量%、過酸化水素について
2.3・〜3333重量スラリー濃度が32C)f/l
となるように維持した以外は、実施例3と同様の連続反
応に於て8時間後の脱水後ケーキは含水率122%であ
り、乾燥後の結晶は300ミクロン以下9x、7重量%
、15050ミフロンリ04重1%、有効酸素含有率は
14、7%であった。
Example 4 Carbonate) IJium 15.5% by weight, hydrogen peroxide 2.4%
Using a mother liquor having a composition of 0.013% by weight and 0.013% by weight of Mg++, granular anhydrous carbonic acid was added while maintaining the liquid temperature at 27°C). hydrogen s, s 4'l/rs 20.0% by weight M
g5O, aqueous solution 222? ,/kl,r, a 50% by weight aqueous solution of No. 3 sodium silicate was fed into the reaction vessel at a rate of 84 f'/Hr, and the reaction mother liquor composition was 14.5 to 16.0% by weight of sodium carbonate and hydrogen peroxide. About 2.3・~3333 weight slurry concentration is 32C) f/l
In the same continuous reaction as in Example 3, except that the water content was maintained at
, 15050 Mifuronri 04 weight 1%, and the effective oxygen content was 14.7%.

実施例う 種結晶として、反応後連続的に抜出され脱水された湿ケ
ーキの一部を循環母液に1:1の割合で再び餐濁させ湿
式粉砕を行って微細結晶とした後、乾燥重量として供給
される炭酸ナトリウムに対し100:15の比率で連続
的に反応容器内へ供給した以外は、実施例4と同一条件
下で連続反応を行った。6時間後の脱水後ケー干は含水
率10.3%であり、乾燥後の結晶は3(10ミ〃+’
ン以下982%、150ミクロン以下74.5%の微細
す粉末状結晶であったー 日本パーオキサイド株式会社
Example As a seed crystal, a part of the wet cake that was continuously extracted after the reaction and dehydrated was suspended again in the circulating mother liquor at a ratio of 1:1, wet-pulverized to form fine crystals, and the dry weight was A continuous reaction was carried out under the same conditions as in Example 4, except that sodium carbonate was continuously fed into the reaction vessel at a ratio of 100:15. After 6 hours of dehydration, the moisture content of the dried cake was 10.3%, and the crystal size after drying was 3 (10 mm+').
It was a fine powder crystal with a size of 982% smaller than 150 microns and 74.5% smaller than 150 microns - Nippon Peroxide Co., Ltd.

Claims (1)

【特許請求の範囲】 1 炭酸ナトリウムと過酸化水素とをそれらを含有する
水溶液中で反応せしめ炭酸ナトリウム過酸化水素付加物
として晶析させる際に、Mg1添加共存させることを特
徴とする微細な炭酸ナトリウム過酸化水素付加物の製法
− 2炭酸ナトリウムと過酸化水素とを連続あるいは断続的
に母液へ供給し、これらを反応させた後生成した炭酸ナ
トリウム過酸化水素付加物を母液より濾過分mし、濾液
を再循環させる連続式あるいは回分式である特許請求の
範囲第1項記載の製法。 3  Mg←添加量が供給する炭酸ナトリウム重量に対
し100:0.01〜100:1である特許請求の範囲
第1項及び第2項記載の製法− 4安定剤がケイ酸塩あるいはケイ酸であり、その添加量
が供給される炭酸ナトリウムitに刻し水溶状Siとし
て100:0.02〜100:05であり、かつ添刀口
されるMg+に対するモル比が25以下である特許請求
の範囲第1項及び第2項記載の製法。 5 母液組成を炭酸ナトリウム濃度について7〜20重
量%、過酸化水素濃度について1.5〜6重量%、Mg
++濃度について0001〜05重量%、Si濃度ニツ
イて0.003〜0.1重量%であ・す、かつMg+に
対するSiのモル比が12以下に維持することを特徴と
する特許請求の範囲81項及び第2項記載の製法。 6 反応晶析を行う際に微細な炭酸ナトリウム過酸化水
素付加物を、供給する炭酸ナトリウム重量に対し1:2
以下の割合で供給接種する特許請求の範囲第1項及び第
2項記載の製法。
[Scope of Claims] 1. Fine carbonic acid, characterized in that when sodium carbonate and hydrogen peroxide are reacted in an aqueous solution containing them and crystallized as a sodium carbonate-hydrogen peroxide adduct, 1 Mg is added thereto. Method for producing sodium carbonate-hydrogen peroxide adduct - Sodium dicarbonate and hydrogen peroxide are continuously or intermittently supplied to the mother liquor, and after reacting them, the produced sodium carbonate-hydrogen peroxide adduct is filtered from the mother liquor. The method according to claim 1, which is a continuous method or a batch method in which the filtrate is recirculated. 3. The manufacturing method according to claims 1 and 2, in which the amount of Mg added is 100:0.01 to 100:1 with respect to the weight of sodium carbonate supplied. 4. The stabilizer is a silicate or silicic acid. The amount of added water-soluble Si chopped into the supplied sodium carbonate is 100:0.02 to 100:05, and the molar ratio to the added Mg+ is 25 or less. The manufacturing method described in Items 1 and 2. 5 Mother liquor composition: 7 to 20% by weight for sodium carbonate concentration, 1.5 to 6% by weight for hydrogen peroxide concentration, Mg
Claim 81 characterized in that the ++ concentration is 0001 to 05% by weight, the Si concentration is 0.003 to 0.1% by weight, and the molar ratio of Si to Mg+ is maintained at 12 or less. The manufacturing method described in Items 1 and 2. 6 When performing reaction crystallization, fine sodium carbonate hydrogen peroxide adduct is added at a ratio of 1:2 to the weight of sodium carbonate to be supplied.
The manufacturing method according to claims 1 and 2, wherein the inoculation is supplied at the following ratios.
JP9143082A 1982-05-31 1982-05-31 Manufacture of fine adduct of hydrogen peroxide to sodium carbonate Granted JPS58208105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9143082A JPS58208105A (en) 1982-05-31 1982-05-31 Manufacture of fine adduct of hydrogen peroxide to sodium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9143082A JPS58208105A (en) 1982-05-31 1982-05-31 Manufacture of fine adduct of hydrogen peroxide to sodium carbonate

Publications (2)

Publication Number Publication Date
JPS58208105A true JPS58208105A (en) 1983-12-03
JPS6236962B2 JPS6236962B2 (en) 1987-08-10

Family

ID=14026150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9143082A Granted JPS58208105A (en) 1982-05-31 1982-05-31 Manufacture of fine adduct of hydrogen peroxide to sodium carbonate

Country Status (1)

Country Link
JP (1) JPS58208105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294427A (en) * 1991-01-25 1994-03-15 Central Glass Company, Limited Continuous process for preparing sodium percarbonate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717409A (en) * 1980-07-04 1982-01-29 Kao Corp Hollow granular percarbonate and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717409A (en) * 1980-07-04 1982-01-29 Kao Corp Hollow granular percarbonate and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294427A (en) * 1991-01-25 1994-03-15 Central Glass Company, Limited Continuous process for preparing sodium percarbonate

Also Published As

Publication number Publication date
JPS6236962B2 (en) 1987-08-10

Similar Documents

Publication Publication Date Title
US4146571A (en) Preparation of sodium percarbonate
JP2001500097A (en) Method for producing percarbonate
US5294427A (en) Continuous process for preparing sodium percarbonate
CN108285427A (en) A kind of method of phosphoric acid by wet process round-robin method continuous production big particle industrial grade urea phosphate
CN107473990A (en) A kind of urea phosphate mother liquor water soluble fertilizer and preparation method
US4440732A (en) Hollow granular percarbonate
WO2004002885A1 (en) A process for making sodium percarbonate
SU957757A3 (en) Process for producing sodium percarbonate
JPS58208105A (en) Manufacture of fine adduct of hydrogen peroxide to sodium carbonate
CA1138175A (en) Dihydrate of calcium hypochlorite and method for manufacture thereof
CA1070084A (en) Continuous crystallization process for preparing sodium carbonate peroxide
JPS58217405A (en) Manufacture of fine adduct of hydrogen peroxide to sodium carbonate
JPH05339005A (en) Production of sodium bicarbonate
US3350167A (en) Method of preparing hydrated nickel carbonate and the product thereof
JP2984764B2 (en) Method for producing granular sodium metasilicate hydrous crystals
US2380779A (en) Method of preparing sodium perborate of low bulk density
US5215730A (en) Production of sodium perborate crystals having improved abrasion resistance
CN117658799B (en) Cobalt acetate crystallization process
JPH0624714A (en) Production of sodium percarbonate
CN112758897B (en) Preparation method of sodium percarbonate
JPS61197409A (en) Manufacture of high purity solution of alkali metal hydrosulfite
JPS6096511A (en) Production of stabilized granular sodium percarbonate
US3510269A (en) Preparation of shaped alkali metal perborate tetrahydrate
KR100645598B1 (en) Method for Preparing Sodium Cyanide Having High Purity
US20190367360A1 (en) Sodium hypochlorite pentahydrate crystal grains having high bulk density and method for producing same