JPS6236962B2 - - Google Patents

Info

Publication number
JPS6236962B2
JPS6236962B2 JP57091430A JP9143082A JPS6236962B2 JP S6236962 B2 JPS6236962 B2 JP S6236962B2 JP 57091430 A JP57091430 A JP 57091430A JP 9143082 A JP9143082 A JP 9143082A JP S6236962 B2 JPS6236962 B2 JP S6236962B2
Authority
JP
Japan
Prior art keywords
sodium carbonate
weight
hydrogen peroxide
mother liquor
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57091430A
Other languages
Japanese (ja)
Other versions
JPS58208105A (en
Inventor
Yoshiro Ito
Yasuo Osada
Eiji Usu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Peroxide Co Ltd
Original Assignee
Nippon Peroxide Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Peroxide Co Ltd filed Critical Nippon Peroxide Co Ltd
Priority to JP9143082A priority Critical patent/JPS58208105A/en
Publication of JPS58208105A publication Critical patent/JPS58208105A/en
Publication of JPS6236962B2 publication Critical patent/JPS6236962B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は微細な炭酸ナトリウム過酸化水素付加
物(2Na2CO3・3H2O2以下PCと称す。)の製造方
法に関する。酸素系漂白剤として近年重要性を増
しつつあるPCは、通常取扱いの容易な粒状品と
して製造される。この粒状形態を与える方法の一
つとして、粉末状結晶を造粒する方法があり、造
粒原料としてはなるべく微細な粉未状PCを用い
るのが望ましい。炭酸ナトリウム溶液あるいは炭
酸ナトリウム懸濁液と過酸化水素水溶液との反応
によりPCを製造する方法は公知であるが、単に
この反応を行つて微細な粉末状PCを得ようとし
た場合、結晶は微細な針状形として晶析し、結晶
懸濁スラリーの粘性を増加させる結果、原料とし
て母液中に供給される過酸化水素水溶液および炭
酸ナトリウムあるいはその水溶液は反応母液中へ
の速やかな分散が阻害され、局部的な濃度上昇が
もたらされるために一層の液状悪化が起り、晶析
した結晶を全量濾過分離し、その後再び反応を行
うといつたバツチ式の製造を行わねばならず、製
造効率が非常に悪いといつた工業的に重大な問題
が存在するのみならず、このような状態で得られ
る結晶は脱水性が悪く、分離されるケーキは極め
て大きな含水率を有する欠点があり、工業的実施
が難しい。このため既知の方法はもつぱらポリリ
ン酸塩あるいはポリアクリル酸塩のようなポリ電
解質を用い、結晶の粒子化あるいは粗大化を行い
製造操作性を向上させるとともに、流動性、抗摩
耗性良好なPCを得る方法を提供することに努め
られ、微細な結晶の生成は濾過性その他に支障を
与えるものとして忌避されて来た。しかしながら
そのように粗大化したPCは、本来造粒等の目的
に適したものではなく、さらに造粒を行つても造
粒粒子が本来有するべき高溶解速度、高分散性と
いつた特性が十分に発揮されない。これらの理由
から既知の方法は微細な粉末状PCの工業的製法
としては、不適当なものであり利用することが出
来ない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fine sodium carbonate hydrogen peroxide adduct (2Na 2 CO 3 .3H 2 O 2 hereinafter referred to as PC). PC, which has been gaining importance in recent years as an oxygen bleaching agent, is usually manufactured as a granular product that is easy to handle. One method for providing this granular form is to granulate powdered crystals, and it is desirable to use as fine a powdered PC as possible as the granulation raw material. A method for producing PC by reacting a sodium carbonate solution or a sodium carbonate suspension with an aqueous hydrogen peroxide solution is known, but if one attempts to obtain fine powdered PC by simply carrying out this reaction, the crystals will be fine. As a result, the hydrogen peroxide aqueous solution and sodium carbonate or its aqueous solution supplied to the mother liquor as raw materials are prevented from quickly dispersing into the reaction mother liquor. However, as a result of the local concentration increase, the liquid quality deteriorates further, and batch-type production is required, in which all of the crystallized crystals are separated by filtration, and then the reaction is carried out again, resulting in extremely low production efficiency. Not only are there serious industrial problems such as poor water quality, but the crystals obtained under these conditions have poor dehydration properties, and the separated cake has an extremely high water content, making it difficult to carry out industrially. is difficult. For this reason, known methods mainly use polyelectrolytes such as polyphosphates or polyacrylates to make the crystals finer or coarser, improving manufacturing operability, and producing PC with good fluidity and wear resistance. However, the formation of fine crystals has been avoided as it impedes filterability and other problems. However, such coarsened PC is not originally suitable for purposes such as granulation, and even if granulated, the characteristics such as high dissolution rate and high dispersibility that granulated particles should originally have are not sufficient. It is not demonstrated. For these reasons, the known methods are unsuitable and cannot be used as industrial methods for producing fine powdered PC.

そのため本発明者らは微細なPCを良好な製造
操作性のもとに製造し得る方法に関し、鋭意研究
の結果、目的とするPCをスラリー状態および脱
水性良好な状態で工業的に容易に実施し得る方法
を見い出し完成するに至つた。
Therefore, the present inventors have conducted intensive research on a method for producing fine PC with good manufacturing operability, and have found that the desired PC can be easily produced industrially in a slurry state and in a state with good dehydration properties. I found a way to do this and completed it.

即ち、本発明は炭酸ナトリウムおよび過酸化水
素を含有する特定組成の母液中に於て、炭酸ナト
リウムと過酸化水素とを連続或は断続的に供給、
反応させPCを晶析させる際に、特定量のMg++
添加共存させること、さらには過酸化水素安定剤
としてこの系に添加されるケイ酸化合物の添加共
存量をMg++に対し限定的に使用することによつ
て晶析する結晶を変性改質し、製造操作性良好な
状態で連続式あるいは回分式に微細なPCを製造
させる方法に関するものである。
That is, the present invention provides a method for continuously or intermittently supplying sodium carbonate and hydrogen peroxide in a mother liquor having a specific composition containing sodium carbonate and hydrogen peroxide.
When reacting and crystallizing PC, a specific amount of Mg ++ is added and coexisting, and the amount of silicate compound added to this system as a hydrogen peroxide stabilizer is limited to Mg ++ . The present invention relates to a method for producing fine PC in a continuous or batch manner with good manufacturing operability by modifying and modifying the crystals to be crystallized by using the method.

従来、Mg++はPCの安定剤として加えられるケ
イ酸化合物と併用することによつて、よりその安
定性を改善する安定剤として使用され、一般的に
この目的で添加されている。しかし、例えば、特
開昭52−117897号によればMg++は粒子の堅さを
増大させる目的で、特開昭53−146996号では粒子
の自由流動性と抗摩耗性を向上させる目的でも使
用されている。しかしながら、これらは他の強力
な改質材との併用によつて行われる方法であり、
その使用目的、方法、そして得られるPCの形態
ともに本発明と大きく異なるものである。
Conventionally, Mg ++ has been used as a stabilizer to further improve the stability of PC by being used in combination with a silicic acid compound added as a stabilizer for PC, and is generally added for this purpose. However, for example, according to JP-A-52-117897, Mg ++ is used for the purpose of increasing the hardness of particles, and in JP-A-53-146996, it is also used for the purpose of improving the free flow properties and anti-wear properties of particles. It is used. However, these methods are performed in combination with other strong modifiers,
The purpose of use, the method, and the form of the obtained PC are all significantly different from the present invention.

Mg++の添加共存は実施例に見るように結晶の
脱水性、スラリー状態の改質に十分な作用を有す
ることが見い出されたが、それのみを改質剤とし
て実用上の利用価値を持つて使用するためには、
特定の条件を満さなければならないこともまた見
い出された。即ちPCの貯蔵中の安定性を十分な
ものとし、また製造中の過酸化水素の分解損失を
避けるためには、ケイ酸化合物の共存が必須であ
り、Mg++のみではこの目的を達することは出来
ない。このため反応系にはケイ酸化合物の添加共
存をよぎなくされるが、この添加共存によつて
Mg++はこの結晶変性、改質の効果を著るしく阻
害され、その量的な関係によつては全くその効果
の発現が期待できなくなるのである。このような
不都合を回避し、微細な粉末状PCを工業的価値
を持つて製造するためには、この両者間さらには
他の反応晶析条件との間に特定の関係を満足する
必要がある。
As shown in the examples, the addition and coexistence of Mg ++ was found to have a sufficient effect on the dehydration of crystals and the modification of slurry state, but it alone has practical utility as a modifier. To use it,
It has also been found that certain conditions must be met. That is, in order to ensure sufficient stability during storage of PC and to avoid decomposition loss of hydrogen peroxide during production, the coexistence of a silicate compound is essential, and Mg ++ alone cannot achieve this purpose. I can't. For this reason, it is impossible to add and coexist a silicic acid compound to the reaction system, but due to this addition and coexistence,
Mg ++ significantly inhibits the effect of crystal modification and modification, and depending on the quantitative relationship, the effect cannot be expected to be expressed at all. In order to avoid such inconveniences and produce fine powder PC with industrial value, it is necessary to satisfy a specific relationship between the two and other reaction crystallization conditions. .

本発明によれば、管理された組成を有する母液
中に固体炭酸ナトリウムと過酸化水素水溶液とを
連続あるいは断続的に供給し、反応容器内で撹拌
を行いつつ反応、さらには目的とするPCを晶析
させ、これを連続的、あるいは断続的、あるいは
全量を抜出すバツチ式的な方法で容器内から抜出
し、常法に従つて固液分離を行い、濾液を直ち
に、あるいは組成を調整した後容器内に再循環さ
せる方法に於て、母液組成は炭酸ナトリウム濃度
について、7〜20重量%、好ましくは9〜17重量
%、過酸化水素濃度について、1.5〜6重量%、
好ましくは2〜4重量%であり、炭酸ナトリウム
に対する過酸化水素のモル比は、1.3〜0.2、好ま
しくは0.9以下に管理する。モル比に於て、上限
を上回る場合には粒子状粗大PCの部分的な形成
が行われ望ましくない。Mg++濃度については
0.001〜0.5重量%、望ましくは0.002重量%以上で
あり、水溶状Si濃度は0.003〜0.1重量%であり、
かつMg++に対するSiのモル比が12以下好ましく
は8以下となるように維持させる。供給される炭
酸ナトリウムの形態は水溶状あるいは粒状、粉末
状の固形無水、含水炭酸ナトリウムのいずれでも
実施し得るが、水溶液の場合には粗大な粒子状
PCの生成しにくい利点を有する反面、母液の過
剰増加が起るため母液の循環使用に際して濃縮ま
たは一部廃棄を行わねばならず、その工業的不利
益は大きく、固体状炭酸ナトリウムを用いること
が有利である。供給される過酸化水素濃度につい
ても母液量変動を起さないように選定して使用す
ることが必要となる。一般的には40重量%ないし
80重量%の過酸化水素水溶液を用いるのが望まし
い。
According to the present invention, solid sodium carbonate and an aqueous hydrogen peroxide solution are continuously or intermittently supplied into a mother liquor having a controlled composition, and the reaction is carried out while stirring in a reaction vessel, and furthermore, the desired PC is produced. Crystallize, extract the crystals from the container continuously, intermittently, or in batches by extracting the entire amount, perform solid-liquid separation according to conventional methods, and obtain the filtrate immediately or after adjusting the composition. In the method of recycling into the container, the mother liquor composition is 7-20% by weight for sodium carbonate concentration, preferably 9-17% by weight for hydrogen peroxide concentration, 1.5-6% by weight for hydrogen peroxide concentration,
It is preferably 2 to 4% by weight, and the molar ratio of hydrogen peroxide to sodium carbonate is controlled to be 1.3 to 0.2, preferably 0.9 or less. If the molar ratio exceeds the upper limit, particulate coarse PC will be partially formed, which is not desirable. Regarding Mg ++ concentration
0.001 to 0.5% by weight, preferably 0.002% by weight or more, and the water-soluble Si concentration is 0.003 to 0.1% by weight,
The molar ratio of Si to Mg ++ is maintained at 12 or less, preferably 8 or less. The supplied sodium carbonate can be in the form of an aqueous solution, granules, solid anhydrous powder, or hydrated sodium carbonate; however, in the case of an aqueous solution, coarse granules may be used.
Although it has the advantage that it is difficult to generate PC, it causes an excessive increase in the mother liquor, which requires concentration or partial disposal when recycling the mother liquor, which has a large industrial disadvantage, and solid sodium carbonate cannot be used. It's advantageous. It is also necessary to select and use the hydrogen peroxide concentration to be supplied so as not to cause fluctuations in the amount of mother liquor. Generally 40% by weight
Preferably, an 80% by weight aqueous hydrogen peroxide solution is used.

Mg++の供給は実質的にMg++を与え、かつ過酸
化水素の分解に対し不活性なマグネシウム化合物
であれば、特にその種類は限定されないが、一般
的には硫酸マグネシウム、塩化マグネシウムのよ
うな水溶性マグネシウム塩を水溶液もしくは過酸
化水素水溶液に溶解し、反応母液中へ連続あるい
は断続的に添加される。
The supply of Mg ++ is not particularly limited as long as it is a magnesium compound that substantially provides Mg ++ and is inactive against the decomposition of hydrogen peroxide, but generally magnesium sulfate, magnesium chloride, etc. Such a water-soluble magnesium salt is dissolved in an aqueous solution or an aqueous hydrogen peroxide solution and added continuously or intermittently to the reaction mother liquor.

結晶を変性改質し、スラリー状態、脱水性改善
のための十分な効果を得るためにはMg++の添加
量は供給される炭酸ナトリウムに対し重量比で
Mg++/Na2CO3=0.01/100〜1/100好ましくは
0.02/100以上、更に好ましくは0.12/100以上で
あり、この添加によつてPCの結晶は針状形から
板状形へとその中間的な形を含めて変化し、スラ
リー状態、脱水性悪化の主因をなす結晶相互間の
絡みから解除される結果、スラリー状態および脱
水性が極めて改善される。しかし、公知のように
PCの安定性を実用上十分なものとするためには
安定剤としてケイ酸化合物の添加が必須であつて
この添加により安定性は向上されるものの上記の
Mg++により改質効果は著しく阻害される。その
ためケイ酸化合物の添加量は、Mg++の添加量に
関連して限定した範囲内で使用され、かつ生成す
るPCが実用上十分な安定性を有する量でなけれ
ばならない。この目的のためのケイ酸化合物供給
量は供給される炭酸ナトリウムに対し重量比で水
溶性Siとして、 Si/Na2CO3=0.02/100〜 0.5/100好ましくは、0.04/100〜0.2/100であ
り、かつMg++との間にモル比に於てSi/Mg++
2.5以下好ましくは2.0、更に好ましくは1.0以下で
ある必要がある。
In order to obtain a sufficient effect for modifying the crystals and improving the slurry state and dehydration properties, the amount of Mg ++ added must be adjusted in terms of weight ratio to the supplied sodium carbonate.
Mg ++ /Na 2 CO 3 = 0.01/100 to 1/100 preferably
The ratio is 0.02/100 or more, more preferably 0.12/100 or more, and this addition causes the PC crystals to change from a needle shape to a plate shape, including intermediate shapes, resulting in a slurry state and deterioration of dehydration properties. As a result of the disentanglement between crystals, which is the main cause of this, the slurry condition and dehydration properties are greatly improved. However, as is known
In order to make the stability of PC sufficient for practical use, it is essential to add a silicic acid compound as a stabilizer, and although this addition improves the stability, the above
The modification effect is significantly inhibited by Mg ++ . Therefore, the amount of the silicic acid compound added must be within a limited range in relation to the amount of Mg ++ added, and the amount must be such that the resulting PC has sufficient stability for practical use. The amount of silicate compound supplied for this purpose is as water-soluble Si in weight ratio to the supplied sodium carbonate, Si/Na 2 CO 3 = 0.02/100 to 0.5/100, preferably 0.04/100 to 0.2/100. , and the molar ratio of Si/Mg ++ to Mg ++ is
It needs to be 2.5 or less, preferably 2.0, more preferably 1.0 or less.

ケイ酸化合物としては、水ガラス、メタケイ酸
ナトリウムのような各種水溶性ケイ酸ナトリウム
あるいはケイ酸マグネシウム又はコロイド状シリ
カ等、公知の安定剤を用いて行うことが出来る
が、難あるいは不溶性ケイ酸化合物については添
加されるその大部分が実質的に不溶状態で母液中
に懸濁するのみであるから上記の数値は絶対量と
してではなく水溶状態分、あるいは実質的に母液
中で溶解する部分を対象として理解すべきであ
る。これらのケイ酸化合物は通常水溶液として反
応母液中あるいは循環される母液中に連続又は断
続的に供給される。炭酸ナトリウム、過酸化水
素、Mg++、ケイ酸化合物の反応容器中への供給
は母液中の各成分組成が、維持すべき範囲内にあ
るように調節されながら行われる。
As the silicate compound, known stabilizers such as water glass, various water-soluble sodium silicates such as sodium metasilicate, magnesium silicate, or colloidal silica can be used, but poorly or insoluble silicate compounds Since most of the added substances are suspended in the mother liquor in a substantially insoluble state, the above values do not refer to the absolute amount but to the portion in the water-soluble state or the part that is substantially dissolved in the mother liquor. It should be understood as These silicic acid compounds are usually fed continuously or intermittently as an aqueous solution into the reaction mother liquor or into the circulated mother liquor. Sodium carbonate, hydrogen peroxide, Mg ++ , and silicic acid compounds are fed into the reaction vessel while being controlled so that the composition of each component in the mother liquor is within the range to be maintained.

以上の方法によつて供給された炭酸ナトリウム
及び過酸化水素は母液中で反応し、PCとして晶
析成長して行くが、原料の供給速度が結晶の晶析
速度を上回つて行われる場合には過渡的に高過飽
和系が形成されるために結晶は、優性な針状結晶
となつて急激に析出し目的を達することが出来な
い。このため連続的あるいは断続的に供給される
炭酸ナトリウムの供給速度は、母液に対し重量比
で単位時間当り、Na2CO3/母液が50/100以下望
ましくは30/100以下で行うのが良く、また変性
改質された結晶について十分な晶析速度を得、過
度の過飽和系形成をさけるためには母液中に懸濁
する結晶が十分な表面積を有し、それらに対して
晶析量に相当した結晶成長が行われることが好ま
しい。この観点から母液中のPC存在量は、原則
として大きい方が有利となるが大きすぎる場合に
は結晶間の摩擦等による物理的刺激もまた増加す
る結果、針状結晶の発生を誘発させ易くなるた
め、その濃度は、200g/〜400g/に調節さ
れるようにスラリーを反応容器から抜き出すのが
好ましい。連続的な反応晶析に於て、絶えず安定
した粒度を有する結晶を得るためには、また一定
した新結晶該の生成が必要となるが、これは過飽
和度のみならず他の種々の要因によつて大きく影
響を受けるためそのコントロールは必ずしも容易
なものではない。そのため本発明を実施するに際
しては、過飽和度の影響を低減させ、結晶の粒度
や大きさをある程度広い範囲で操作コントロール
する目的から、微細なPCを種結晶として反応晶
析系に供給する、いわゆる接種の方法を行うこと
によつて結晶の粒度あるいは大きさのコントロー
ルをより確実に行わせることが出来る。
Sodium carbonate and hydrogen peroxide supplied by the above method react in the mother liquor and crystallize and grow as PC, but when the raw material supply rate exceeds the crystallization rate, Since a highly supersaturated system is transiently formed, the crystals become predominant needle-shaped crystals and precipitate rapidly, making it impossible to achieve the purpose. For this reason, the feed rate of sodium carbonate, which is continuously or intermittently fed, is preferably such that the weight ratio of Na 2 CO 3 /mother liquor is 50/100 or less, preferably 30/100 or less, per unit time. In addition, in order to obtain a sufficient crystallization rate for modified crystals and to avoid excessively supersaturated system formation, it is necessary to ensure that the crystals suspended in the mother liquor have a sufficient surface area and that the amount of crystallization is Preferably, corresponding crystal growth takes place. From this point of view, it is generally advantageous to have a large amount of PC in the mother liquor, but if it is too large, physical stimulation due to friction between crystals will also increase, making it easier to induce the formation of needle-like crystals. Therefore, it is preferable to draw out the slurry from the reaction vessel so that its concentration is adjusted to 200 g/~400 g/. In continuous reaction crystallization, in order to obtain crystals with a constantly stable particle size, it is necessary to constantly generate new crystals, but this depends not only on the degree of supersaturation but also on various other factors. Therefore, it is not always easy to control it because it is greatly affected. Therefore, when carrying out the present invention, for the purpose of reducing the influence of supersaturation degree and controlling the grain size and size of crystals over a somewhat wide range, it is necessary to supply fine PC as a seed crystal to the reaction crystallization system. By performing the inoculation method, the grain size or size of the crystals can be controlled more reliably.

この目的で用いる種結晶には、望ましくは板状
の結晶を乾式、あるいは湿式法など常法によつて
粉砕したものを、粉体のまま、もしくは循環母液
に懸濁させた状態で反応容器内に供給するか、あ
るいは反応スラリーの一部をそのまま湿式粉砕し
て反応容器内に循環させる方法で用いる。使用さ
れる種結晶量は目的とする結晶粒度等によつて特
に限定されるものではないが、大量の使用は製造
効率の低下をまねくため、一般には供給する炭酸
ナトリウムに対し重量比で2倍量以下、好ましく
は0.5倍量以下で行うのが望ましい。
The seed crystals used for this purpose are preferably plate-shaped crystals that have been pulverized by a conventional method such as a dry or wet method, and are placed in a reaction vessel as a powder or suspended in a circulating mother liquor. Alternatively, a portion of the reaction slurry may be wet-pulverized as it is and circulated within the reaction vessel. The amount of seed crystals used is not particularly limited depending on the desired crystal grain size, etc., but since using a large amount leads to a decrease in production efficiency, it is generally twice the weight ratio of the sodium carbonate to be supplied. It is desirable to use the amount less than 0.5 times the amount, preferably less than 0.5 times the amount.

原料の供給速度、反応容器内のスラリー液量、
スラリー濃度、スラリー抜出し速度などから求め
られる結晶の平均滞溜時間は、種々の条件を総合
したものとして重要であり、短かすぎる場合には
晶析に対する過度の過飽和系形成によつて結晶の
変性改質に悪影響が出るのみならず、特に炭酸ナ
トリウムの供給が固形状で行われる場合について
は、完全なる反応の進行が阻害される。この理由
から滞溜時間は長時間であることが理論的に望ま
しいのであるが、これは単位時間あるいは反応装
置容量当りの製造効率低下につながるため工業的
には有利ではなく、この意味での上限を有する。
本発明に於ては滞溜時間として20分〜4時間、好
ましくは40分以上で実施される。反応晶析が行わ
れる段階での液温度は、10℃〜40℃好ましくは15
℃〜30℃に保たれるように必要に応じて冷却が行
われるが、40℃を超える場合には著るしい過酸化
水素の損失を招くため好ましくない、一方低すぎ
る場合には、供給される炭酸ナトリウムが固形状
のものについて、原料の反応容器内での完全な溶
解が困難となり、反応が不十分のまま排出され
る。
Feed rate of raw materials, amount of slurry in the reaction vessel,
The average residence time of crystals determined from slurry concentration, slurry withdrawal speed, etc. is important as it combines various conditions, and if it is too short, crystal denaturation may occur due to the formation of an excessively supersaturated system for crystallization. This not only adversely affects the reforming process, but also prevents the complete reaction from proceeding, especially when sodium carbonate is fed in solid form. For this reason, it is theoretically desirable for the residence time to be long, but this is not advantageous from an industrial perspective as it leads to a decrease in production efficiency per unit time or reactor capacity, and in this sense there is an upper limit. has.
In the present invention, the residence time is 20 minutes to 4 hours, preferably 40 minutes or more. The liquid temperature at the stage of reaction crystallization is 10℃ to 40℃, preferably 15℃.
Cooling is performed as necessary to maintain the temperature between 30°C and 30°C, but temperatures exceeding 40°C are undesirable as they will result in significant hydrogen peroxide loss; If the sodium carbonate used is solid, it will be difficult to completely dissolve the raw material in the reaction vessel, and the reaction will be insufficient and it will be discharged.

このためこの段階での温度は必要十分な温度を
維持せねばならない。しかし、PCは高温側で高
溶解度を示すため必然的に高温側では、母液中の
過酸化水素濃度を高める事となり、単位母液量当
りの過酸化水素損失を大きくする。このような不
都合を避けるためには、反応温度は反応が完全に
行われる必要最低の温度にとどめ、望むならば、
反応後抜出されたスラリーを二次的に冷却して母
液中に溶解しているPCをさらに晶析させ、過酸
化水素濃度を低減させるなどの方法をとるのが有
利である。本方法によれば300ミクロン以下85〜
98%、150ミクロン以下45〜80%の微細な粉末状
結晶が容易に得られ、更には300ミクロン以下85
〜100%150ミクロン以下45〜85%の微細な粉末状
結晶を得ることが可能であり、造粒その他の原料
として好適なPCである 本方法を実施するに際しては、安定剤としてケ
イ酸化合物以外に公知の安定剤例えばピロリン酸
ナトリウム、トリポリリン酸ナトリウム等のリン
化合物類あるいはEDTA等の有機キレート剤を併
用してさらに安定性の向上をはかることも出来る
が、これらによる安定化効果は本質的には金属の
錯化封鎖に基くものであり、Mg++をも部分的に
封鎖しMg++による効果を低減させる。このため
本法に於てこれらを併用する場合には、その併用
量とMg++封鎖能力に応じてMg++の添加共存量を
増加させて実施することが望ましい。又、本方法
を実施するに際しては、ヘキサメタリン酸ナトリ
ウムやポリアクリル酸ナトリウム等のポリ電解質
のような公知の結晶改質剤を併用し得るが、特に
望まない限りに本方法於てはその添加を全く必要
としない。
Therefore, the temperature at this stage must be maintained at a necessary and sufficient temperature. However, since PC exhibits high solubility at high temperatures, the hydrogen peroxide concentration in the mother liquor inevitably increases at high temperatures, increasing hydrogen peroxide loss per unit volume of mother liquor. To avoid such inconveniences, the reaction temperature should be kept at the lowest temperature necessary for complete reaction, and if desired,
It is advantageous to secondarily cool the slurry extracted after the reaction to further crystallize the PC dissolved in the mother liquor, thereby reducing the hydrogen peroxide concentration. According to this method, less than 300 microns85~
Fine powder crystals of 98%, 45-80% below 150 microns are easily obtained, and even 85% below 300 microns.
It is possible to obtain fine powder crystals of ~100% and 45% to 85% below 150 microns, making it suitable as a raw material for granulation and other purposes.When carrying out this method, use other than silicic acid compounds as a stabilizer. Although it is possible to further improve the stability by using a known stabilizer such as phosphorus compounds such as sodium pyrophosphate or sodium tripolyphosphate or an organic chelating agent such as EDTA, the stabilizing effect of these is essentially is based on complex sequestration of metals, which also partially sequesters Mg ++ and reduces the effect of Mg ++ . Therefore, when these are used in combination in this method, it is desirable to increase the amount of Mg ++ added and coexisting in accordance with the combined amount and the Mg ++ sequestering ability. Furthermore, when carrying out this method, known crystal modifiers such as polyelectrolytes such as sodium hexametaphosphate and sodium polyacrylate may be used together, but unless specifically desired, their addition is not recommended in this method. Not needed at all.

以下に本発明を実施例により説明する。 The present invention will be explained below using examples.

比較例 1 炭酸ナトリウム13.9重量%、過酸化水素2.6重
量%、Si0.003重量%の組成を有する母液30を
直径40cmの反応容器に入れ直径22cmの撹拌羽によ
つて130r.p.mの速度で撹拌を行い、液温度を25
℃に維持しながら粒状無水炭酸ナトリウムを6.0
Kg/Hr、60重量%過酸化水素4.97Kg/Hr、3号
ケイ酸ナトリウムの20重量%水溶液を100g/Hr
の速度で反応容器内に連続的に供給した。反応開
始後25分にはスラリーの粘度が増加し、供給され
る炭酸ナトリウムが液面下に分散されず、液面上
で固化したためそれ以上の反応続行は不可能であ
つた。次いでこのスラリー(スラリー濃度111
g/)を容器から抜出し、1200Gで2分間遠心
脱水したところ、脱水ケーキの含水率は29.4%で
あり、得られたPCの粒径は300μ以下83.4重量
%、150μ以下70.2重量%であり、有効酸素含有
率は13.3重量%であり、不純物含有量はNa2CO3
が、12.4重量%であつた。なお、本法における
Mg++のNa2CO3供給量に対する添加量比
(Mg++/Na2CO3)は0重量%であり、水溶状Siの
Na2CO3供給量に対する添加量比(Si/Na2CO3
は0.045重量%であり、および母液中の過酸化水
素と炭酸ナトリウムとのモル比(H2O2
Na2CO3)は0.5〜0.8の範囲であつた。
Comparative Example 1 Mother liquor 30 having a composition of 13.9% by weight of sodium carbonate, 2.6% by weight of hydrogen peroxide, and 0.003% by weight of Si was placed in a reaction vessel with a diameter of 40 cm and stirred at a speed of 130 rpm using a stirring blade with a diameter of 22 cm. and set the liquid temperature to 25
Add granular anhydrous sodium carbonate while maintaining at 6.0 °C.
Kg/Hr, 60% hydrogen peroxide 4.97Kg/Hr, 100g/Hr of 20% aqueous solution of No. 3 sodium silicate
was continuously fed into the reaction vessel at a rate of . The viscosity of the slurry increased 25 minutes after the start of the reaction, and the supplied sodium carbonate was not dispersed below the liquid surface but solidified above the liquid surface, making it impossible to continue the reaction any further. Next, this slurry (slurry concentration 111
g/) was taken out from the container and centrifugally dehydrated at 1200G for 2 minutes, the moisture content of the dehydrated cake was 29.4%, and the particle size of the obtained PC was 83.4% by weight of 300μ or less, 70.2% by weight of 150μ or less, The effective oxygen content is 13.3% by weight, and the impurity content is Na 2 CO 3
was 12.4% by weight. In addition, in this law
The addition amount ratio of Mg ++ to the Na 2 CO 3 supply amount (Mg ++ /Na 2 CO 3 ) is 0% by weight, which is the same as that of water-soluble Si.
Addition ratio to Na 2 CO 3 supply amount (Si/Na 2 CO 3 )
is 0.045% by weight, and the molar ratio of hydrogen peroxide to sodium carbonate in the mother liquor (H 2 O 2 /
Na 2 CO 3 ) ranged from 0.5 to 0.8.

参考例 1 炭酸ナトリウム13.9重量%、過酸化水素2.6重
量%、Mg++0.007重量%、Si0.004重量%の組成を
有する母液を用い、さらに20.0重量%のMgSO4
溶液を122g/Hrの速度で連続的に供給した以外
は、比較例1と同一条件下で反応させた。反応1
時間後にスラリー(スラリー濃度241g/)を
抜出し、1200Gで2分間脱水行つたケーキの含水
率は14.8%であり、得られたPCの粒径は300μ以
下88.3重量%、150μ以下57.5重量%であり、有
効酸素含有率は13.9重量%であり、不純物含有量
はNa2CO3が、9.0重量%であつた。なお、本法に
おけるMg++のNa2CO3供給量に対する添加量比
(Mg++/Na2CO3)は0.082重量%であり、水溶状
SiのNa2CO3供給量に対する添加量比(Si/
Na2CO3)は0.045重量%であり、添加されるSiの
Mg++に対するモル比(Si/Mg++)は0.477であ
り、母液におけるMg++とSiのモル比(Mg++
Si)は0.4〜0.7の範囲であり、および母液中の過
酸化水素と炭酸ナトリウムとのモル比(H2O2
Na2CO3)は0.5〜0.8の範囲であつた。
Reference Example 1 Using a mother liquor having a composition of 13.9% by weight of sodium carbonate, 2.6% by weight of hydrogen peroxide, 0.007% by weight of Mg ++ , and 0.004% by weight of Si, a 20.0% by weight MgSO 4 aqueous solution was added at a rate of 122g/Hr. The reaction was carried out under the same conditions as in Comparative Example 1, except that it was continuously supplied. reaction 1
After an hour, the slurry (slurry concentration 241g/) was extracted and dehydrated at 1200G for 2 minutes.The moisture content of the cake was 14.8%, and the particle size of the obtained PC was 88.3% by weight below 300μ and 57.5% by weight below 150μ. The effective oxygen content was 13.9% by weight, and the impurity content was 9.0% by weight of Na 2 CO 3 . In addition, in this method, the addition amount ratio of Mg ++ to the Na 2 CO 3 supply amount (Mg ++ /Na 2 CO 3 ) is 0.082% by weight, and the water-soluble
Addition ratio of Si to Na 2 CO 3 supply (Si/
Na 2 CO 3 ) is 0.045% by weight, and the added Si
The molar ratio of Mg ++ to Si (Si/Mg ++ ) is 0.477, and the molar ratio of Mg ++ to Si in the mother liquor (Mg ++ /
Si) ranges from 0.4 to 0.7, and the molar ratio of hydrogen peroxide to sodium carbonate in the mother liquor (H 2 O 2 /
Na 2 CO 3 ) ranged from 0.5 to 0.8.

実施例 1 炭酸ナトリウム13.9重量%、過酸化水素2.6重
量%、Mg++0.013重量%、Si0.007重量%の組成を
有する母液を用い、さらに20.0重量%のMgSO4
溶液を234g/Hrの速度で連続的に供給した以外
は、比較例1と同一条件下で反応を行つた。反応
開始1時間後にスラリー(スラリー濃度243g/
)を抜出し、1200Gで2分間遠心脱水行つたケ
ーキの含水率は12.5%であり、得られたPCの粒
径は300μ以下97.4重量%、150μ以下80.7重量%
であり、有効酸素含有率は14.4重量%であり、不
純物含有量はNa2CO3が、5.6重量%であつた。な
お、本法におけるMg++のNa2CO3の供給量に対す
る添加量比(Mg++/Na2CO3)は0.158重量%であ
り、水溶状SiのNa2CO3供給量に対する添加量比
(Si/Na2CO3)は0.045重量%であり、添加される
SiのMg++に対するモル比(Si/Mg++)は0.248で
あり、母液におけるMg++とSiのモル比(Mg++
Si)は0.3〜0.5の範囲であり、および母液中の過
酸化水素と炭酸ナトリウムとのモル比(H2O2
Na2CO3)は0.5〜0.8の範囲であつた。
Example 1 Using a mother liquor having a composition of 13.9% by weight of sodium carbonate, 2.6% by weight of hydrogen peroxide, 0.013% by weight of Mg ++ , and 0.007% by weight of Si, a 20.0% by weight MgSO 4 aqueous solution was added at a rate of 234 g/Hr. The reaction was carried out under the same conditions as in Comparative Example 1, except that the water was continuously supplied. One hour after the start of the reaction, slurry (slurry concentration 243g/
) was extracted and subjected to centrifugal dehydration at 1200G for 2 minutes.The moisture content of the cake was 12.5%, and the particle size of the obtained PC was 97.4% by weight below 300μ, 80.7% by weight below 150μ.
The effective oxygen content was 14.4% by weight, and the impurity content was 5.6% by weight of Na 2 CO 3 . In addition, in this method, the addition amount ratio of Mg ++ to the Na 2 CO 3 supply amount (Mg ++ /Na 2 CO 3 ) is 0.158% by weight, and the addition amount to the Na 2 CO 3 supply amount of water-soluble Si is 0.158% by weight. The ratio (Si/Na 2 CO 3 ) is 0.045% by weight and is added
The molar ratio of Si to Mg ++ (Si/Mg ++ ) is 0.248, and the molar ratio of Mg ++ to Si in the mother liquor (Mg ++ /
Si) ranges from 0.3 to 0.5, and the molar ratio of hydrogen peroxide to sodium carbonate in the mother liquor (H 2 O 2 /
Na 2 CO 3 ) ranged from 0.5 to 0.8.

参考例 2 炭酸ナトリウム13.9重量%、過酸化水素2.6重
量%、Mg++0.005重量%の組成を有する母液30
を直径40cmの反応容器に入れ直径22cmの撹拌羽に
よつて100r.p.mの速度で撹拌を行い、液温度を
20℃に維持しながら粒状無水炭酸ナトリウム5.7
Kg/Hr、60重量%過酸化水素4.66Kg/Hr、20.0
重量%のMgSO4水溶液を150g/Hr、3号ケイ酸
ナトリウムの50重量%水溶液を110g/Hrの速度
で反応容器に連続的に、また、反応母液組成が炭
酸ナトリウムについて13.5〜15.0重量%、過酸化
水素について2.5〜3.5重量%となるように調節し
ながら供給し、反応容器内のスラリー濃度が250
g/を維持するようにスラリーを連続的に容器
から抜出し、遠心分離機で結晶濾過分離した後、
濾液は反応容器内に循環させる方法で連続的な反
応晶析を行つた。4時間後に於いて得られた脱水
後ケーキは含水率14.3%であり、乾燥後の結晶
は、300ミクロン以下95.2重量%、150ミクロン以
下68.7%であり、有効酸素含有率は14.6重量%で
あり、不純物含有量はNa2CO3が、4.3重量%であ
つた。なお、本法におけるMg++のNa2CO3供給量
に対する添加量比(Mg++/Na2CO3)は0.106重量
%であり、水溶状SiのNa2CO3供給量に対する添
加量比(Si/Na2CO3)は0.131重量%であり、添
加されるSiのMg++に対するモル比(Si/Mg++
は1.066であり、母液におけるMg++とSiのモル比
(Mg++/Si)は1.2〜9.7の範囲であり、および母
液中の過酸化水素と炭酸ナトリウムとのモル比
(H2O2/Na2CO3)は0.5〜0.8の範囲であつた。
Reference Example 2 Mother liquor 30 having a composition of 13.9% by weight of sodium carbonate, 2.6% by weight of hydrogen peroxide, and 0.005% by weight of Mg ++
was placed in a reaction vessel with a diameter of 40 cm and stirred at a speed of 100 rpm using a stirring blade with a diameter of 22 cm to maintain the liquid temperature.
Granular anhydrous sodium carbonate while maintaining at 20℃ 5.7
Kg/Hr, 60wt% hydrogen peroxide 4.66Kg/Hr, 20.0
% by weight of MgSO4 aqueous solution at a rate of 150 g/Hr, a 50% by weight aqueous solution of No. 3 sodium silicate into the reaction vessel at a rate of 110 g/Hr, and the reaction mother liquor composition was 13.5 to 15.0% by weight of sodium carbonate. Hydrogen peroxide is supplied while adjusting the concentration to be 2.5 to 3.5% by weight, until the slurry concentration in the reaction vessel is 250%.
The slurry was continuously extracted from the container so as to maintain g/g/, and the slurry was separated by crystal filtration using a centrifuge.
Continuous reaction crystallization was performed by circulating the filtrate within the reaction vessel. The dehydrated cake obtained after 4 hours had a moisture content of 14.3%, and the crystals after drying had a crystal size of 95.2% by weight below 300 microns, 68.7% below 150 microns, and an effective oxygen content of 14.6% by weight. The impurity content was 4.3% by weight of Na 2 CO 3 . In addition, in this method, the addition amount ratio of Mg ++ to the Na 2 CO 3 supply amount (Mg ++ /Na 2 CO 3 ) is 0.106% by weight, and the addition amount ratio of water-soluble Si to the Na 2 CO 3 supply amount is 0.106% by weight. (Si/Na 2 CO 3 ) is 0.131% by weight, and the molar ratio of added Si to Mg ++ (Si/Mg ++ )
is 1.066, the molar ratio of Mg ++ to Si in the mother liquor (Mg ++ /Si) ranges from 1.2 to 9.7, and the molar ratio of hydrogen peroxide to sodium carbonate in the mother liquor ( H2O2 / Na2CO3 ) ranged from 0.5 to 0.8 .

実施例 2 炭酸ナトリウム15.5重量%、過酸化水素2.4重
量%、Mg++0.013重量%の組成を有する母液を用
い、液温度を27℃に維持しながら粒状無水炭酸ナ
トリウム7.0Kg/Hr、60重量%過酸化水素5.84
Kg/Hr、20.0重量%のMgSO4水溶液222g/Hr、
3号ケイ酸ナトリウムの50重量%水溶液84g/
Hrの速度で反応容器に供給し、反応母液組成が
炭酸ナトリウムについて14.5〜16.0重量%、過酸
化水素について2.3〜3.3重量%、スラリー濃度が
320g/となるように維持した以外は、参考例
2と同様の連続反応に於て8時間後の脱水後ケー
キは含水率12.2%であり、乾燥後の結晶は300ミ
クロン以下91.7重量%、150ミクロン以下60.4%
であり、有効酸素含有率は14.7重量%であり、不
純物含有量はNa2CO3が、3.6重量%であつた。な
お、本法におけるMg++のNa2CO3供給量に対する
添加量比(Mg++/Na2CO3)は0.128重量%であ
り、水溶状SiのNa2CO3供給量に対する添加量比
(Si/Na2CO3)は0.081重量%であり、添加される
SiのMg++に対するモル比(Si/Mg++)は0.550で
あり、母液におけるMg++とSiのモル比(Mg++
Si)は0.4〜5.3の範囲であり、および母液中の過
酸化水素と炭酸ナトリウムとのモル比(H2O2
Na2CO3)は0.3〜0.7の範囲であつた。
Example 2 Using a mother liquor having a composition of 15.5% by weight of sodium carbonate, 2.4% by weight of hydrogen peroxide, and 0.013% by weight of Mg ++ , granular anhydrous sodium carbonate was added at 7.0Kg/Hr, 60% by weight while maintaining the liquid temperature at 27°C. % hydrogen peroxide 5.84
Kg/Hr, 20.0% by weight MgSO 4 aqueous solution 222g/Hr,
50% aqueous solution of No. 3 sodium silicate 84g/
The reaction mother liquor composition is 14.5-16.0 wt% for sodium carbonate, 2.3-3.3 wt% for hydrogen peroxide, and the slurry concentration is
In the same continuous reaction as in Reference Example 2, except that the amount was maintained at 320 g / 8 hours, the cake after dehydration had a water content of 12.2%, and the crystals after drying were 91.7% by weight of 300 microns or less, 150 Micron or less 60.4%
The effective oxygen content was 14.7% by weight, and the impurity content was 3.6% by weight of Na 2 CO 3 . In this method, the addition amount ratio of Mg ++ to the Na 2 CO 3 supply amount (Mg ++ /Na 2 CO 3 ) is 0.128% by weight, and the addition amount ratio of water-soluble Si to the Na 2 CO 3 supply amount is 0.128% by weight. (Si/Na 2 CO 3 ) is 0.081% by weight and added
The molar ratio of Si to Mg ++ (Si/Mg ++ ) is 0.550, and the molar ratio of Mg ++ to Si in the mother liquor (Mg ++ /
Si) ranges from 0.4 to 5.3, and the molar ratio of hydrogen peroxide to sodium carbonate in the mother liquor (H 2 O 2 /
Na 2 CO 3 ) ranged from 0.3 to 0.7.

実施例 3 種結晶として、反応後連続的に抜出され脱水さ
れた湿ケーキの一部を循環母液に1:1の割合で
再び懸濁させ湿式粉砕を行つて微細結晶とした
後、乾燥重量として供給される炭酸ナトリウムに
対し100:15の比率で連続的に反応容器内へ供給
した以外は、実施例2と同一条件下で連続反応を
行つた。6時間後の脱水後ケーキは含水率10.3%
であり、乾燥後の結晶は300ミクロン以下98.2
%、150ミクロン以下74.5%であり、有効酸素含
有率は14.7重量%であり、不純物含有量は
Na2CO3が、3.2重量%であつた。なお、本法にお
けるMg++のNa2CO3供給量に対する添加量比
(Mg++/Na2CO3)は0.128重量%であり、水溶状
SiのNa2CO3供給量に対する添加量比(Si/
Na2CO3)は0.081重量%であり、添加されるSiの
Mg++に対するモル比(Si/Mg++)は0.550であ
り、母液におけるMg++とSiのモル比(Mg++
Si)は0.4〜5.3の範囲であり、および母液中の過
酸化水素と炭酸ナトリウムとのモル比(H2O2
Na2CO3)は0.3〜0.7の範囲であつた。
Example 3 As a seed crystal, a part of the wet cake that was continuously extracted and dehydrated after the reaction was resuspended in the circulating mother liquor at a ratio of 1:1 and wet-pulverized to form fine crystals. A continuous reaction was carried out under the same conditions as in Example 2, except that sodium carbonate was continuously fed into the reaction vessel at a ratio of 100:15. After 6 hours of dehydration, the cake has a moisture content of 10.3%.
and the crystal size after drying is less than 300 microns98.2
%, less than 150 microns is 74.5%, the effective oxygen content is 14.7% by weight, and the impurity content is
Na 2 CO 3 was 3.2% by weight. In addition, in this method, the addition amount ratio of Mg ++ to the Na 2 CO 3 supply amount (Mg ++ /Na 2 CO 3 ) is 0.128% by weight, which indicates that the water-soluble
Addition ratio of Si to Na 2 CO 3 supply (Si/
Na 2 CO 3 ) is 0.081% by weight, and the amount of Si added is 0.081% by weight.
The molar ratio to Mg ++ (Si/Mg ++ ) is 0.550, and the molar ratio of Mg ++ to Si in the mother liquor (Mg ++ /
Si) ranges from 0.4 to 5.3, and the molar ratio of hydrogen peroxide to sodium carbonate in the mother liquor (H 2 O 2 /
Na 2 CO 3 ) ranged from 0.3 to 0.7.

Claims (1)

【特許請求の範囲】 1 固体状炭酸ナトリウムと過酸化水素とを連続
的或は断続的に水性母液に供給し、これらを下記
の条件下において反応、晶析せしめた後、生成し
た炭酸ナトリウム過酸化水素付加物をろ過分離し
て、微細な結晶を得ることを特徴とする微細な炭
酸ナトリウム過酸化水素付加物の製法。 母液組成は、炭酸ナトリウム濃度について7
〜20重量%、過酸化水素濃度について1.5〜6
重量%、Mg++濃度について0.001〜0.5重量
%、Si濃度について0.003〜0.1重量%であり、
かつMg++に対するSiのモル比は12以下に、お
よび炭酸ナトリウムに対する過酸化水素のモル
比は1.3以下に維持する。 Mg++を、供給する炭酸ナトリウムに対し重量
比でMg++/Na2CO3=0.12/100〜1/100の割
合で添加する。 ケイ酸塩あるいはケイ酸を安定剤として、供
給する炭酸ナトリウムに対し重量比で水溶状Si
として0.02/100〜0.5/100の割合で添加し、
かつ、添加されるMg++に対するモル比が2.0以
下である。 2 生成する炭酸ナトリウム過酸化水素付加物の
粒径が300μ以下85〜100%、150μ以下45〜85%
である特許請求の範囲第1項記載の製法。 3 反応、晶析を行うに際し、微細な炭酸ナトリ
ウム過酸化水素付加物を、供給する炭酸ナトリウ
ムに対し重量比で1/2以下の割合で供給接種す
ることを特徴とする特許請求の範囲第1項記載の
製法。 4 生成する炭酸ナトリウム過酸化水素付加物を
母液よりろ過分離した後、ろ液は再循環させるこ
とを特徴とする特許請求の範囲第1項記載の製
法。
[Claims] 1. Solid sodium carbonate and hydrogen peroxide are continuously or intermittently supplied to an aqueous mother liquor, and after reacting and crystallizing them under the following conditions, the produced sodium carbonate peroxide is A method for producing a fine sodium carbonate hydrogen peroxide adduct, which is characterized by separating the hydrogen oxide adduct by filtration to obtain fine crystals. Mother liquor composition is 7 for sodium carbonate concentration.
~20% by weight, 1.5-6 for hydrogen peroxide concentration
wt%, 0.001-0.5 wt% for Mg ++ concentration, 0.003-0.1 wt% for Si concentration,
and the molar ratio of Si to Mg ++ is maintained below 12, and the molar ratio of hydrogen peroxide to sodium carbonate is maintained below 1.3. Mg ++ is added at a weight ratio of Mg ++ / Na2CO3 =0.12/100 to 1/100 to the sodium carbonate to be supplied. Using silicate or silicic acid as a stabilizer, water-soluble Si is added in weight ratio to sodium carbonate to be supplied.
Add at a ratio of 0.02/100 to 0.5/100 as
In addition, the molar ratio to added Mg ++ is 2.0 or less. 2 The particle size of the sodium carbonate hydrogen peroxide adduct produced is 300μ or less 85-100%, 150μ or less 45-85%
The manufacturing method according to claim 1. 3. When carrying out the reaction and crystallization, a fine sodium carbonate hydrogen peroxide adduct is supplied and inoculated at a weight ratio of 1/2 or less to the sodium carbonate to be supplied. Manufacturing method described in section. 4. The production method according to claim 1, characterized in that after the produced sodium carbonate hydrogen peroxide adduct is filtered and separated from the mother liquor, the filtrate is recycled.
JP9143082A 1982-05-31 1982-05-31 Manufacture of fine adduct of hydrogen peroxide to sodium carbonate Granted JPS58208105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9143082A JPS58208105A (en) 1982-05-31 1982-05-31 Manufacture of fine adduct of hydrogen peroxide to sodium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9143082A JPS58208105A (en) 1982-05-31 1982-05-31 Manufacture of fine adduct of hydrogen peroxide to sodium carbonate

Publications (2)

Publication Number Publication Date
JPS58208105A JPS58208105A (en) 1983-12-03
JPS6236962B2 true JPS6236962B2 (en) 1987-08-10

Family

ID=14026150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9143082A Granted JPS58208105A (en) 1982-05-31 1982-05-31 Manufacture of fine adduct of hydrogen peroxide to sodium carbonate

Country Status (1)

Country Link
JP (1) JPS58208105A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496430A1 (en) * 1991-01-25 1992-07-29 Central Glass Company, Limited Continuous process for preparing sodium percarbonate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717409A (en) * 1980-07-04 1982-01-29 Kao Corp Hollow granular percarbonate and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717409A (en) * 1980-07-04 1982-01-29 Kao Corp Hollow granular percarbonate and its manufacture

Also Published As

Publication number Publication date
JPS58208105A (en) 1983-12-03

Similar Documents

Publication Publication Date Title
US4146571A (en) Preparation of sodium percarbonate
JPH08175809A (en) Preparation of peroxy acid salt particle
JP2001500097A (en) Method for producing percarbonate
CN108285427A (en) A kind of method of phosphoric acid by wet process round-robin method continuous production big particle industrial grade urea phosphate
JP2005194153A (en) Method of manufacturing ammonium sulfate crystal
KR100337012B1 (en) Potassium bicarbonate macrocrystal and its manufacturing method
JP3304131B2 (en) How to dehydrate quartz powder
JPS6236962B2 (en)
US4997637A (en) Digestive crystallizing process and apparatus for purification of KC1
US4019872A (en) Producing sodium carbonate monohydrate from carbonate solution including addition of aluminum ions
JPS6236963B2 (en)
JPS59164602A (en) Continuous manufacture of calcium hypochlorite
US4504457A (en) Continuous process for producing granular calcium hypochlorite particles
US3886153A (en) Purification of cyanuric acid
US5215730A (en) Production of sodium perborate crystals having improved abrasion resistance
CN110451513A (en) A kind of method that the crystallization of phosphoric acid by wet process successive reaction prepares big particle industrial grade urea phosphate product
US3347623A (en) Preparation of potassium bicarbonate
WO1992019537A1 (en) Method for the control of sodium oxalate levels in sodium aluminate solutions
JPH0624714A (en) Production of sodium percarbonate
US4332778A (en) Non-evaporative process for the production of aluminum sulfate
JPH0361605B2 (en)
JPS61197409A (en) Manufacture of high purity solution of alkali metal hydrosulfite
JPS586681B2 (en) Method for producing sodium hypochlorite pentahydrate
US20190367360A1 (en) Sodium hypochlorite pentahydrate crystal grains having high bulk density and method for producing same
JPS6230607A (en) Phosphoric acid crystallization