JPS6236963B2 - - Google Patents
Info
- Publication number
- JPS6236963B2 JPS6236963B2 JP10064382A JP10064382A JPS6236963B2 JP S6236963 B2 JPS6236963 B2 JP S6236963B2 JP 10064382 A JP10064382 A JP 10064382A JP 10064382 A JP10064382 A JP 10064382A JP S6236963 B2 JPS6236963 B2 JP S6236963B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- sodium carbonate
- hydrogen peroxide
- mother liquor
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 94
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 82
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 45
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 42
- 238000006243 chemical reaction Methods 0.000 claims description 42
- 239000012452 mother liquor Substances 0.000 claims description 42
- 235000017550 sodium carbonate Nutrition 0.000 claims description 41
- 239000013078 crystal Substances 0.000 claims description 39
- 239000011780 sodium chloride Substances 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 239000007864 aqueous solution Substances 0.000 claims description 14
- 238000002425 crystallisation Methods 0.000 claims description 12
- 230000008025 crystallization Effects 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 7
- 239000003381 stabilizer Substances 0.000 claims description 7
- GEMCGUOJDLYZJY-UHFFFAOYSA-N carbonic acid;hydrogen peroxide;sodium Chemical compound [Na].OO.OC(O)=O GEMCGUOJDLYZJY-UHFFFAOYSA-N 0.000 claims description 5
- 239000000706 filtrate Substances 0.000 claims description 5
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims 1
- 239000011777 magnesium Substances 0.000 description 52
- 239000011734 sodium Substances 0.000 description 27
- 238000000034 method Methods 0.000 description 23
- 239000002002 slurry Substances 0.000 description 20
- -1 silicate compound Chemical class 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000004115 Sodium Silicate Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229910052911 sodium silicate Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 229920000867 polyelectrolyte Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000011361 granulated particle Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 150000002681 magnesium compounds Chemical group 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000012066 reaction slurry Substances 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 235000019351 sodium silicates Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Description
【発明の詳細な説明】
本発明は、微細な炭酸ナトリウム過酸化水素付
加物(2Na2CO3・3H2O2以下PCと称す。)の製造
方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fine sodium carbonate hydrogen peroxide adduct (2Na 2 CO 3 .3H 2 O 2 hereinafter referred to as PC).
酸素系漂白剤として近年重要性を増しつつある
PCは、通常取扱いの容易な粒状品として製造さ
れる。この粒状形態を与える方法の一つとして粉
末状結晶を造粒する方法があり、造粒原料として
はなるべく微細な粉末状PCを用いるのが望まし
い。炭酸ナトリウム溶液あるいは炭酸ナトリウム
懸濁液と過酸化水素水溶液との反応によりPCを
製造する方法は公知であるが、単にこの反応を行
つて微細な粉末状PCを得ようとした場合、結晶
は微細な針状形として晶析し、結晶懸濁スラリー
の粘性を増加させる結果、原料として母液中に供
給される過酸化水素水溶液および炭酸ナトリウム
あるいはその水溶液は反応母液中への速やかな分
散が阻害され、局部的な濃度上昇がもたらされる
ために一層の液状悪化が起り、晶析した結晶を全
量濾過分離し、その後再び反応を行うといつたバ
ツチ式の製造を行わねばならず、製造効率が非常
に悪いといつた工業的に重大な問題が存在するの
みならず、このような状態で得られる結晶は脱水
性が悪く、分離されるケーキは極めて大きな含水
率を有する欠点があり工業的実施が難しい。この
ため既知の方法はもつぱらポリリン酸塩あるいは
ポリアクリル酸塩のようなポリ電解質を用い、結
晶の粒子化あるいは粗大化を行い製造操作性を向
上させるとともに、流動性、抗摩耗性良好なPC
を得る方法を提供することに努められ、微細な結
晶の生成は濾過性その他に支障を与えるものとし
て忌避されて来た。しかしながら、そのように粗
大化したPCは、本来造粒等の目的に適したもの
ではなく、さらに造粒を行つても造粒粒子が本来
有するべき高溶解速度、高分散性といつた特性が
十分に発揮されない。これらの理由から既知の方
法は微細な粉末状PCの工業的製法としては、不
適当なものであり利用することが出来ない。 It has become increasingly important as an oxygen bleach in recent years.
PC is usually manufactured as a granular product that is easy to handle. One method for providing this granular form is to granulate powdered crystals, and it is desirable to use as fine a powdered PC as possible as the granulation raw material. A method for producing PC by reacting a sodium carbonate solution or a sodium carbonate suspension with an aqueous hydrogen peroxide solution is known, but if one attempts to obtain fine powdered PC by simply carrying out this reaction, the crystals will be fine. As a result, the hydrogen peroxide aqueous solution and sodium carbonate or its aqueous solution supplied to the mother liquor as raw materials are prevented from quickly dispersing into the reaction mother liquor. However, as a result of the local concentration increase, the liquid quality deteriorates further, and batch-type production is required, in which all of the crystallized crystals are separated by filtration, and then the reaction is carried out again, resulting in extremely low production efficiency. Not only are there serious industrial problems such as poor water quality, but the crystals obtained under these conditions have poor dehydration properties, and the separated cake has an extremely high moisture content, making it difficult to carry out industrially. difficult. For this reason, known methods mainly use polyelectrolytes such as polyphosphates or polyacrylates to make the crystals finer or coarser, improving manufacturing operability, and producing PC with good fluidity and wear resistance.
However, the formation of fine crystals has been avoided as it impedes filterability and other problems. However, such coarsened PC is not originally suitable for purposes such as granulation, and even if granulated, the properties such as high dissolution rate and high dispersibility that granulated particles should originally have will not be achieved. Not fully demonstrated. For these reasons, the known methods are unsuitable and cannot be used as industrial methods for producing fine powdered PC.
そのため本発明者らは微細なPCを良好な製造
操作性のもとに製造し得る方法に関し、鋭意研究
の結果、目的とするPCをスラリー状態および脱
水性良好な状態で工業的に容易に実施し得る方法
を見い出し完成するに至つた。 Therefore, the present inventors have conducted intensive research into a method for manufacturing fine PC with good manufacturing operability, and have found that the desired PC can be easily produced industrially in a slurry state and in a state with good dehydration properties. I found a way to do this and completed it.
即ち、本発明は塩化ナトリウム、炭酸ナトリウ
ムおよび過酸化水素を含有する特定組成の母液中
に於て、炭酸ナトリウムと過酸化水素とを連続或
は断続的に供給反応させPCを晶析させる際に、
特定量のMg++を添加共存させること、さらには
過酸化水素安定剤としてこの系に添加されるケイ
酸化合物の添加共存量をMg++に対し限定的に使
用することによつて晶析する結晶を変性改質し、
製造操作性良好な状態で連続式あるいは回分式に
微細なPCを製造させる方法に関するものであ
る。 That is, the present invention provides a method for crystallizing PC by continuously or intermittently supplying and reacting sodium carbonate and hydrogen peroxide in a mother liquor having a specific composition containing sodium chloride, sodium carbonate, and hydrogen peroxide. ,
Crystallization is achieved by adding and coexisting a specific amount of Mg ++ , and by using a limited amount of a silicate compound added to this system as a hydrogen peroxide stabilizer relative to Mg ++ . The crystals are denatured and modified,
This invention relates to a method for manufacturing fine PC in a continuous or batch manner with good manufacturing operability.
従来、Mg++はPCの安定剤として加えられるケ
イ酸化合物と併用することによつて、よりその安
定性を改善する安定剤として使用され、一般的に
この目的で添加されている。しかし、例へば、特
開昭52−117897号によればMg++は粒子の堅さを
増大させる目的で、特開昭53−146996号では粒子
の自由流動性と抗摩耗性を向上させる目的でも使
用されている。しかしながら、これらは他の強力
な改質剤との併用によつて行われる方法であり、
その使用目的、方法、そして得られるPCの形態
ともに本発明と大きく異なるものである。 Conventionally, Mg ++ has been used as a stabilizer to further improve the stability of PC by being used in combination with a silicic acid compound added as a stabilizer for PC, and is generally added for this purpose. However, for example, according to JP-A-52-117897, Mg ++ is used for the purpose of increasing the hardness of the particles, and in JP-A-53-146996, it is also used for the purpose of improving the free flow properties and anti-wear properties of the particles. It is used. However, these methods are performed in combination with other strong modifiers,
The purpose of use, the method, and the form of the obtained PC are all significantly different from the present invention.
Mg++の添加共存は実施例2〜3に見るように
結晶の脱水性、スラリー状態の改質に十分な作用
を有することが見い出されたが、それのみを改質
剤として実用上の利用価値を持つて使用するため
には、特定の条件を満さなければならないことも
また見い出された。即ちPCの貯蔵中の安定性を
十分なものとし、また製造中の過酸化水素の分解
損失を避けるためには、ケイ酸化合物の共存が必
須であり、Mg++のみではこの目的を達すること
は出来ない。このため反応系にはケイ酸化合物の
添加共存をよぎなくされるが、この添加共存によ
つてMg++はその結晶変性、改質の効果を著るし
く阻害され、その量的な関係によつては全くその
効果の発現が期待できなくなるのである。このよ
うな不都合を回避し、微細な粉末状PCを工業的
価値を持つて製造するためには、この両者間さら
には他の反応晶析条件との間に特定の関係を満足
する必要がある。 As shown in Examples 2 and 3, the addition and coexistence of Mg ++ was found to have a sufficient effect on dehydration of crystals and modification of slurry state, but it is not practical to use it alone as a modifier. It has also been found that in order to have value and use, certain conditions must be met. That is, in order to ensure sufficient stability during storage of PC and to avoid decomposition loss of hydrogen peroxide during production, the coexistence of a silicate compound is essential, and Mg ++ alone cannot achieve this purpose. I can't. For this reason, the reaction system is forced to coexist with the addition of silicic acid compounds, but this addition and coexistence significantly inhibits the crystal modification and modification effects of Mg ++ , and the quantitative relationship changes. In the end, it is no longer possible to expect the effect to appear at all. In order to avoid such inconveniences and produce fine powder PC with industrial value, it is necessary to satisfy a specific relationship between the two and other reaction crystallization conditions. .
本発明によれば、管理された組成を有する母液
中に固体炭酸ナトリウムもしくはその水溶液と過
酸化水素水溶液とを連続あるいは断続的に供給
し、反応容器内で撹拌を行いつつ反応、さらには
目的とするPCを晶析させ、これを連続的、ある
いは断続的、あるいは全量を抜出すバツチ式的な
方法で容器内から抜出し、常法に従つて固液分離
を行い、濾液を直ちに、あるいは組成を調整した
後、容器内に再循環させる方法に於て、母液組成
は炭酸ナトリウム濃度について、2〜16重量%、
過酸化水素濃度ついて0.5〜5重量%、塩化ナト
リウム濃度ついては、5.0〜25重量%、好ましく
は22重量%以下であり、炭酸ナトリウムに対する
過酸化水素のモル比は、供給される炭酸ナトリウ
ムが水溶液状態である場合には特に限定されない
が、固形状である場合には1.3〜0.2、好ましくは
0.9以下に管理する。モル比に於て、上限を上回
る場合には粒子状粗大PCの部分的な形成が行わ
れ望ましくない。Mg++濃度については0.001〜
0.5重量%、望ましくは0.002重量%以上であり、
水溶状Si濃度は0.003〜0.1重量%でありかつMg++
に対するSiのモル比が12以下好ましくは8以下と
なるように維持させる。供給される炭酸ナトリウ
ムの形態は水溶状あるいは粒状、粉末状の固形無
水、含水炭酸ナトリウムのいずれでも実施し得る
が、水溶液の場合には粗大な粒子状PCの生成し
にくい利点を有する反面、母液の過剰増加が起る
ため母液の循環使用に際して濃縮または一部廃棄
を行わねばならず、特に望まない限りは固形無水
炭酸ナトリウムを用いるのが有利であり、供給さ
れる過酸化水素濃度についても母液量変動を起さ
ないように選定して使用することが必要となる。
一般的には40重量%ないし80重量%の過酸化水素
水溶液を用いるのが望ましい。 According to the present invention, solid sodium carbonate or an aqueous solution thereof and an aqueous hydrogen peroxide solution are continuously or intermittently supplied into a mother liquor having a controlled composition, and the reaction is carried out while stirring in a reaction vessel, and furthermore, the desired reaction is carried out. PC is crystallized, extracted from the container continuously, intermittently, or in a batch method in which the entire amount is extracted, solid-liquid separation is performed according to a conventional method, and the filtrate is collected immediately or with its composition. After adjustment, in the method of recirculating into the container, the mother liquor composition has a sodium carbonate concentration of 2 to 16% by weight,
The hydrogen peroxide concentration is 0.5 to 5% by weight, the sodium chloride concentration is 5.0 to 25% by weight, preferably 22% by weight or less, and the molar ratio of hydrogen peroxide to sodium carbonate is such that the supplied sodium carbonate is in an aqueous state. It is not particularly limited if it is, but if it is solid, it is 1.3 to 0.2, preferably
Manage to below 0.9. If the molar ratio exceeds the upper limit, particulate coarse PC will be partially formed, which is not desirable. 0.001~ for Mg ++ concentration
0.5% by weight, preferably 0.002% by weight or more,
The water-soluble Si concentration is 0.003-0.1% by weight and Mg ++
The molar ratio of Si to Si is maintained at 12 or less, preferably 8 or less. The form of sodium carbonate to be supplied can be in the form of an aqueous solution, granules, solid anhydrous powder, or hydrated sodium carbonate, but while an aqueous solution has the advantage of being less likely to produce coarse particulate PC, Since an excessive increase in hydrogen peroxide occurs, the mother liquor must be concentrated or partially discarded when it is recycled.It is advantageous to use solid anhydrous sodium carbonate unless otherwise desired, and the concentration of hydrogen peroxide supplied must be It is necessary to select and use so as not to cause fluctuations in quantity.
Generally, it is desirable to use a 40% to 80% by weight aqueous hydrogen peroxide solution.
また、本発明にとつて塩化ナトリウムを反応、
晶析系に添加共存させることは、重要な要件とな
る。それは、工業的なPCの製造は、通常、大過
剰の母液の存在下で行われるため、母液中に溶存
するPCの絶対量は大きく、生産時のそれらの分
解損失は工業的に極めて大きな不利益をもたらす
が、この際塩化ナトリウムを共存させることによ
つてPCの母液中の濃度は低下し、反応時或はろ
過された母液が再循環して使用される間に無効に
分解して失われる過酸化水素成分の損失絶対量は
大きく低減され、高価な過酸化水素使用量を減少
させることができ、工業的に有利な系を作ること
が出来るためであり、本発明に於て、塩化ナトリ
ウム濃度は5.0〜25重量%、好ましくは22重量%
以下である。Mg++の供給は実質的にMg++を与
え、かつ過酸化水素の分解に対し不活性なマグネ
シウム化合物であれば、特にその種類は限定され
ないが、一般的には硫酸マグネシウム、塩化マグ
ネシウムのような水溶性マグネシウム塩を水溶液
もしくは過酸化水素水溶液に溶解し、反応母液中
へ連続あるいは断続的に添加される。 In addition, for the present invention, reacting sodium chloride,
Adding and coexisting in the crystallization system is an important requirement. This is because industrial PC production is usually carried out in the presence of a large excess of mother liquor, so the absolute amount of PC dissolved in the mother liquor is large, and the decomposition loss during production is an extremely large waste for industrial use. However, by coexisting sodium chloride, the concentration of PC in the mother liquor decreases, and it is ineffectively decomposed and lost during the reaction or when the filtered mother liquor is recycled and used. This is because the absolute loss of the hydrogen peroxide component caused by chlorination is greatly reduced, the amount of expensive hydrogen peroxide used can be reduced, and an industrially advantageous system can be created. Sodium concentration is 5.0-25% by weight, preferably 22% by weight
It is as follows. The supply of Mg ++ is not particularly limited as long as it is a magnesium compound that substantially provides Mg ++ and is inactive against the decomposition of hydrogen peroxide, but generally magnesium sulfate, magnesium chloride, etc. Such a water-soluble magnesium salt is dissolved in an aqueous solution or an aqueous hydrogen peroxide solution and added continuously or intermittently to the reaction mother liquor.
結晶を変性改質し、スラリー状態、脱水性改善
のための十分な効果を得るためにはMg++の添加
量は供給される炭酸ナトリウムに対し重量比で
Mg++/Na2CO3=0.01/100〜1/100好ましくは
0.02/100以上であり、この添加によつてPCの結
晶は針状形から板状形へとその中間的な形を含め
て変化し、スラリー状態、増水性悪化の主因をな
す結晶相互間の絡みから解除される結果、スラリ
ー状態および脱水性が極めて改善される。しか
し、公知のようにPCの安定性を実用上十分なも
のとするためには、安定剤としてケイ酸化合物の
添加が必須であつてこの添加により安定性は向上
されるものの上記のMg++による改質効果は著し
く阻害される。そのためケイ酸化合物の添加量
は、Mg++の添加量に関連して限定した範囲内で
使用され、かつ生成するPCが実用上十分な安定
性を有する量でなければならない。この目的のた
めのケイ酸化合物供給量は供給される炭酸ナトリ
ウムに対し重量比で、水溶性Siとして、Si/
Na2CO3=0.02/100〜0.5/100好ましくは、
0.04/100〜0.2/100であり、かつMg++との間に
モル比に於てSi/Mg++が2.5以下好ましくは1.0以
下である必要がある。 In order to obtain a sufficient effect for modifying the crystals and improving the slurry state and dehydration properties, the amount of Mg ++ added must be adjusted in terms of weight ratio to the supplied sodium carbonate.
Mg ++ /Na 2 CO 3 = 0.01/100 to 1/100 preferably
0.02/100 or more, and this addition causes the PC crystals to change from a needle-like shape to a plate-like shape, including intermediate shapes, and the crystals between crystals are the main cause of the slurry state and deterioration of water increase. As a result of the disentangling, the slurry condition and dewatering properties are greatly improved. However, as is well known, in order to make the stability of PC sufficient for practical use, it is essential to add a silicate compound as a stabilizer, and although the stability is improved by this addition, the above-mentioned Mg ++ The modification effect is significantly inhibited. Therefore, the amount of the silicic acid compound added must be within a limited range in relation to the amount of Mg ++ added, and the amount must be such that the produced PC has sufficient stability for practical use. The amount of silicic acid compound supplied for this purpose is expressed as water-soluble Si/Si/
Na 2 CO 3 = 0.02/100 to 0.5/100 preferably,
0.04/100 to 0.2/100, and the molar ratio of Si/Mg ++ to Mg ++ must be 2.5 or less, preferably 1.0 or less.
ケイ酸化合物としては水ガラス、メタケイ酸ナ
トリウムのような各種水溶性ケイ酸ナトリウムあ
るいはケイ酸マグネシウム又はコロイド状シリカ
等、公知の安定剤を用いて行うことが出来るが、
難あるいは不溶性ケイ酸化合物については添加さ
れるその大部分が実質的に不溶状態で母液中に懸
濁するのみであるから上記の数値は絶対量として
ではなく水溶状態分、あるいは実質的に母液中で
溶解する部分を対象として理解すべきである。こ
れらのケイ酸化合物は通常水溶液として反応母液
中あるいは循環される母液中に連続又は断続的に
供給される。 As the silicate compound, known stabilizers such as water glass, various water-soluble sodium silicates such as sodium metasilicate, magnesium silicate, or colloidal silica can be used.
For difficult or insoluble silicic acid compounds, most of the added silicic acid compounds are suspended in the mother liquor in a substantially insoluble state, so the above values are not absolute amounts, but are based on the amount dissolved in water or substantially in the mother liquor. It should be understood that the part that dissolves in These silicic acid compounds are usually fed continuously or intermittently as an aqueous solution into the reaction mother liquor or into the circulated mother liquor.
炭酸ナトリウム、過酸化水素、塩化ナトリウ
ム、Mg++、ケイ酸化合物の反応容器中への供給
は母液中の各成分組成が、維持すべき範囲内にあ
るように調節されながら行われる。 Sodium carbonate, hydrogen peroxide, sodium chloride, Mg ++ , and a silicate compound are fed into the reaction vessel while adjusting the composition of each component in the mother liquor to be within the range to be maintained.
以上の方法によつて供給された炭酸ナトリウム
及び過酸化水素は、母液中で反応し、PCとして
晶析成長して行くが、原料の供給速度が結晶の晶
析速度を上回つて行われる場合には過渡的に高過
飽和系が形成されるために結晶は、優性な針状結
晶となつて急激に析出し目的を達することが出来
ない。このため連続的あるいは断続的に供給され
る炭酸ナトリウムの供給速度は、母液に対し重量
比で単位時間当り、Na2CO3/母液が50/100以下
望ましくは30/100以下で行うのが良く、また変
性改質された結晶について十分な晶析速度を得、
過度の過飽和系形成をさけるためには母液中に懸
濁する結晶が十分な表面積を有し、それらに対し
て晶析量に相当した結晶成長が行われることが好
ましい。この観点から母液中のPC存在量は、原
則として大きい方が有利となるが大きすぎる場合
には結晶間の摩擦等による物理的刺激もまた増加
する結果、針状結晶の発生を誘発させ易くなるた
め、その濃度は、200g/〜400g/に調節さ
れるようにスラリーを反応容器から抜き出すのが
好ましい。連続的な反応晶析に於て、絶えず安定
した粒度を有する結晶を得るためには、また一定
した新結晶核の生成が必要となるが、これは過飽
和度のみならず他の種々の要因によつて大きく影
響を受けるためそのコントロールは必ずしも容易
なものではない。そのため本発明を実施するに際
しては、過飽和度の影響を低減させ、結晶の粒度
や大きさをある程度広い範囲で操作コントロール
する目的から、微細なPCを種結晶として反応晶
析系に供給する、いわゆる接種の方法を行うこと
によつて結晶の粒度あるいは大きさのコントロー
ルをより確実に行わせることが出来る。 Sodium carbonate and hydrogen peroxide supplied by the above method react in the mother liquor and crystallize and grow as PC, but if the supply rate of raw materials exceeds the crystallization rate of crystals, Since a highly supersaturated system is transiently formed, the crystals rapidly precipitate into dominant needle-like crystals, making it impossible to achieve the purpose. For this reason, the feed rate of sodium carbonate, which is continuously or intermittently fed, is preferably such that the weight ratio of Na 2 CO 3 /mother liquor is 50/100 or less, preferably 30/100 or less, per unit time. , and obtained a sufficient crystallization rate for modified crystals,
In order to avoid the formation of an excessively supersaturated system, it is preferable that the crystals suspended in the mother liquor have a sufficient surface area and that the crystals are grown in an amount corresponding to the amount of crystallization. From this point of view, it is generally advantageous to have a large amount of PC in the mother liquor, but if it is too large, physical stimulation due to friction between crystals will also increase, making it easier to induce the formation of needle-like crystals. Therefore, it is preferable to draw out the slurry from the reaction vessel so that its concentration is adjusted to 200 g/~400 g/. In continuous reaction crystallization, in order to obtain crystals with a constantly stable particle size, it is necessary to constantly generate new crystal nuclei, but this depends not only on the degree of supersaturation but also on various other factors. Therefore, it is not always easy to control it because it is greatly affected. Therefore, when carrying out the present invention, for the purpose of reducing the influence of supersaturation degree and controlling the grain size and size of crystals over a somewhat wide range, it is necessary to supply fine PC as a seed crystal to the reaction crystallization system. By performing the inoculation method, the grain size or size of the crystals can be controlled more reliably.
この目的で用いる種結晶には、望ましくは板状
の結晶を乾式、あるいは湿式法など常法によつて
粉砕したものを、粉体のまま、もしくは循環母液
に懸濁させた状態で反応容器内に供給するか、あ
るいは反応スラリーの一部をそのまま湿式粉砕し
て反応容器内に循環させる方法で用いる。使用さ
れる種結晶量は目的とする結晶粒度等によつて特
に限定されるものではないが、大量の使用は製造
効率の低下をまねくため、一般には供給する炭酸
ナトリウムに対し重量比で2倍量以下、好ましく
は0.5倍量以下で行うのが望ましい。 The seed crystals used for this purpose are preferably plate-shaped crystals that have been pulverized by a conventional method such as a dry or wet method, and are placed in a reaction vessel as a powder or suspended in a circulating mother liquor. Alternatively, a portion of the reaction slurry may be wet-pulverized as it is and circulated within the reaction vessel. The amount of seed crystals used is not particularly limited depending on the desired crystal grain size, etc., but since using a large amount leads to a decrease in production efficiency, it is generally twice the weight ratio of the sodium carbonate to be supplied. It is desirable to use the amount less than 0.5 times the amount, preferably less than 0.5 times the amount.
原料の供給速度、反応容器内のスラリー液量、
スラリー濃度、スラリー抜出し速度などから求め
られる結晶の平均滞留時間は、種々の条件を総合
したものとして重要であり、短かすぎる場合には
晶析に対する過度の過飽和系形成によつて結晶の
変性改質に悪影響が出るのみならず、特に炭酸ナ
トリウムの供給が固形状で行われる場合について
は、完全なる反応の進行が阻害される。この理由
から滞留時間は長時間であることが理論的に望ま
しいのであるが、これは、単位時間あるいは反応
装置容量当りの製造効率低下につながるため工業
的には有利ではなく、この意味での上限を有す
る。本発明に於ては滞留時間として20分〜4時
間、好ましくは40分以上で実施される。 Feed rate of raw materials, amount of slurry in the reaction vessel,
The average residence time of crystals, which is determined from slurry concentration, slurry withdrawal speed, etc., is important as a comprehensive consideration of various conditions. Not only is the quality adversely affected, but also the complete progress of the reaction is inhibited, especially when the sodium carbonate is fed in solid form. For this reason, it is theoretically desirable for the residence time to be long, but this is not advantageous industrially because it leads to a decrease in production efficiency per unit time or reactor capacity, and in this sense there is an upper limit. has. In the present invention, the residence time is 20 minutes to 4 hours, preferably 40 minutes or more.
反応晶析が行われる段階での液温度は、10℃〜
40℃好ましくは15〜30℃に保たれるように必要に
応じて冷却が行われるが、40℃を超える場合には
著るしい過酸化水素の損失を招くため好ましくな
い、一方低すぎる場合には、供給される炭酸ナト
リウムが固形状のものについて、原料の反応容器
内での完全な溶解が困難となり、反応が不十分の
まま排出される。 The liquid temperature at the stage of reaction crystallization is 10℃~
Cooling is carried out as necessary to maintain the temperature at 40°C, preferably 15 to 30°C, but if it exceeds 40°C, it is undesirable because it will cause a significant loss of hydrogen peroxide.On the other hand, if it is too low, If the supplied sodium carbonate is solid, it is difficult to completely dissolve the raw material in the reaction vessel, and the reaction is insufficient and the sodium carbonate is discharged.
このため、この段階での温度は必要十分な温度
を維持せねばならない。しかし、PCは高温側で
高溶解度を示すため必然的に高温側では、母液中
の過酸化水素濃度を高める事となり、単位母液量
当りの過酸化水素損失を大きくする。このような
不都合を避けるためには、反応温度は反応が完全
に行われる必要最低の温度にとどめ、望むなら
ば、反応後抜出されたスラリーを二次的に冷却し
て母液中に溶解しているPCをさらに晶析させ、
過酸化水素濃度を抵減させるなどの方法をとるの
が有利である。本方法によれば300ミクロン以下
85〜98%、150ミクロン以下45〜80%の微細な粉
末状結晶が容易に得られ、更には300ミクロン以
下85〜100%、150ミクロン以下45〜85%の微細な
粉末状結晶を得ることが可能であり、造粒その他
の原料として好適なPCである。 Therefore, the temperature at this stage must be maintained at a necessary and sufficient temperature. However, since PC exhibits high solubility at high temperatures, the hydrogen peroxide concentration in the mother liquor inevitably increases at high temperatures, increasing hydrogen peroxide loss per unit volume of mother liquor. In order to avoid such inconveniences, the reaction temperature should be kept at the lowest temperature necessary for complete reaction, and if desired, the slurry drawn out after the reaction may be cooled secondarily and dissolved in the mother liquor. Further crystallize the PC that is
It is advantageous to take measures such as reducing the hydrogen peroxide concentration. According to this method, less than 300 microns
Easy to obtain fine powder crystals of 85 to 98%, 45 to 80% of 150 microns or less, and further obtain fine powder crystals of 85 to 100% of 300 microns or less, 45 to 85% of 150 microns or less. PC is suitable as a raw material for granulation and other purposes.
本方法を実施するに際しては、安定剤としてケ
イ酸化合物以外に公知の安定剤例えばピロリン酸
ナトリウム、トリポリリン酸ナトリウム等のリン
化合物類あるいはEDTA等の有機キレート剤を併
用してさらに安定性の向上をはかることも出来る
が、これらによる安定化効果は本質的には金属の
錯化封鎖に基くものであり、Mg++をも部分的に
封鎖しMg++による効果を低減させる。このため
本法に於てこれらを併用する場合には、その併用
量とMg++封鎖能力に応じてMg++の添加共存量を
増加させて実施することが望ましい。又、本方法
を実施するに際しては、ヘキサメタリン酸ナトリ
ウムやポリアクリル酸ナトリウム等のポリ電解質
のような公知の結晶改質剤を併用し得るが、特に
望まない限り本方法に於てはその添加を全く必要
としない。 When carrying out this method, in addition to the silicic acid compound, known stabilizers such as phosphorus compounds such as sodium pyrophosphate and sodium tripolyphosphate, or organic chelating agents such as EDTA may be used in combination to further improve stability. However, the stabilizing effect of these is essentially based on the complexation and sequestration of the metal, which also partially sequesters Mg ++ and reduces the effect of Mg ++ . Therefore, when these are used in combination in this method, it is desirable to increase the amount of Mg ++ added and coexisting in accordance with the combined amount and the Mg ++ sequestering ability. Furthermore, when carrying out this method, known crystal modifiers such as polyelectrolytes such as sodium hexametaphosphate and sodium polyacrylate may be used together, but their addition is not recommended in this method unless specifically desired. Not needed at all.
以下に本発明を実施例により説明する。 The present invention will be explained below using examples.
実施例 1
炭酸ナトリウム5.1重量%、過酸化水素1.0重量
%、塩化ナトリウム17.0重量%、Mg++0.007重量
%、Si0.004重量%の組成を有する母液30を直
径40cmの反応容器に入れ、直径22cmの撹拌羽によ
り130r.p.m.の速度で撹拌を行い、液温度を25℃
に維持しながら、粒状無水炭酸ナトリウムを6.0
Kg/Hr.、60重量%過酸化水素4.97Kg/Hr.、塩化
ナトリウム497g/Hr、20.0重量%のMgSO4水溶
液120g/Hr.、3号ケイ酸ナトリウムの20.0重量
%水溶液100g/Hr.の速度で反応容器内に連続
的に供給した。反応開始1時間後にスラリー(ス
ラリー濃度244g/)を抜出し、1200Gで2分
間遠心脱水行つたケーキの含水率は16.8%であ
り、得られたPCの粒径は300μ以下97.4重量%、
150μ以下81.1重量%であり、有効酸素含有率は
13.8重量%であり、不純物含有量はNaClおよび
Na2CO3が、それぞれ3.9重量%および5.5重量%
であつた。なお、本法におけるMg++のNa2CO3供
給量に対する添加量比
(Mg++/Na2CO3)は0.081重量%であり、水溶状
SiのNa2CO3供給量に対する添加量比(Si/
Na2CO3)は0.009重量%であり、添加されるSiの
Mg++に対するモル比
(Si/Mg++)は0.485であり、母液におけるMg++
とSiのモル比(Mg++/Si)は0.4〜0.9の範囲であ
り、および母液中の過酸化水素と炭酸ナトリウム
とのモル比(H2O2/Na2CO3)は0.5〜0.8の範囲で
あつた。Example 1 A mother liquor 30 having a composition of 5.1% by weight of sodium carbonate, 1.0% by weight of hydrogen peroxide, 17.0% by weight of sodium chloride, 0.007% by weight of Mg ++ , and 0.004% by weight of Si was placed in a reaction vessel with a diameter of 40 cm. Stir at a speed of 130 rpm using a 22 cm stirring blade, and keep the liquid temperature at 25°C.
Granular anhydrous sodium carbonate while maintaining at 6.0
Kg/Hr., 60 wt% hydrogen peroxide 4.97 Kg/Hr., sodium chloride 497 g/Hr., 20.0 wt% MgSO 4 aqueous solution 120 g/Hr., 20.0 wt% sodium silicate solution 100 g/Hr. feed into the reaction vessel at a continuous rate. One hour after the start of the reaction, the slurry (slurry concentration 244 g/) was extracted and centrifuged at 1200 G for 2 minutes. The moisture content of the cake was 16.8%, and the particle size of the obtained PC was 300 μ or less, 97.4% by weight.
150μ or less is 81.1% by weight, and the effective oxygen content is
13.8% by weight, and the impurity content is NaCl and
Na 2 CO 3 3.9 wt% and 5.5 wt% respectively
It was hot. In addition, in this method, the addition amount ratio of Mg ++ to the Na 2 CO 3 supply amount (Mg ++ /Na 2 CO 3 ) is 0.081% by weight, which indicates that the water-soluble
Addition ratio of Si to Na 2 CO 3 supply (Si/
Na 2 CO 3 ) is 0.009% by weight, and the added Si
The molar ratio (Si/Mg ++ ) to Mg ++ is 0.485, and Mg ++ in the mother liquor
The molar ratio of hydrogen peroxide and Si (Mg ++ /Si) ranges from 0.4 to 0.9, and the molar ratio of hydrogen peroxide to sodium carbonate ( H2O2 / Na2CO3 ) in the mother liquor ranges from 0.5 to 0.8. It was within the range of
実施例 2
炭酸ナトリウム5.1重量%、過酸化水素1.0重量
%、塩化ナトリウム17.0重量%、Mg++0.013重量
%、Si0.007重量%の組成を有する母液を用い、
さらに20.0重量%のMgSO4水溶液を230g/Hr.
の速度で連続的に供給した以外は、実施例1と同
一条件下で、反応を行つた。反応開始1時間後に
スラリー(スラリー濃度243g/)を抜出し、
1200Gで2分間遠心脱水行つたケーキの含水率は
14.5%であり、得られたPCの粒径は300μ以下
97.7重量%、150μ以下83.4重量%であり、有効
酸素含有率は14.3重量%であり、不純物含有量は
NaClおよびNa2CO3が、それぞれ3.3重量%および
2.7重量%であつた。なお、本法におけるMg++の
Na2CO3供給量に対する添加量比
(Mg++/Na2CO3)は0.155重量%であり、水溶状
SiのNa2CO3供給量に対する添加量比
(Si/Na2CO3)は0.009重量%であり、添加される
SiのMg++に対するモル比
(Si/Mg++)は0.253であり、母液におけるMg++
とSiのモル比(Mg++/Si)は0.3〜0.7の範囲であ
り、および母液中の過酸化水素と炭酸ナトリウム
とのモル比(H2O2/Na2CO3)は0.5〜0.8の範囲で
あつた。Example 2 Using a mother liquor having a composition of 5.1% by weight of sodium carbonate, 1.0% by weight of hydrogen peroxide, 17.0% by weight of sodium chloride, 0.013% by weight of Mg ++ , and 0.007% by weight of Si,
Furthermore, 230g/Hr. of 20.0% by weight MgSO 4 aqueous solution was added.
The reaction was carried out under the same conditions as in Example 1, except that it was continuously fed at a rate of . One hour after the start of the reaction, the slurry (slurry concentration 243 g/) was extracted,
The moisture content of the cake centrifuged at 1200G for 2 minutes is
14.5%, and the particle size of the obtained PC is less than 300μ
97.7% by weight, 83.4% by weight below 150μ, the effective oxygen content is 14.3% by weight, and the impurity content is
NaCl and Na2CO3 at 3.3 wt% and
It was 2.7% by weight. In addition, Mg ++ in this method
The addition amount ratio (Mg ++ /Na 2 CO 3 ) to the Na 2 CO 3 supply amount is 0.155% by weight, and the water-soluble
The ratio of the amount of Si added to the amount of Na 2 CO 3 supplied (Si/Na 2 CO 3 ) is 0.009% by weight, and the amount of Si added is 0.009% by weight.
The molar ratio of Si to Mg ++ (Si/Mg ++ ) is 0.253, and Mg ++ in the mother liquor
The molar ratio of hydrogen peroxide and Si (Mg ++ /Si) ranges from 0.3 to 0.7, and the molar ratio of hydrogen peroxide to sodium carbonate ( H2O2 / Na2CO3 ) in the mother liquor ranges from 0.5 to 0.8. It was within the range of
比較例 1
炭酸ナトリウム5.1重量%、過酸化水素1.0重量
%、塩化ナトリウム17.0重量%、Si0.003重量%
の組成を有する母液を用い、Mg++の添加を全く
行わなかつた事以外は、実施例1と同一条件下で
反応を行つた。反応開始10分後にはスラリーの粘
性が増加し、20分後には供給される炭酸ナトリウ
ムが液面下に分散されず液面上で固化したため、
それ以上の反応続行は不可能であつた。次いでこ
のスラリー(スラリー濃度89g/)を容器から
抜出し、1200Gで2分間遠心脱水したところ、脱
水ケーキの含水率は31.0%であり、得られたPC
の粒径は300μ以下81.2重量%、150μ以下68.3重
量%であり、有効酸素含有率は12.9重量%であ
り、不純物含有量は
NaClおよびNa2CO3が、それぞれ7.1重量%および
8.2重量%であつた。なお、本法におけるMg++の
Na2CO3供給量に対する添加量比
(Mg++/Na2CO3)は0重量%であり、水溶状Siの
Na2CO3供給量に対する添加量比
(Si/Na2CO3)は0.009重量%であり、および母液
中の過酸化水素と炭酸ナトリウムとのモル比
(H2O2/Na2CO3)は0.5〜0.8の範囲であつた。Comparative Example 1 Sodium carbonate 5.1% by weight, hydrogen peroxide 1.0% by weight, sodium chloride 17.0% by weight, Si 0.003% by weight
The reaction was carried out under the same conditions as in Example 1, except that a mother liquor having the composition was used and no Mg ++ was added. The viscosity of the slurry increased 10 minutes after the start of the reaction, and 20 minutes later, the supplied sodium carbonate was not dispersed below the liquid surface and solidified above the liquid surface.
It was impossible to continue the reaction any further. Next, this slurry (slurry concentration 89 g/) was taken out from the container and centrifugally dehydrated at 1200G for 2 minutes.
The particle size is 81.2% by weight below 300μ, 68.3% by weight below 150μ, the available oxygen content is 12.9 % by weight, and the impurity content is 7.1 % by weight and 7.1% by weight, respectively.
It was 8.2% by weight. In addition, Mg ++ in this method
The addition amount ratio (Mg ++ /Na 2 CO 3 ) to the Na 2 CO 3 supply amount is 0% by weight, and the water-soluble Si
The addition amount ratio (Si/Na 2 CO 3 ) to the Na 2 CO 3 supply amount is 0.009% by weight, and the molar ratio of hydrogen peroxide to sodium carbonate in the mother liquor (H 2 O 2 /Na 2 CO 3 ) ranged from 0.5 to 0.8.
実施例 3
炭酸ナトリウム5.1重量%、過酸化水素0.8重量
%、塩化ナトリウム17.0重量%、Mg++0.013重量
%、Si0.008重量%の組成を有する母液30を直
径40cmの反応容器に入れ、直径22cmの撹拌羽によ
つて100r.p.mの速度で撹拌を行い液温を25℃に
維持しながら粒状無水炭酸ナトリウム6.0Kg/
Hr.60重量% 過酸化水素4.97Kg/Hr.、塩化ナト
リウム500g/Hr、20.0重量%のMgSO4水溶液を
170g/Hr.、3号ケイ酸ナトリウムの50重量%
水溶液を72g/Hr.の速度で反応容器に連続的
に、また、反応母液組成が炭酸ナトリウムについ
て5.0〜7.0重量%、過酸化水素について0.8〜1.3
重量%、塩化ナトリウムについて16〜17重量%と
なるように調節しながら供給し、反応容器内スラ
リー濃度が280g/を維持するようにスラリー
を連続的に容器から抜出し、遠心分離を行つて結
晶を分離し、濾液は反応器内に循環させる方法で
連続的な反応晶析を行つた。4時間後に於いて得
られた脱水ケーキは含水率15.1%であり、乾燥後
の結晶は300ミクロン以下93.7%、150ミクロン以
下ミクロン以下57.2%であり、有効酸素含有率は
14.5重量%であり、不純物含有量はNaClおよび
Na2CO3が、それぞれ3.5重量%および1.3重量%
であつた。なお、本法におけるMg++のNa2CO3供
給量に対する添加量比
(Mg++/Na2CO3)は0.114重量%であり、水溶状
SiのNa2CO3供給量に対する添加量比(Si/
Na2CO3)は0.081重量%であり、添加されるSiの
Mg++に対するモル比
(Si/Mg++)は0.616であり、母液におけるMg++
とSiのモル比(Mg++/Si)は0.5〜2.3の範囲であ
り、および母液中の過酸化水素と炭酸ナトリウム
とのモル比(H2O2/Na2CO3)は0.4〜0.7の範囲で
あつた。Example 3 A mother liquor 30 having a composition of 5.1% by weight of sodium carbonate, 0.8% by weight of hydrogen peroxide, 17.0% by weight of sodium chloride, 0.013% by weight of Mg ++ , and 0.008% by weight of Si was placed in a reaction vessel with a diameter of 40 cm. While maintaining the liquid temperature at 25℃ by stirring at a speed of 100r.pm using a 22cm stirring blade, 6.0Kg of granular anhydrous sodium carbonate/
Hr.60wt% hydrogen peroxide 4.97Kg/Hr., sodium chloride 500g/Hr, 20.0wt% MgSO4 aqueous solution
170g/Hr., 50% by weight of No. 3 sodium silicate
The aqueous solution was continuously added to the reaction vessel at a rate of 72 g/Hr., and the reaction mother liquor composition was 5.0 to 7.0% by weight for sodium carbonate and 0.8 to 1.3% for hydrogen peroxide.
% by weight, sodium chloride is supplied while adjusting the concentration to be 16 to 17% by weight, and the slurry is continuously extracted from the container so that the slurry concentration in the reaction container is maintained at 280 g/L, and centrifuged to remove crystals. Continuous reaction crystallization was performed by separating the filtrate and circulating the filtrate within the reactor. The dehydrated cake obtained after 4 hours had a water content of 15.1%, the crystals after drying were 93.7% below 300 microns, 57.2% below 150 microns, and the effective oxygen content was
14.5% by weight, and the impurity content is NaCl and
Na 2 CO 3 3.5 wt% and 1.3 wt% respectively
It was hot. In addition, in this method, the addition amount ratio of Mg ++ to the Na 2 CO 3 supply amount (Mg ++ /Na 2 CO 3 ) is 0.114% by weight, which indicates that the water-soluble
Addition ratio of Si to Na 2 CO 3 supply (Si/
Na 2 CO 3 ) is 0.081% by weight, and the amount of Si added is 0.081% by weight.
The molar ratio (Si/Mg ++ ) to Mg ++ is 0.616, and the Mg ++ in the mother liquor
The molar ratio of hydrogen peroxide to sodium carbonate ( H2O2 / Na2CO3 ) in the mother liquor ranges from 0.4 to 0.7 . It was within the range of
実施例 4
炭酸ナトリウム5.0重量%、過酸化水素0.4重量
%、塩化ナトリウム21.5重量%、Mg++0.015重量
%、Si0.008重量%の組成を有する母液を用い、
液温度を25℃に維持しながら粒状無水炭酸ナトリ
ウム6.0Kg/Hr.、60重量% 過酸化水素5.0Kg/
Hr.、塩化ナトリウム710g/Hr、20.0重量%の
MgSO4水溶液190g/Hr.、3号ケイ酸ナトリウ
ムの50重量%水溶液72g/Hr.の速度で反応容器
内に供給し、反応母液組成が炭酸ナトリウムにつ
いて4.5〜6.0重量%、過酸化水素0.4〜1.0重量
%、塩化ナトリウム20〜22重量%、スラリー濃度
が280g/となるように管理し、さらに濾過分
離した湿潤ケーキの1部を濾液と1:1の割合で
混合し湿式粉砕して反応容器内に連続的な接種を
行つた。Example 4 Using a mother liquor having a composition of 5.0% by weight of sodium carbonate, 0.4% by weight of hydrogen peroxide, 21.5% by weight of sodium chloride, 0.015% by weight of Mg ++ , and 0.008% by weight of Si,
While maintaining the liquid temperature at 25℃, granular anhydrous sodium carbonate 6.0Kg/Hr., 60% by weight, hydrogen peroxide 5.0Kg/Hr.
Hr., sodium chloride 710g/Hr, 20.0% by weight
MgSO 4 aqueous solution 190 g/Hr. and No. 3 sodium silicate 50 wt% aqueous solution 72 g/Hr. The slurry concentration was controlled to be 1.0% by weight, 20-22% by weight of sodium chloride, and a part of the wet cake separated by filtration was mixed with the filtrate at a ratio of 1:1, wet-pulverized, and placed in a reaction vessel. Continuous inoculations were carried out within the same period.
種結晶量は乾燥重量として、供給炭酸ナトリウ
ム重量に対し100:15の割合で行つた。4時間の
連続反応後、1200Gで2分間脱水したケーキは
10.7%の含水率を有し、乾燥後の結晶は300ミク
ロン以下99.3%、150ミクロン以下77.6%であ
り、有効酸素含有率は14.4重量%であり、不純物
含有量はNaClおよびNa2CO3が、それぞれ3.0重量
%および2.2重量%であつた。なお、本法におけ
るMg++のNa2CO3供給量に対する添加量比
(Mg++/Na2CO3)は0.128重量%であり、水溶状
SiのNa2CO3供給量に対する添加量比(Si/
Na2CO3)は0.081重量%であり、添加されるSiの
Mg++に対するモル比
(Si/Mg++)は0.551であり、母液におけるMg++
とSiのモル比(Mg++/Si)は0.5〜1.5の範囲であ
り、および母液中の過酸化水素と炭酸ナトリウム
とのモル比(H2O2/Na2CO3)は0.3〜0.7の範囲で
あつた。 The amount of seed crystals was determined as dry weight at a ratio of 100:15 to the weight of sodium carbonate supplied. After 4 hours of continuous reaction, the cake was dehydrated at 1200G for 2 minutes.
It has a water content of 10.7%, the crystals after drying are 99.3% below 300 microns, 77.6% below 150 microns, the effective oxygen content is 14.4% by weight, and the impurity content is NaCl and Na2CO3 . , were 3.0% and 2.2% by weight, respectively. In addition, in this method, the addition amount ratio of Mg ++ to the Na 2 CO 3 supply amount (Mg ++ /Na 2 CO 3 ) is 0.128% by weight, which indicates that the water-soluble
Addition ratio of Si to Na 2 CO 3 supply (Si/
Na 2 CO 3 ) is 0.081% by weight, and the amount of Si added is 0.081% by weight.
The molar ratio (Si/Mg ++ ) to Mg ++ is 0.551, and Mg ++ in the mother liquor
and Si (Mg ++ /Si) ranges from 0.5 to 1.5, and the molar ratio of hydrogen peroxide to sodium carbonate ( H2O2 / Na2CO3 ) in the mother liquor ranges from 0.3 to 0.7. It was within the range of
Claims (1)
続的に母液に供給し、塩化ナトリウム、炭酸ナト
リウム、過酸化水素を含有する水溶液中で、下記
の条件下において反応、晶析せしめて、微細な結
晶を得ることを特徴とする微細な炭酸ナトリウム
過酸化水素付加物の製法。 母液組成は、炭酸ナトリウム濃度について2
〜16重量%、過酸化水素濃度について0.4〜5
重量%、塩化ナトリウム濃度について5.0〜25
重量%、Mg++濃度について0.001〜0.5重量
%、Si濃度について0.003〜0.1重量%であり、
かつMg++に対するSiのモル比は12以下に維持
する。 Mg++を、供給する炭酸ナトリウムに対し重
量比でMg++/Na2CO3=0.01/100〜1/100の
割合で添加する。 ケイ酸塩あるいはケイ酸を安定剤として、供
給する炭酸ナトリウムに対し重量比で水溶状Si
として0.02/100〜0.5/100の割合で添加し、
かつ、添加されるMg++に対するモル比が2.5以
下である。 2 生成する炭酸ナトリウム過酸化水素付加物の
粒径が300μ以下85〜100%、150μ以下45〜85%
である特許請求の範囲第1項記載の製法。 3 反応、晶析を行うに際し、微細な炭酸ナトリ
ウム過酸化水素付加物を、供給する炭酸ナトリウ
ムに対し重量比で1/2以下の割合で供給接種す
ることを特徴とする特許請求の範囲第1項記載の
製法。 4 生成する炭酸ナトリウム過酸化水素付加物を
母液よりろ過分離した後、ろ液は再循環させるこ
とを特徴とする特許請求の範囲第1項記載の製
法。[Claims] 1. Sodium carbonate and hydrogen peroxide are continuously or intermittently supplied to the mother liquor, and reaction and crystallization are carried out under the following conditions in an aqueous solution containing sodium chloride, sodium carbonate, and hydrogen peroxide. A method for producing a fine sodium carbonate hydrogen peroxide adduct, which is characterized by obtaining fine crystals by analysis. Mother liquor composition is 2 for sodium carbonate concentration.
~16% by weight, 0.4-5 for hydrogen peroxide concentration
5.0-25 for weight%, sodium chloride concentration
wt%, 0.001-0.5 wt% for Mg ++ concentration, 0.003-0.1 wt% for Si concentration,
And the molar ratio of Si to Mg ++ is maintained at 12 or less. Mg ++ is added at a weight ratio of Mg ++ / Na2CO3 =0.01/100 to 1/100 to the sodium carbonate to be supplied. Using silicate or silicic acid as a stabilizer, water-soluble Si is added in weight ratio to sodium carbonate to be supplied.
Add at a ratio of 0.02/100 to 0.5/100 as
In addition, the molar ratio to added Mg ++ is 2.5 or less. 2 The particle size of the sodium carbonate hydrogen peroxide adduct produced is 300μ or less 85-100%, 150μ or less 45-85%
The manufacturing method according to claim 1. 3. When carrying out the reaction and crystallization, a fine sodium carbonate hydrogen peroxide adduct is supplied and inoculated at a weight ratio of 1/2 or less to the sodium carbonate to be supplied. Manufacturing method described in section. 4. The production method according to claim 1, characterized in that after the produced sodium carbonate hydrogen peroxide adduct is filtered and separated from the mother liquor, the filtrate is recycled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10064382A JPS58217405A (en) | 1982-06-14 | 1982-06-14 | Manufacture of fine adduct of hydrogen peroxide to sodium carbonate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10064382A JPS58217405A (en) | 1982-06-14 | 1982-06-14 | Manufacture of fine adduct of hydrogen peroxide to sodium carbonate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58217405A JPS58217405A (en) | 1983-12-17 |
JPS6236963B2 true JPS6236963B2 (en) | 1987-08-10 |
Family
ID=14279501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10064382A Granted JPS58217405A (en) | 1982-06-14 | 1982-06-14 | Manufacture of fine adduct of hydrogen peroxide to sodium carbonate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58217405A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI920318A0 (en) * | 1991-01-25 | 1992-01-24 | Central Glass Co Ltd | CONTAINER CONTAINING FUER FRAMSTAELLNING AV SODIUMPERKARBONAT. |
-
1982
- 1982-06-14 JP JP10064382A patent/JPS58217405A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58217405A (en) | 1983-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4146571A (en) | Preparation of sodium percarbonate | |
JPH08175809A (en) | Preparation of peroxy acid salt particle | |
JP2001500097A (en) | Method for producing percarbonate | |
US3870783A (en) | Process of preparing sodium carbonate peroxide | |
JP2005194153A (en) | Method of manufacturing ammonium sulfate crystal | |
US3975499A (en) | Sodium carbonate monohydrate crystallization | |
US4440732A (en) | Hollow granular percarbonate | |
US4655789A (en) | Phosphoric acid crystallization process | |
JPS6236963B2 (en) | ||
US4019872A (en) | Producing sodium carbonate monohydrate from carbonate solution including addition of aluminum ions | |
CA1070084A (en) | Continuous crystallization process for preparing sodium carbonate peroxide | |
CA1101190A (en) | Method of separating salts from solution | |
JPS6236962B2 (en) | ||
US4504457A (en) | Continuous process for producing granular calcium hypochlorite particles | |
JPS59164602A (en) | Continuous manufacture of calcium hypochlorite | |
JP4635310B2 (en) | Neutral sodium sulfate composition and method for producing the same | |
CN110451513A (en) | A kind of method that the crystallization of phosphoric acid by wet process successive reaction prepares big particle industrial grade urea phosphate product | |
US5215730A (en) | Production of sodium perborate crystals having improved abrasion resistance | |
JPS586681B2 (en) | Method for producing sodium hypochlorite pentahydrate | |
JPS61197409A (en) | Manufacture of high purity solution of alkali metal hydrosulfite | |
US4203955A (en) | Process of preparing calcium hydrogen phosphate anhydride suitable as material for phosphors | |
JPH0624714A (en) | Production of sodium percarbonate | |
US4842841A (en) | Continuous process for producing granular calcium hypochlorite particles | |
US4487751A (en) | Process for calcium hypochlorite | |
JPS6096511A (en) | Production of stabilized granular sodium percarbonate |