JPS583250A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS583250A
JPS583250A JP10157681A JP10157681A JPS583250A JP S583250 A JPS583250 A JP S583250A JP 10157681 A JP10157681 A JP 10157681A JP 10157681 A JP10157681 A JP 10157681A JP S583250 A JPS583250 A JP S583250A
Authority
JP
Japan
Prior art keywords
film
semiconductor
opening
insulating film
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10157681A
Other languages
Japanese (ja)
Inventor
Masaki Sato
正毅 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10157681A priority Critical patent/JPS583250A/en
Publication of JPS583250A publication Critical patent/JPS583250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve the reliability of a semiconductor device by covering a semiconductor and a metal in a hole formed at an insulating film on a semiconductor substrate and forming both compounds, thereby preventing the disconnection of a wiring layer or an overhang. CONSTITUTION:An electrode windows 12a is opened at an insulating film 12 on a semiconductor substrate made of silicon or the like, a diffused layer 14 is formed, and a polycrystalline silicon film 15 is then coated. Then, the entire surface is anisotropically etched such as by dry etching or the like, thereby allowing a polycrystalline silicon film 15 to remain only in an electrode window, and a metallic film 16 made of platinum or the like is coated thereon. Then, a heat treatment is performed to form a compound 17 of platinum silicide or the like, the unreacted platinum film except the window is removed with aqua regia, and a wire 18 such as aluminum is formed thereon.

Description

【発明の詳細な説明】 本発明は、半導体装置の製造方法に係わシ、詳しくは半
導体装置の配線を、断線やオーバハングが生じることな
く形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming wiring of a semiconductor device without causing disconnection or overhang.

従来、配線材料としてのアルミニウムを半導・体基板上
に形成する場合、次のようにしている、まず、第1図(
−)に示す如くシリコン基板l上に素子を形成し、その
全面にシリコン酸化膜等の絶縁膜2を形成し、次いで絶
縁膜2上KF!fr望形状のレゾスト・fターン3を形
成する。次に、CF4ガスをエッチャントの主成分とす
るドライエツチング技術を用い、第2図(b) K示す
如くレジストパターン3をマ嘩スクとして絶縁膜2を選
択エツチングする。しかるのち、レジストパターン3を
除去し、絶縁膜2およびシリコン基板1の上面にアルミ
ニウム膜4を蒸着するようにしている。
Conventionally, when forming aluminum as a wiring material on a semiconductor/body substrate, the process is as follows.
-), an element is formed on a silicon substrate l, an insulating film 2 such as a silicon oxide film is formed on the entire surface, and then KF! Form a resist f-turn 3 in the desired shape. Next, using a dry etching technique using CF4 gas as the main component of the etchant, the insulating film 2 is selectively etched using the resist pattern 3 as a mask, as shown in FIG. 2(b)K. Thereafter, the resist pattern 3 is removed, and an aluminum film 4 is deposited on the upper surface of the insulating film 2 and silicon substrate 1.

しかしながら、仁の種の方法にあっては次のような問題
があった。すなわち、前記絶縁膜2のエツチング断面は
前記第1図(b)に示した如く急峻なものとなる。この
ような急峻な断差を有する表面にアル・ミニラム膜4を
蒸着すると、第1図(C)に示す如きアルミニウム膜4
の膜厚が薄くなる部分が発生し易くなシ、著しい場合に
は同図(d)に示す如くオー・苛ハング構造となること
もある。このため、アルミニウム配線層に断線が生じ易
いと云う問題があった。
However, the jinno-tane method had the following problems. That is, the etched cross section of the insulating film 2 becomes steep as shown in FIG. 1(b). When an aluminum minilum film 4 is deposited on a surface having such a steep difference, an aluminum film 4 as shown in FIG. 1(C) is formed.
Parts where the film thickness becomes thin tend to occur, and in severe cases, an over-hung structure may be formed as shown in FIG. 3(d). For this reason, there is a problem in that the aluminum wiring layer is likely to be disconnected.

一方、半導体装置の高集積化が進むに伴い、その素子構
造に従来の一次元的構造の配列だけで表く、三次元的に
積層した構造、例えばアルミ配線上に眉間絶縁膜を形成
してスルーホールを形成し、この上にfs2層目のアル
ミニウム配線を形成する多層配線技術等が必要とされて
いる。このような立体構造にする場合、前記したアルミ
ニウム配線の薄い部分やオーパノ・ング構造が存在する
と、断線が生じ易いだけでカく、眉間絶縁膜中の空隙や
ひび割れ等が生じ易くなる。さらに、段差近傍における
パターン形成特性の悪化やドライエ、チング時の工、チ
ング残シ等装置加工精度の低下をもたらし、装置の信頼
性を低下させる等の問題があった。
On the other hand, as semiconductor devices become more highly integrated, their element structures are changing from conventional one-dimensional arrays to three-dimensionally laminated structures, such as forming an insulating film between the eyebrows on aluminum wiring. There is a need for a multilayer wiring technology that forms through holes and forms fs second layer aluminum wiring thereon. When forming such a three-dimensional structure, if there is a thin portion of the aluminum wiring or an open structure, the wiring is likely to be disconnected, and voids and cracks in the glabella insulating film are likely to occur. Further, there were problems such as deterioration of pattern forming characteristics near the step difference, deterioration of device processing accuracy such as dry etching, etching during etching, and etching residues, which lowered the reliability of the device.

本発明は上記事情を考慮してなされたもので、その目的
とするところは、アルミニウム配線層の断線やオーバハ
ング等を未然に防止することができ、装置信頼性の向上
に寄与し得る半導体装置の製造方法を提供することにあ
る。
The present invention has been made in consideration of the above circumstances, and its purpose is to prevent disconnection and overhang of the aluminum wiring layer, and to improve the reliability of the semiconductor device. The purpose is to provide a manufacturing method.

まず、本発明の詳細な説明する。本発明は、半導体基板
上の絶縁膜に所望の開孔部を形成したのち、との開孔部
周辺の絶縁膜側面を覆うように半導体被膜を選択的に形
成し、次いでこれらの全面に金属を被着しこの金属と半
導体被膜とを反応させその化合物を上記開孔部内に形成
し、しかるのち上記絶縁膜上の金属を除去するようにし
た方法である。したがって、上記開孔部内を金属と半導
体被膜との化合物で埋め込むことができ、配線工程前に
$−0る基板表面の段差を著しく低減することができる
。このため、金属配線の断線やオーバハングの発生等を
未然に防止することができ、装置信頼性の向上に寄与し
得る等の効果を奏する。
First, the present invention will be explained in detail. In the present invention, after forming a desired opening in an insulating film on a semiconductor substrate, a semiconductor film is selectively formed so as to cover the side surface of the insulating film around the opening, and then a metal is coated on the entire surface of the opening. In this method, the metal is deposited and the semiconductor film is reacted with the semiconductor film to form a compound thereof in the opening, and then the metal on the insulating film is removed. Therefore, the inside of the opening can be filled with a compound of metal and semiconductor film, and the level difference on the surface of the substrate before the wiring process can be significantly reduced. Therefore, it is possible to prevent the occurrence of disconnections and overhangs in the metal wiring, thereby contributing to improving the reliability of the device.

以下、本発明の詳細を図示の実施例によって説明する。Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第2図(a)〜(f)は本発明の一実施例に係わるアル
ミニウム配線形成工程を示す断面図である。
FIGS. 2(a) to 2(f) are cross-sectional views showing an aluminum wiring forming process according to an embodiment of the present invention.

まず、第2図(、)に示す如くP型シリコン基板11(
半導体基板)上にシリコン酸化膜12(絶縁膜)を1.
0〔μm〕被着し、このシリコン酸化膜I2上に開孔部
形成のためのレジストパターンIJを形成する。次いで
、レジストノやターン13をマスクとし選択エツチング
技術を用い、シリコン酸化膜12を工、チングして開孔
部12−を形成する。そして、上記レジストパターン1
3を除去したのち、シリコン酸化膜12をマスクとし上
記開孔部12aからシリコン基板11に不純物を導入し
、第2図(b)に示す如く拡散層14を形成する。ここ
で、例えば燐(P)を導入するにけ、poclsを用い
た拡散法やイオン注入法等を用いれは、よい。
First, as shown in FIG. 2(,), a P-type silicon substrate 11 (
1. A silicon oxide film 12 (insulating film) is formed on a semiconductor substrate).
A resist pattern IJ for forming an opening is formed on this silicon oxide film I2. Next, the silicon oxide film 12 is etched using a selective etching technique using the resist holes and turns 13 as a mask to form openings 12-. Then, the above resist pattern 1
After removing the silicon oxide film 12, impurities are introduced into the silicon substrate 11 through the opening 12a using the silicon oxide film 12 as a mask to form a diffusion layer 14 as shown in FIG. 2(b). Here, for example, to introduce phosphorus (P), it is preferable to use a diffusion method using pocls, an ion implantation method, or the like.

次に、気相成長法を用い第2図(c)に示す如く絶縁膜
12および拡散層14の上面に多結晶シリコン15(半
導体被膜)を1〔μmJ程度被着する。そして、CCl
4ガスをエッチャントの主成分とする異方性エツチング
技術を用い、基板全面をエラテンダブることにより、第
2図(d)に示すように開孔部12mの側面および底面
にのみ多結晶シリコン15が残った。次いで、上記ドラ
イエツチングにより発生した基板表面の付着物層を02
グラズマやHF水溶液等による表面処理で除去したのち
、第2図(−)に示す如くシリコン酸化膜12および多
結晶シリコン15の上面1金876 (金Fi ) t
 1000[X)8jHP[する。続いて、550〔℃
〕で15分間の熱処理を施し白金膜16と多結晶シリコ
ン15とを反応させこれらの合金層17(化合物)を形
成する。
Next, as shown in FIG. 2(c), polycrystalline silicon 15 (semiconductor film) is deposited on the upper surfaces of the insulating film 12 and the diffusion layer 14 by about 1 [μmJ] using a vapor phase growth method. And CCl
By etching the entire surface of the substrate using an anisotropic etching technique using 4 gas as the main component of the etchant, polycrystalline silicon 15 is formed only on the side and bottom surfaces of the opening 12m, as shown in FIG. 2(d). The remaining. Next, the deposit layer on the substrate surface generated by the above dry etching was removed using 02
After removal by surface treatment using Glazma, HF aqueous solution, etc., gold 876 (gold Fi) t is deposited on the upper surface of silicon oxide film 12 and polycrystalline silicon 15, as shown in FIG. 2 (-).
1000 [X) 8j HP [do. Next, 550 [℃
] is performed for 15 minutes to react the platinum film 16 and the polycrystalline silicon 15 to form an alloy layer 17 (compound) thereof.

その後、加熱した王水中にシリコン基板11を浸漬する
ことにより、シリコン酸化膜12上の未反応の白金膜1
6が溶解し、第2図(f)に示す如く合金層17だけが
開孔部12a内に残存した。かくして、開孔部121に
よる段差が軽減され平坦化された。この状態で配線層と
してのアルミニウム膜18を蒸着することによシ、第2
図(g)に示す如くアルミニウム膜18の膜厚が略均−
に形成されbことになる。
Thereafter, by immersing the silicon substrate 11 in heated aqua regia, the unreacted platinum film 1 on the silicon oxide film 12 is removed.
6 was dissolved, and only the alloy layer 17 remained in the opening 12a as shown in FIG. 2(f). In this way, the level difference due to the opening 121 was reduced and flattened. By depositing the aluminum film 18 as a wiring layer in this state, the second
As shown in Figure (g), the thickness of the aluminum film 18 is approximately uniform.
It will be formed into b.

このように本実施例方法によれば、シリコン基板11上
の絶、縁膜12に形成した開孔部12m内に多結晶シリ
コン15と白金16との合金層17を埋め込むようにし
ているので、開孔部12Sによる段差を軽減することが
でき、これによシアルミニウム膜18の開孔部1211
における断線やオーツ々ハング等を未然に防止すること
ができる。このため、製造歩留りおよび信頼性の向上を
はかり得て、多層配線構造に極めて有効となる。また、
開孔部12−を合金層17で埋め込むに際し特別のマス
ク合わせ工程を要することもなく、その工程が容易であ
る等の効果を奏する。
As described above, according to the method of this embodiment, the alloy layer 17 of polycrystalline silicon 15 and platinum 16 is embedded in the opening 12m formed in the insulation film 12 on the silicon substrate 11. It is possible to reduce the level difference caused by the opening 12S, and thereby the opening 1211 of the sia aluminum film 18 can be reduced.
It is possible to prevent wire breakage and hang-up in advance. Therefore, it is possible to improve manufacturing yield and reliability, and it is extremely effective for multilayer wiring structures. Also,
There is no need for a special mask alignment process when filling the opening 12- with the alloy layer 17, and the process is easy.

なお、本発明tJ上述した実施例に限定されるものでは
ない。例えは、前記第2図(d)に示す如く開孔部12
−内に多結晶シリコンI6を残存させる代シに、第3図
(−)に示す如く開孔部12mの側面にのみ多結晶シリ
コン1tを残存させるようにしてもよい。さらに、基板
全面に被着l。
Note that the present invention is not limited to the embodiments described above. For example, as shown in FIG. 2(d), the opening 12
Instead of leaving the polycrystalline silicon I6 inside the opening 12m, the polycrystalline silicon 1t may be left only on the side surface of the opening 12m, as shown in FIG. 3(-). Furthermore, it is deposited on the entire surface of the substrate.

た多結晶シリコン15をエツチングし開孔部12a内に
残存させる場合、前記CCl4ガスを工、テヤントの主
成分とする異方性ドライエ、チングの代りに、CCAl
4ガスグラズマによるグラズマエッチングやCF4 Q
スを主成分とするケミカルドライエツチング等の等方性
ドライエ、チング技術を用い、第3図(b)に示すよう
に多層1Aシリコン15を残すようにしてもよい。また
、開孔部12aの寸法が極めて小さい(2μm以下)の
場合、シリコン酸化膜12上に被着する多結晶シリコン
15に比して開孔部12−内に被着する多結晶シリコン
15の膜厚が厚くなることを利用し、開孔部12m内の
みに多結晶シリコン15を残存させる工程を簡易化する
こともできる。これは、シリコン酸化膜12上の多結晶
シリコン15が開孔部12a内のそれより短時間に除去
されるためである。さらに、多結晶シリコンI5とエッ
チレートの略等しい被膜19を第4図(−)に示す如く
多結晶シリコン15上に回転塗布して形成したのち、そ
の全面を異方性ドライエ、チングによりエツチングして
も、開孔部12−内に第4図(b)に示す如く多結晶シ
リコン1かを残すこともできる。
When etching the polycrystalline silicon 15 remaining in the opening 12a, the CCl4 gas is used instead of an anisotropic dry etching process in which the main component of the polycrystalline silicon 15 is etched.
Glazma etching using 4 gas glazma and CF4 Q
The multilayer 1A silicon 15 may be left as shown in FIG. 3(b) by using an isotropic dry etching technique such as chemical dry etching mainly containing silicon. Furthermore, when the size of the opening 12a is extremely small (2 μm or less), the polycrystalline silicon 15 deposited inside the opening 12- is smaller than the polycrystalline silicon 15 deposited on the silicon oxide film 12. By taking advantage of the increased film thickness, it is also possible to simplify the process of leaving polycrystalline silicon 15 only within the opening 12m. This is because the polycrystalline silicon 15 on the silicon oxide film 12 is removed in a shorter time than that in the opening 12a. Further, a film 19 having an etch rate approximately equal to that of the polycrystalline silicon I5 is formed by spin coating on the polycrystalline silicon 15 as shown in FIG. 4(-), and then the entire surface is etched by anisotropic dry etching. However, it is also possible to leave some polycrystalline silicon 1 in the opening 12- as shown in FIG. 4(b).

また、前記半導体と白金との合金化には熱処理を利用し
たが、レーデビーム、電子ビーム或いはイオンビームの
照射を利用することも可能である。さらに、白金の代シ
KFi、モリブデン、タリウム、ノ臂ラジウム、その他
各種の金属を用いることができる。また、アルミニウム
配線形成工程に限らず、各種の半導体装置の製造工程に
適用できるのは、勿論のことである。その他、本発明の
要旨を逸脱しない範囲で、種々変形して実施することが
できる。
Further, although heat treatment is used to alloy the semiconductor and platinum, it is also possible to use irradiation with a Lede beam, an electron beam, or an ion beam. Furthermore, instead of platinum, KFi, molybdenum, thallium, radium, and various other metals can be used. Furthermore, it goes without saying that the present invention can be applied not only to the process of forming aluminum wiring, but also to the manufacturing process of various semiconductor devices. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は従来方法を説明するための断面
図、第2図(a)〜(g)は本発明の一実施例に係わる
配線形成工程を示す断面図、第3図(a) 、 (b)
および第4図(a) * (b)#′iそれぞれ変形例
を説明するための断面図である。 11・・・シリコン基板(半導体基板)、12・・・シ
リコン酸化膜(絶縁膜)、Jjm・・・開孔部、15・
・・多結晶シリコン(半導体被膜)、16・・・白金膜
(金属)、17・・・合金膜(化合物)、18・・・ア
ルミニウム膜。
1(a) to (d) are cross-sectional views for explaining the conventional method, FIGS. 2(a) to (g) are cross-sectional views showing the wiring forming process according to an embodiment of the present invention, and FIG. Figures (a), (b)
and FIGS. 4A and 4B are cross-sectional views for explaining modified examples. 11... Silicon substrate (semiconductor substrate), 12... Silicon oxide film (insulating film), Jjm... Opening part, 15.
... Polycrystalline silicon (semiconductor film), 16... Platinum film (metal), 17... Alloy film (compound), 18... Aluminum film.

Claims (1)

【特許請求の範囲】 (リ 半導体基板上に形成された絶縁膜に所望の開孔部
を形成する工程と、上記開孔部周辺の絶縁膜側面を覆う
ように半導体被膜を選択的に形成する工iと、しかるの
ちこれらの全面に金属を蒸着する工程と、上記金属と半
導体被膜とを反応させその化合物を前記開孔部内に形成
する工程と、しかるのち前記絶縁膜上の金属を除去する
工程とを具備し、前記開孔部を前記化合物で埋め込むよ
うにしたことを特徴とする半導体装置の製造方法。 (2)前記半導体被膜を選択的に形成する工程線、前記
半導体基板および絶縁膜の全面に半導体被膜を形成した
のち、これらの全面をドライエ、チングするものである
ことを特徴とする特許請求の範囲第1項記載の半導体装
置の製造方法。 (3)前記半導体基板および半導体被膜としてシリコン
を用い、前記金属としてグラチナを用いたことを特徴と
する特許請求の範囲第1項記載の半導体装置の製造方法
[Claims] (Li) A step of forming a desired opening in an insulating film formed on a semiconductor substrate, and selectively forming a semiconductor film to cover the side surface of the insulating film around the opening. a step of vapor depositing a metal on the entire surface thereof; a step of reacting the metal with a semiconductor film to form a compound thereof in the opening; and then removing the metal on the insulating film. (2) A process line for selectively forming the semiconductor film, the semiconductor substrate, and the insulating film. A method for manufacturing a semiconductor device according to claim 1, characterized in that a semiconductor film is formed on the entire surface of the substrate, and then the entire surface is subjected to dry etching and etching. (3) The semiconductor substrate and the semiconductor film. 2. The method of manufacturing a semiconductor device according to claim 1, wherein silicon is used as the metal and gratina is used as the metal.
JP10157681A 1981-06-30 1981-06-30 Manufacture of semiconductor device Pending JPS583250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10157681A JPS583250A (en) 1981-06-30 1981-06-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10157681A JPS583250A (en) 1981-06-30 1981-06-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS583250A true JPS583250A (en) 1983-01-10

Family

ID=14304215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10157681A Pending JPS583250A (en) 1981-06-30 1981-06-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS583250A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253245A (en) * 1984-04-13 1985-12-13 ソシエテ・プ−ル・レチユ−ド・エ・ラ・フアブリカシオン・デ・シルキユイ・アンテグレ・スペシオ−−ウ−.エフ.セ−.イ−.エス. Method of producing aluminum contact through thick insulating layer in integrated circuit
JPH01200653A (en) * 1988-02-05 1989-08-11 Sony Corp Manufacture of semiconductor device
JPH07221096A (en) * 1994-01-24 1995-08-18 Lg Semicon Co Ltd Silicide plug formation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882395A (en) * 1972-02-04 1973-11-02
JPS5310100A (en) * 1976-07-15 1978-01-30 Hitachi Maxell Method of manufacturing ferromagnetic metal powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882395A (en) * 1972-02-04 1973-11-02
JPS5310100A (en) * 1976-07-15 1978-01-30 Hitachi Maxell Method of manufacturing ferromagnetic metal powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253245A (en) * 1984-04-13 1985-12-13 ソシエテ・プ−ル・レチユ−ド・エ・ラ・フアブリカシオン・デ・シルキユイ・アンテグレ・スペシオ−−ウ−.エフ.セ−.イ−.エス. Method of producing aluminum contact through thick insulating layer in integrated circuit
JPH01200653A (en) * 1988-02-05 1989-08-11 Sony Corp Manufacture of semiconductor device
JPH07221096A (en) * 1994-01-24 1995-08-18 Lg Semicon Co Ltd Silicide plug formation

Similar Documents

Publication Publication Date Title
JP3179212B2 (en) Method for manufacturing semiconductor device
JPH0878519A (en) Semiconductor device and fabrication thereof
JPS5944824A (en) Lift off method of foring self-aligning contact
JPS6110256A (en) Method of automatically positioning mutual connection line to connecting hole of integrated circuit
JPS583250A (en) Manufacture of semiconductor device
JPS63142A (en) Manufacture of semiconductor device
KR100220933B1 (en) Forming method for metal wiring of semiconductor device
JP2720023B2 (en) Method for manufacturing semiconductor device
JP2890681B2 (en) Method for manufacturing semiconductor device having multilayer wiring structure
JP2692918B2 (en) Method for manufacturing semiconductor device
JP3206008B2 (en) Method of forming multilayer wiring
JPS6197825A (en) Manufacture of semiconductor device
JPS5834916A (en) Manufacture of semiconductor device
EP0228183A2 (en) Method for manufacturing semiconductor device
JPH08511659A (en) Method for manufacturing a semiconductor device having a multilayer wiring structure provided on the surface of a semiconductor body
JPH07321098A (en) Contact hole forming method
JP2002164350A (en) Method of fabricating semiconductor device
JPS6161545B2 (en)
JPS6059742B2 (en) Semiconductor device and its manufacturing method
JPS6193629A (en) Manufacture of semiconductor device
JPS5870556A (en) Preparation of semiconductor device
JPS61263138A (en) Manufacture of semiconductor device
JPS5989437A (en) Manufacture of semiconductor device
JPH0774205A (en) Manufacture of semiconductor device
JPS5841775B2 (en) hand tai souchi no seizou houhou