JPS5832462A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5832462A
JPS5832462A JP56130173A JP13017381A JPS5832462A JP S5832462 A JPS5832462 A JP S5832462A JP 56130173 A JP56130173 A JP 56130173A JP 13017381 A JP13017381 A JP 13017381A JP S5832462 A JPS5832462 A JP S5832462A
Authority
JP
Japan
Prior art keywords
region
oxide film
drain region
drain
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56130173A
Other languages
Japanese (ja)
Inventor
Shinji Taguchi
田口 信治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56130173A priority Critical patent/JPS5832462A/en
Publication of JPS5832462A publication Critical patent/JPS5832462A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To prevent the injection of electron into a gate oxide film by a method wherein a drain region is buried below the surface of a semiconductor region. CONSTITUTION:In the MOSFET consisting of a source region 30, a drain region 31, a gate oxide film 34 and a gate electrode 36, the region 31 is buried under the surface of an Si substrate 32. Accordingly, as the hot electron, which was generated in the vicinity 33 of the boundary of a p layer and an n layer, loses its energy due to the phonon scattering with a lattice before it reaches an oxide film 34 and said hot electron is unable to pass the potential barrier of the oxide film 34, the fluctuation of threshold voltage can be prevented. Also, according to this constitution, the fundamental operation of the transistor is not impaired. As a result, the deterioration of reliability of the transistor caused by the implantation of hot electron into the oxide film 34 can be effectively improved without lowering the integration.

Description

【発明の詳細な説明】 本発明は半導体装置に係妙、特にMOS型トランジスタ
が形成された半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a semiconductor device in which a MOS transistor is formed.

半導体集積回路は近年ますます微細化され、高集積化さ
れVL 8 I ( Very Large 8cal
e Integration )にまで発展してきてい
る。
In recent years, semiconductor integrated circuits have become increasingly finer and more highly integrated.
e-Integration).

微細化の程度をチャネル長を目安とすると、1〜24m
領域にまで達しており、今後サブミクロン領域まで発展
することが予測される。
Using the channel length as a guideline for the degree of miniaturization, it is 1 to 24 m.
It is predicted that this will develop into the submicron range in the future.

このよりなVLSIで使用され石微細トランジスタは、
いわゆるスケーリング則に従.い、ゲート酸化膜は薄膜
化し,チャネル領域基板一度は高くなっている。
This fine transistor used in VLSI is
According to the so-called scaling law. However, the gate oxide film has become thinner and the height of the channel region substrate has become higher.

従来の微細MO8 }ランジスタを第1図に示す。A conventional micro MO8 transistor is shown in FIG.

半導体基板(1)にソース領域(2)及びドレイン領域
(3)が102°/一前後にドープされたn型不苅物領
域として形成されており、チャネル領域(4)はソース
・ドレ・イン領域(2)、 (3)よりは低機度であふ
が長チャネルトランジスタの場合より高濃度,九とえば
10”/d程度のP@不純物領域として形成されている
。ゲート酸化膜15》は300〜400Aと長チャネル
トランジスタの場合より薄くなっている。
A source region (2) and a drain region (3) are formed in a semiconductor substrate (1) as an n-type impurity region doped at around 102°/1, and a channel region (4) is formed as a source, drain, and drain region. Regions (2) and (3) are formed as P@ impurity regions with a higher concentration than in the case of long channel transistors, for example, about 10"/d.The gate oxide film 15 is It is 300 to 400 A, which is thinner than that of a long channel transistor.

このような従来の微細トランジスタでは、長時間使用す
るとしきい値電圧vTが変化する丸め,デバイスの信頼
性が低下するどいう問題があった。
Such conventional fine transistors have problems such as rounding in which the threshold voltage vT changes when used for a long time, and device reliability decreases.

即ち,MOS}ランジスタの5極管動作領域を流れてき
たエレクトロンは、基板領域(1)とト°レイン領域(
3)からなるp−n9合の空乏層(6)における高電界
のためにホットエレクトロンとな妙、高エネルギーを獲
得し、格子との衝央によってエレクトロン・本−ルペア
を発生させる。それらがまた高エネルギーをS%する。
In other words, the electrons flowing through the pentode operating region of the MOS transistor are transferred to the substrate region (1) and the train region (1).
3) Due to the high electric field in the p-n9 coupling depletion layer (6), hot electrons acquire high energy and generate electrons and main pairs by colliding with the lattice. They also have high energy S%.

この一連のプロセスはアバランシェ、ブレークダウンと
呼ばれる。
This series of processes are called avalanche and breakdown.

このアバラン7エ・ブレークダウンによりて多数のキャ
リアが発生し、そのうち一部のエレクトロンは、ゲート
酸化膜中にとびこみ、ある割合で酸化膜に捕獲される。
This avalanche breakdown generates a large number of carriers, some of which penetrate into the gate oxide film and are captured by the oxide film at a certain rate.

(ホールは、エレクトロンにくらべ酸化膜に対する電位
障壁が大きく、酸イヒ膜中にとびこむ数は無視すること
かで龜る。)捕獲電子は、酸化膜の固定電荷となり、し
きい値電圧を変化させる。ゲート電流がたと見、1o−
14A/sn’ 8度と少なくても、長時間の使用によ
ってしきい値電圧が変化し、信頼性を低下させる原因と
なる。これは微細トランジスタでは基板濃度が鳥いため
、ドレイン領pn接合の電界は非常に轟くなり、さらに
ゲート酸化膜の薄膜化によって酸化膜中の電界が高くな
り酸化膜の電位障壁が低下することの丸めに、長チャネ
ルトランジスタよりしきい値電圧が変化しゃすくな゛る
。解決策として基板濃度を下げることが考えられるが、
短チャネルの九めにパンチスルーを起しやすくなるとい
う欠点があった。
(Hole has a larger potential barrier to the oxide film than electrons, and the number of holes that penetrate into the oxide film is negligible.) Captured electrons become fixed charges on the oxide film and change the threshold voltage. . Considering the gate current, 1o-
Even if it is as low as 14 A/sn' 8 degrees, the threshold voltage changes due to long-term use, causing a decrease in reliability. This is due to the fact that in fine transistors, the substrate concentration is very high, so the electric field in the pn junction in the drain region becomes extremely loud, and as the gate oxide film becomes thinner, the electric field in the oxide film becomes higher and the potential barrier of the oxide film lowers. In addition, the threshold voltage changes less easily than with long channel transistors. One possible solution is to lower the substrate concentration, but
There was a drawback that punch-through was likely to occur in the ninth position of the short channel.

本発明は上記点に鑑みなされ九もので、第1導1@聾の
半導体領域と、この半導体領域に形成された第2導電型
のソース領域とドレイン領域と、このノー、ス領域とド
レイン領域間の前記半導体領域表面に絶縁膜を介して形
成されたゲート電極とを有する半導体装置において、前
記ソース領域及び1紀ドレイン領域のうち、少なくとも
前記ドレイン−城が前記半導体領域表面下に置設されて
いることKよってゲート酸化膜中へエレクトロン注入1
1:V が防止できトランジスタの信頼性の向上した半導体装置
を提供することを目的とするものである。
The present invention has been made in view of the above points, and includes a first conductive semiconductor region, a second conductive type source region and a drain region formed in this semiconductor region, and a second conductive type source region and a drain region formed in this semiconductor region. In a semiconductor device having a gate electrode formed on the surface of the semiconductor region between them via an insulating film, at least the drain region of the source region and the primary drain region is placed below the surface of the semiconductor region. Electron injection into the gate oxide film 1 due to the fact that
The object of the present invention is to provide a semiconductor device in which transistor reliability can be improved by preventing 1:V.

以下、図面を参照して本発明を実施例に基き詳細に説明
する。第2図(1)、 (b)にドレイン側p−n接合
をステップ接合と仮定した場合のp −n 11合面か
らの不純物一度と空乏層中の電界の強さを示す。第2図
(b) K示すようKp領領域n領域の境界で電界が最
も強くなる。従って電界の強さに大きく依頼するアバラ
ンシェブレークダウンがこの点で発生しやすくなる。
Hereinafter, the present invention will be described in detail based on embodiments with reference to the drawings. FIGS. 2(1) and 2(b) show the impurity concentration from the p-n 11 joint surface and the electric field strength in the depletion layer when the drain-side p-n junction is assumed to be a step junction. As shown in FIG. 2(b), the electric field is strongest at the boundary between the Kp region and the n region. Therefore, avalanche breakdown, which largely depends on the strength of the electric field, is likely to occur at this point.

p−n接合をゲート酸化膜から遠ざけることによってホ
ットエレクトロンの発生が防止できる。
By keeping the pn junction away from the gate oxide film, generation of hot electrons can be prevented.

本発明構造の断面概略図を第3図に示す。第3図このよ
うKすることによりて、p層とn層の境界近傍(至)で
発生したホットエレクトロンは、ゲート酸化膜(至)に
到達する前に格子とのphonen 散乱によってエネ
ルギーを失な―、ゲート酸化膜(至)の電位障壁を越え
ることができず、しきい電圧の変動を防止できる。また
、この構造によりてトランジスタの基本的動作社そこな
われることはない。
A schematic cross-sectional view of the structure of the present invention is shown in FIG. Figure 3 By setting K in this manner, hot electrons generated near the boundary between the p-layer and n-layer lose energy through phone scattering with the lattice before reaching the gate oxide film. -, the potential barrier of the gate oxide film cannot be exceeded, and fluctuations in the threshold voltage can be prevented. Furthermore, this structure does not impair the basic operation of the transistor.

すなわち、ドレイン領域61とゲート(至)及びゲート
酸化膜(ロ)のドレイン側端の距離dを適当にとり。
That is, the distance d between the drain region 61 and the drain side end of the gate (to) and gate oxide film (b) is set appropriately.

ゲート端とドレイン領域C11lとの間の電位の障壁を
ドレイン電圧によりて十分に制御でき、障壁とならない
位置に設ければよい。
The potential barrier between the gate end and the drain region C11l can be sufficiently controlled by the drain voltage and may be provided at a position where it does not act as a barrier.

一方1本発明の目的はp層とn層の境界(至)を酸化膜
(至)からエレクトロンのSi中での平均自由行程以上
離すことによって達せられる。通常、平均自由行程は1
00〜200人であるためドレイン電圧で、チャネルと
ドレイン領域間の電位障峨は十分おし下げることができ
る。
On the other hand, one object of the present invention can be achieved by separating the boundary between the p layer and the n layer from the oxide film by at least the mean free path of electrons in Si. Usually the mean free path is 1
00 to 200, the potential barrier between the channel and drain region can be sufficiently lowered by the drain voltage.

また従来の構造におけるγ、、レイン領域のブレークダ
ウ、ンは表面で起こり、いわゆるsurfacebre
akdownである。これは、一般的なりulk 84
中でのp−n11合のブレークダウンより低電圧で起る
が、本発明による構造ではBulk Si中でのブレー
クダウンとなり耐圧が向上するという利点がある。
Furthermore, in the conventional structure, the breakdown of the γ, rain region occurs on the surface, so-called surface bream.
It is akdown. This is a common ulk 84
Although the breakdown occurs at a lower voltage than that of the p-n11 coupling in the bulk silicon, the structure according to the present invention has the advantage that the breakdown occurs in the bulk silicon and the withstand voltage is improved.

次に本発明による構造を実現する丸めの、容易且つ確実
な製造方法を第4図に従い説明する。
Next, an easy and reliable manufacturing method for rounding to realize the structure according to the present invention will be explained with reference to FIG.

まず、第4図(a) K示すようにシリコン基板値υ表
面を300A@化し、これをゲート酸化膜−とし、所望
のしきい値電圧な得るためにポロンを50keyでI 
X 10”/a11選択的にイオン注入し、更に十のh
K poly −81を300OA堆積しpoly −
8iにPOCl3拡散、あるいはPSq拡散等でn型不
純物を導入し低抵抗化し九gipoly −81及び酸
化膜をパターンユングしてゲート電極的を形成する。
First, as shown in FIG. 4(a) K, the surface of the silicon substrate was made to have a value of 300 A, and this was used as a gate oxide film. In order to obtain the desired threshold voltage, poron was irradiated with 50 keys.
x 10”/a11 selective ion implantation and further 10 h
K poly-81 was deposited at 300OA and poly-
An n-type impurity is introduced into 8i by POCl3 diffusion or PSq diffusion to lower the resistance, and 9gipoly-81 and an oxide film are patterned to form a gate electrode.

次にチャネル領域となる部分に選択的に不純物をイオン
注入し、所望のしきい値電圧に制御する。
Next, impurity ions are selectively implanted into the portion that will become the channel region, and the threshold voltage is controlled to a desired threshold voltage.

しきい値電圧制御は、使用シリコンウェーへの不純物浸
度を選択することKよっても達成でき、その場合チャネ
ルイオン注入は省略することができる。次に第4図(b
)に示すように、レジスト■を塗布した後1選択的に開
口部を設け、ヒ素を50 KeVで2 x 1r)”/
cdイオン注入し、ソース領域的を形成する。次に第4
図(e)に示すように、レジスト−を塗布し選択的に開
口部を設け、ヒ素を500KeVで2 X 10”/ 
csfイオン注入し、□ヒ素濃度が8i基板表面から約
0.28j+mのところにピークがくるようにドレイン
領域(財)を形成する。
Threshold voltage control can also be achieved by selecting the degree of impurity penetration into the silicon wafer used, in which case channel ion implantation can be omitted. Next, Figure 4 (b
), after applying the resist ■, selectively create openings and apply arsenic at 50 KeV 2 x 1r)''/
CD ions are implanted to form a source region. Then the fourth
As shown in Figure (e), resist is applied, openings are selectively formed, and arsenic is applied at 500 KeV at 2 x 10”/
CSF ions are implanted to form a drain region so that the arsenic concentration peaks at approximately 0.28j+m from the surface of the 8i substrate.

その後レジストを剥離した後ソース−及びドレイン領域
−のヒ素を活性化させるために1000’C10分間熱
処理を行なう。ドレインにイオン注入する不純物として
、ヒ素は拡散係数が小さいため。
Thereafter, after stripping off the resist, heat treatment is performed at 1000'C for 10 minutes to activate arsenic in the source and drain regions. As an impurity to be ion-implanted into the drain, arsenic has a small diffusion coefficient.

本発明の構造を得るためぺけ、精度よくコントロールで
き最適である。この他に81基板中でall不純物とな
るものなら何でもよく、リン等でも十分本発明は実現で
きる。
In order to obtain the structure of the present invention, it is possible to control the process with high precision and is optimal. In addition, any impurity that becomes an all impurity in the 81 substrate may be used, and the present invention can be realized even with phosphorus or the like.

また、p−チャネルトランジスタの場合には、ソース・
、トレイン領域形成には、ボロン等のsi中でPW不純
物となる元素を用いればよい。
In addition, in the case of a p-channel transistor, the source
For forming the train region, an element such as boron that becomes a PW impurity in Si may be used.

以上・説明したように本発明においてドレイン領域を形
成するためにイオン注入を用いているため。
This is because, as explained above, ion implantation is used to form the drain region in the present invention.

ソース及びドレインをゲートに対してセルファラインで
形成でき、微細デバイス、高集積LSIに最適である。
The source and drain can be formed with self-alignment lines relative to the gate, making it ideal for fine devices and highly integrated LSIs.

まだゲートとトレインが従来構造のものより離れている
ためゲート−ドレイン間容量が小さく、ミラー動電が少
なくなるという長所がある。
However, since the gate and the train are separated from each other compared to the conventional structure, the gate-drain capacitance is small and Miller electrodynamics is reduced.

次に本発明の他の実施例を第5図に従い説明する。前記
実施例ではドレイン領域(51)のみSt基板(52)
表面下に埋設し九が、第5図に示すようにソース領域(
53)も同様に埋設することができる。
Next, another embodiment of the present invention will be described with reference to FIG. In the above embodiment, only the drain region (51) is connected to the St substrate (52).
The source region (9) buried below the surface is shown in Figure 5.
53) can also be buried in the same way.

ソース領域(53)がゲート酸化膜(54)から約0.
2s程度離れている場合には、ノース−基板間のBul
lt −in pot@ntial及び、ゲート電圧に
よるゲート側からの空乏層の伸びによつて、ソースーチ
□ャネル間は、十分に接続することができる。
The source region (53) is about 0.0 mm away from the gate oxide film (54).
If the distance is about 2s, the Bul between the north and the board
Due to lt-in pot@ntial and the extension of the depletion layer from the gate side due to the gate voltage, the source channel can be sufficiently connected.

この実施例の場合、MO8)ランジスタは双方向性とな
り、より一般性をもち、まえ製造工程もソース領域、ド
レイン領域が同時に形成可能なため簡単になるという長
所がある。
In the case of this embodiment, the MO8) transistor is bidirectional, has more generality, and has the advantage that the manufacturing process is simplified because the source region and drain region can be formed at the same time.

また1本発明の構造を得る別の方法としてまず、ドレイ
ン領域を81表面に形成した優、Sトを約0.211m
エピタキシャル成長させ、ドレインを埋設し、その後、
ソース領域、ゲート電極を形成する方法もある。
In addition, as another method for obtaining the structure of the present invention, first, a drain region is formed on the surface of the 81st layer with a thickness of about 0.211m.
Epitaxially grow and bury the drain, then
There is also a method of forming a source region and a gate electrode.

以上、本発明を用いれば微細トランジスタで大きな問題
となる、ホットエレクトロンのゲート酸化膜への注入に
起因するトランジスタの信頼性低ドを夷積度を低丁させ
ることなく、効果的に改善することができ、しかもゲー
ト〜ドV1ン間容量を減少させることができる。
As described above, by using the present invention, it is possible to effectively improve the low reliability of transistors caused by the injection of hot electrons into the gate oxide film, which is a big problem in fine transistors, without reducing the degree of integration. Moreover, the capacitance between the gate and V1 can be reduced.

尚、以上の説明に訃いて、NチャネルrJO8トランジ
スタがクリコンJIl板上にデバイスが!a作された場
合について述べたが、PチャネルMO8)2ンジスタに
も適用され、さらには絶縁基板上に形成された?J O
sトランジスタにも同様に適用される・ことはもちろん
である、
In addition, based on the above explanation, an N-channel rJO8 transistor is a device on a silicon JIl board! Although we have described the case where it is fabricated, it can also be applied to P-channel MO8)2 transistors, and furthermore, it may be fabricated on an insulating substrate. J.O.
Of course, the same applies to s transistors as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来構造のM08トランジスタを示す断面概略
図、第2図(a) 、 (b)はそれぞれpn接合の基
板不純物濃度分布と電界強度分布を示す図、第3図は1
本発明のトランジスタ構造を示す断面概略図、第4図(
1)〜(C)は、本発明を実現する丸めの製造工程を示
す断I[lI略図、1lE5図は、その他の実施例を示
す断面概略図である0図において。 30・・・ソース領域。 31・・・ドレイン領域。 32・・・基板領域。 34・・・ゲート酸化膜。 36・・・ゲート電極。 44.46・・・レジスト。 (7317)代理人 弁理士 則 近 憲 佑(はが1
名)第2図 P1#冶(面0・り一位置 bn f’−n接合面かうの植1
Figure 1 is a cross-sectional schematic diagram showing an M08 transistor with a conventional structure, Figures 2 (a) and (b) are diagrams showing the substrate impurity concentration distribution and electric field strength distribution of the pn junction, respectively, and Figure 3 is a diagram showing the 1
FIG. 4 is a schematic cross-sectional view showing the transistor structure of the present invention (
1) to (C) are cross-sectional diagrams illustrating the rounding manufacturing process for realizing the present invention; FIG. 11E5 is a cross-sectional schematic diagram showing another embodiment; 30... Source area. 31...Drain region. 32...Substrate area. 34...Gate oxide film. 36...Gate electrode. 44.46...Resist. (7317) Agent Patent Attorney Noriyuki Chika (Haga1
name) Fig. 2 P1 # ji (plane 0, ri 1 position bn f'-n joint surface 1)

Claims (1)

【特許請求の範囲】 tl)alE1導電型の半導体領域と、この半導体領域
に形成され九第2導電型のソース領域とドレイン領域と
、このノース領域とドレイン領域間の前記半導体領域表
面に絶縁膜を介して形成されたゲート電極とを有する半
導体装置において、前記ソース領域及び前記ドレイン領
域のうち、少なくとも前記ドレイン領域が前記半導体領
域表面下に埋設されていることを特徴とする半導体装置
。 (2)前記ドレイン領域が少なくとも100A以上壜設
されていることを特徴とする特許 範囲嬉1項記載の半導体装置。
[Claims] tl) A semiconductor region of an alE1 conductivity type, a source region and a drain region of a second conductivity type formed in this semiconductor region, and an insulating film on the surface of the semiconductor region between the north region and the drain region. A semiconductor device having a gate electrode formed through a gate electrode, wherein at least the drain region of the source region and the drain region is buried under the surface of the semiconductor region. (2) The semiconductor device according to item 1 of the patent scope, wherein the drain region is provided with a diameter of at least 100 A or more.
JP56130173A 1981-08-21 1981-08-21 Semiconductor device Pending JPS5832462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56130173A JPS5832462A (en) 1981-08-21 1981-08-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56130173A JPS5832462A (en) 1981-08-21 1981-08-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5832462A true JPS5832462A (en) 1983-02-25

Family

ID=15027776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56130173A Pending JPS5832462A (en) 1981-08-21 1981-08-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5832462A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680603A (en) * 1985-04-12 1987-07-14 General Electric Company Graded extended drain concept for reduced hot electron effect
US4691433A (en) * 1985-04-12 1987-09-08 General Electric Company Hybrid extended drain concept for reduced hot electron effect
JP2002543593A (en) * 1999-04-22 2002-12-17 アクレオ アーベー High temperature available SiC field effect transistor, use of said transistor and method of manufacturing same
EP1577952A1 (en) * 2004-03-09 2005-09-21 STMicroelectronics S.r.l. High voltage insulated gate field-effect transistor and method of making the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680603A (en) * 1985-04-12 1987-07-14 General Electric Company Graded extended drain concept for reduced hot electron effect
US4691433A (en) * 1985-04-12 1987-09-08 General Electric Company Hybrid extended drain concept for reduced hot electron effect
JP2002543593A (en) * 1999-04-22 2002-12-17 アクレオ アーベー High temperature available SiC field effect transistor, use of said transistor and method of manufacturing same
EP1577952A1 (en) * 2004-03-09 2005-09-21 STMicroelectronics S.r.l. High voltage insulated gate field-effect transistor and method of making the same
US7417298B2 (en) 2004-03-09 2008-08-26 Stmicroelectronics, S.R.L. High voltage insulated-gate transistor

Similar Documents

Publication Publication Date Title
Snoeys et al. A new NMOS layout structure for radiation tolerance
US9496252B2 (en) ESD protection device with improved bipolar gain using cutout in the body well
US7400016B2 (en) Semiconductor device realizing characteristics like a SOI MOSFET
US7238987B2 (en) Lateral semiconductor device and method for producing the same
US7626229B2 (en) Semiconductor device and method for fabricating the same
US5362982A (en) Insulated gate FET with a particular LDD structure
US20140084368A1 (en) Semiconductor Device with Increased Breakdown Voltage
US4924277A (en) MIS transistor device
EP0419128A1 (en) Silicon MOSFET doped with germanium to increase lifetime of operation
US7005354B2 (en) Depletion drain-extended MOS transistors and methods for making the same
US5060033A (en) Semiconductor device and method of producing semiconductor device
US11569346B2 (en) Semiconductor device with low random telegraph signal noise
US6204543B1 (en) Semiconductor device having LDD structure and method for producing the same
US20170373174A1 (en) Radiation enhanced bipolar transistor
US6476430B1 (en) Integrated circuit
US7049199B2 (en) Method of ion implantation for achieving desired dopant concentration
JPS5832462A (en) Semiconductor device
JP2635096B2 (en) Semiconductor device and manufacturing method thereof
JPS6255309B2 (en)
US5180682A (en) Semiconductor device and method of producing semiconductor device
JP3059009B2 (en) Semiconductor device and manufacturing method thereof
US8878261B2 (en) Semiconductor device and method of manufacturing the same
JPH04313238A (en) Semiconductor device
JPH05102477A (en) Semiconductor device
JPH03242976A (en) Semiconductor device