JPS5832456A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5832456A
JPS5832456A JP13116181A JP13116181A JPS5832456A JP S5832456 A JPS5832456 A JP S5832456A JP 13116181 A JP13116181 A JP 13116181A JP 13116181 A JP13116181 A JP 13116181A JP S5832456 A JPS5832456 A JP S5832456A
Authority
JP
Japan
Prior art keywords
film
mask
base
emitter
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13116181A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sakai
坂井 弘之
Tsutomu Fujita
勉 藤田
Toyoki Takemoto
竹本 豊樹
Kenji Kawakita
川北 憲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13116181A priority Critical patent/JPS5832456A/en
Publication of JPS5832456A publication Critical patent/JPS5832456A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To substantially simplify the manufacturing process as well as to contrive high speed operation and high density for the titled device by a method wherein a high density inert base layer and an emitter are formed in a self- matching manner by performing a mask-matching. CONSTITUTION:An n<+> buried layer 12, an n type epitaxial layer 13, a polycrystaline Si 14, an isolation oxide film 17 and an active base layer 18 are formed on a p type semiconductor substrate 11. Subsequently, after a polycrystalline Si 19 and a nitride Si film 20 have been formed on the whole surface, a patterning is performed on a resist film 21. Then, an etching is successively performed on the film 20, the Si 19, and a nitride Si film 16 using the film 21 as a mask. A high density inert base layer 22 is then formed by implanting a B<+> ion under the condition wherein the film 21 is left over. Then, after the film 21 has been removed, an oxide film 23 is formed on the Si 14 by performing selective oxidization using the film 16 as a mask. The film 20 is then removed. At this time, a side etching is performed on the film simultaneously. Then, the exposed base oxide film 15 is removed. An oxide film 24 is then formed by performing selective oxidization using the film 16 as a mask. Then, the film 16 is removed and an emitter 25 is formed in a self-matching manner.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関するものであり、従
来のバイポーラTr(トランジスタ)に比べ、ベース抵
抗を非常に小さく、シかも自己整合的に形成することに
より、高周波特性を改善し、高速化、高密度化を図りた
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and the base resistance is extremely small compared to conventional bipolar transistors, and the high frequency characteristics are improved by forming the base resistance in a self-aligned manner. This technology has been improved to achieve higher speed and higher density.

近年、半導体装置はますます高密度化、高速化の方向に
進み、素子の寸法を小さくするとともに性能をさらに向
上させる必要に迫られている。
In recent years, semiconductor devices have become increasingly denser and faster, creating a need to reduce element dimensions and further improve performance.

一般にE CL (Emitter Coupled 
Logic )回路においては、遅延時間の改善(すな
わち高速化)に効(Trパラメータとしては小電流領域
では■ベース抵抗rbbl、■ベース・コレクタ間容量
CBc1■利得帯域幅積fT1の順である。■のベース
・コレクタ間容量CBcやその他の容量を減少させる方
法としては絶縁分離方式が広く用いられている。■の利
得帯域幅積fTを上げるためにはエミッタやベース接合
を浅くして、実効的ベース幅を薄くすることによって改
善がされている。
Generally E CL (Emitter Coupled
Logic) circuit, it is effective in improving the delay time (that is, increasing the speed) (Tr parameters in the small current region are: ■ base resistance rbbl, ■ base-collector capacitance CBc1, ■ gain bandwidth product fT1. ■ The isolation method is widely used as a method to reduce the base-collector capacitance CBc and other capacitances.In order to increase the gain bandwidth product fT of Improvements have been made by making the base width thinner.

したがりて、さらにTrの高速化を図るためにはベース
抵抗rbblをいかに小さくするかが重要な問題となり
てくる。Trの高速化、高密度化を最天眼発揮するため
には、絶縁分離方式によりて接合容量を減少させ、さら
にベース抵抗を極力小さくすることが必要となりてくる
Therefore, in order to further increase the speed of the Tr, an important issue is how to reduce the base resistance rbbl. In order to maximize the speed and density of transistors, it is necessary to reduce the junction capacitance by using an insulation separation method and further to reduce the base resistance as much as possible.

従来の絶縁分離方式におけるバイポーラTrの構造を第
1図に示す。第1図において、1はたとえばp型半導体
基板、2はn+埋込層、3はn型エピタキシャル層、4
は選択酸化によって形成された分離酸化膜、6はベース
層、6はエミッタ、6′はコレクタ・コンタクト部、7
はコンタクト部開口用の酸化膜であり、8はAt配線を
示している。
FIG. 1 shows the structure of a bipolar transistor in a conventional insulation isolation system. In FIG. 1, 1 is a p-type semiconductor substrate, 2 is an n+ buried layer, 3 is an n-type epitaxial layer, and 4 is a p-type semiconductor substrate.
is an isolation oxide film formed by selective oxidation, 6 is a base layer, 6 is an emitter, 6' is a collector contact portion, 7
1 is an oxide film for opening a contact portion, and 8 indicates an At wiring.

この第1図の絶縁分離方式においては、ベース層6の側
面及びエミッタ6の側面の一部が分離酸化膜4で覆われ
ているため、接合の側面部の容量を除去している。また
、分離が酸化膜で形成されているため、pn接合分離方
式のようにベース層とp型分離領域の距離を開ける必要
がいらないので、接合部の面積を小さくす、る・ことが
でき、容量を小さくしている。
In the insulation isolation method shown in FIG. 1, the side surfaces of the base layer 6 and the side surfaces of the emitter 6 are partially covered with the isolation oxide film 4, so that the capacitance on the side surfaces of the junction is removed. In addition, since the isolation is formed by an oxide film, there is no need to increase the distance between the base layer and the p-type isolation region as in the pn junction isolation method, so the area of the junction can be reduced. The capacity is reduced.

第2図は第1図のTr要部を示したものでありて、図中
の番号は第1図と全く同一番号で示している。第2図に
おいてエミッタ6の端部からベース・コンタクトまでの
距離(図中すで示した距#)は主としてエミッタ電極8
とベース電極ぎの距離(図中Cで示す距離)によりて決
められる。すなわち、At配線よりなる電極8,8′が
ショートを生じない程度に距離を開けなければならない
FIG. 2 shows the main parts of the Tr shown in FIG. 1, and the numbers in the figure are the same as those in FIG. 1. In Fig. 2, the distance from the end of the emitter 6 to the base contact (distance # already shown in the figure) is mainly the distance between the emitter electrode 8 and the base contact.
It is determined by the distance between the base electrode and the base electrode (distance indicated by C in the figure). That is, the distance between the electrodes 8 and 8', which are made of At wiring, must be large enough to prevent short-circuiting.

ところで、ベース抵抗TbbIは次のように2つの部分
の直列抵抗として表わされる。すなわち、エミッタ直下
の部分(図中aで示す部分)とエミッタ端部からベース
・コンタクトまでの部分(図中すで示す部分)の直列抵
抗として表わされる。
By the way, the base resistance TbbI is expressed as a series resistance of two parts as follows. That is, it is expressed as a series resistance of the part immediately below the emitter (the part indicated by a in the figure) and the part from the emitter end to the base contact (the part already indicated in the figure).

エミッタ直下の部分はエミッタサイズによって決まるた
めあまり小さくすることはできない。エミッタ端部から
ベース・コンタクトまでの部分は前述のようにAtの配
線間隔によりて決められる。
The part directly under the emitter cannot be made very small because it is determined by the emitter size. The portion from the emitter end to the base contact is determined by the At interconnect spacing as described above.

したがりて、エミッタ端部からベース・コンタクトまで
の距離を小さくすることによりて、ベース抵抗rbbl
を小さくすることができる。またエミッタ端部からベー
ス・コンタクトまでの距離を小さくすれば、必然的にベ
ース面積も小さくなるの6  ・−7 でベース・コレクタ間容量CBcも減少することになる
Therefore, by reducing the distance from the emitter end to the base contact, the base resistance rbbl
can be made smaller. Furthermore, if the distance from the emitter end to the base contact is made smaller, the base area will inevitably become smaller, resulting in a reduction in the base-collector capacitance CBc.

本発明はこのような問題の検討に鑑み、絶縁分離方式に
て接合容量を減少させた上で、さらにエミッタ端部から
ベース・コンタクトまでの距離を自己整合的に非常に小
さくし、しかもXZ等の配線はショートを起こすことな
く楽に配線ができるように、ベース抵抗を減少させるこ
とによりて高速化、高密度化を可能とした半導体装置の
製造方法を提供せんとするものである。
In consideration of these problems, the present invention reduces the junction capacitance by using an insulation isolation method, and furthermore makes the distance from the emitter end to the base contact extremely small in a self-aligned manner. The present invention aims to provide a method of manufacturing a semiconductor device that enables higher speed and higher density by reducing the base resistance so that wiring can be easily performed without causing short circuits.

以下、第3図四〜回とともに本発明を適用した具体的な
製造方法の一実施例を示す。第3図においては絶縁分離
方式のバイポーラTrに本発明を適用した製造工程を示
す。
An example of a specific manufacturing method to which the present invention is applied will be shown below with reference to FIGS. FIG. 3 shows a manufacturing process in which the present invention is applied to an insulation isolation type bipolar transistor.

第3図四において、11はたとえばp型半導体基板、1
2はn+W込み層、13はn型エピタキシャル層であり
、たとえば1.2μm厚に形成している。14はpol
y si(多結晶シリコン)でたとえば4000Aの厚
さに形成してあり、16は6oOA厚の下地酸化膜、1
6は酸素を通過しない窒化17は窒化ケイ素膜16.下
地酸化膜16゜pOl”l l1il 4.  n型エ
ピタキシャル層13を各々エツチングした後、選択酸化
によりて形成された分離酸化膜であり、たとえば1.9
μm厚に形成している。この時の選択酸化は♂埋込の層
12の持ち上がりによる耐圧の劣化を防ぐため高圧酸化
を用いるのが望ましい。たとえば1000℃、6.5K
g / ct/Iの条件で酸化すると約140分と短時
間で1.9μmの酸化膜が形成できる。18は選択酸化
した後、ボロン(B+)のイオン注入によりて形成され
た低濃度の活性ベース層であり、n型エピタキシャル層
13から0.4μmの深さまで形成している。
In FIG. 3, 11 is, for example, a p-type semiconductor substrate, 1
2 is an n+W embedded layer, and 13 is an n-type epitaxial layer, which are formed to have a thickness of, for example, 1.2 μm. 14 is pol
y si (polycrystalline silicon) to a thickness of, for example, 4000A, 16 is a base oxide film with a thickness of 6oOA, 1
6 is a nitride film that does not pass oxygen 17 is a silicon nitride film 16. Base oxide film 16゜pOl''l l1il 4. This is an isolation oxide film formed by selective oxidation after etching the n-type epitaxial layer 13, for example, 1.9
It is formed to have a thickness of μm. At this time, it is desirable to use high-pressure oxidation for selective oxidation in order to prevent deterioration of breakdown voltage due to lifting of the male buried layer 12. For example, 1000℃, 6.5K
When oxidized under the conditions of g/ct/I, an oxide film of 1.9 μm can be formed in a short time of about 140 minutes. Reference numeral 18 denotes a low concentration active base layer formed by selective oxidation and boron (B+) ion implantation, and is formed to a depth of 0.4 μm from the n-type epitaxial layer 13.

その後、全面にpoly sit 9を100OAさら
に窒化ケイ素膜20を600A形成してから、フォトリ
ソ法によりてレジスト膜21をエミッタ及ヒコレクタ・
コンタクト部より少し広くなる程度にパターニングする
(第3図B)。
After that, a poly sit 9 of 100 OA and a silicon nitride film 20 of 600 Å are formed on the entire surface, and then a resist film 21 is formed on the emitter and collector by photolithography.
Pattern it so that it is slightly wider than the contact part (Fig. 3B).

第3図(qにおいては、レジスト膜21をマスクより、
窒化ケイ素膜20. poty sil g、窒化ケイ
素膜16の3層を連続的にエツチングする。このCF4
ガスを用いたプラズマエツチングでは、窒化ケイ素膜と
酸化膜の選択比は10以上、  potyBl  と酸
化膜の選択比は26以上あるので、下地酸化膜16はエ
ツチングのストッパーの役目を果たす効果を持りている
。この3層をエツチングした後、レジスト膜21を付け
た状態でボロン(B+)をイオン注入することにより高
濃度の不活性ベース層22が自己整合的に形成される。
FIG. 3 (in q, the resist film 21 is masked,
Silicon nitride film 20. The three layers of silicon nitride film 16 are etched successively. This CF4
In plasma etching using gas, the selectivity ratio between the silicon nitride film and the oxide film is 10 or more, and the selectivity ratio between potyBl and the oxide film is 26 or more, so the underlying oxide film 16 has the effect of acting as an etching stopper. ing. After etching these three layers, a high concentration inert base layer 22 is formed in a self-aligned manner by ion-implanting boron (B+) with the resist film 21 attached.

この不活性ベース層22はいわゆるグラフトベースであ
りてたとえば0.6μmの深さまで形成しベース抵抗を
下げるのとベース・コンタクトを形成する役割を持りて
いる。
This inactive base layer 22 is a so-called graft base, and is formed to a depth of, for example, 0.6 μm, and has the role of lowering the base resistance and forming a base contact.

その後、レジスト膜21を除去してから、窒化ケイ素膜
16をマスクとして選択酸化により、0  ″ poty ail Atに3000A酸化膜23を形成
する。
Thereafter, after removing the resist film 21, a 3000A oxide film 23 is formed at 0'' poty ail At by selective oxidation using the silicon nitride film 16 as a mask.

この時、最初形成した4000A (D poty s
i  14のうち約1500Aが酸化膜23に変わるの
で、2500 A (D poty s i 14 カ
残ルコトニナル。窒化ケイ素膜2o上には酸化膜は形成
されない(第3図D)。
At this time, the first formed 4000A (D poty s
Approximately 1500 A of the i 14 is converted into the oxide film 23, so that 2500 A (D poty s i 14 remains). No oxide film is formed on the silicon nitride film 2o (FIG. 3D).

第3図(gは、本発明の最大の特徴となる窒化ケイ素膜
2Of:熱りん酸によるケミカルエツチングで除去する
工程である。この時、窒化ケイ素膜2゜がエツチングさ
れるとともに、16の窒化ケイ素膜も同時にサイドエツ
チングされる。600Aの窒化ケイ素膜2oが完全にエ
ツチングされる間に、窒化ケイ素膜16のサイドエツチ
ングは0.2〜0.3μm程度されている。その後、窒
化ケイ素膜16のサンドエツチングにより露出した下地
酸化膜16をバッファエツチングにより除去する。この
状態で、poty gN 4は窒化ケイ素膜16がサイ
ドエツチングされた部分のみ露出することになル。ツレ
カラpO4y8114が400OA残クチいる部分をフ
ッ酸:硝酸系のエツチング液でn型エピタキシャル層1
3に到達するまでケミカルエツチングする。この時、同
時にpoty sN 9も除去されている。フッ酸:硝
酸系のエツチング液ではpozy stはエツチングさ
れるが、酸化膜及び窒化ケイ素膜はエツチングされない
。この状態では14のpoly siは0.7〜o、s
μmの距離で自己整合的に開口されている(第3図F)
。本発明を用いる大きな特徴は窒化ケイ素膜2oを除去
する際に、同時に窒化ケイ素膜16もサイドエツチング
されるために、全て自己整合的にpoly sit 4
をサブミクロンの距離で開口できることにある。
Figure 3 (g) shows the step of removing the silicon nitride film 2Of, which is the biggest feature of the present invention, by chemical etching with hot phosphoric acid. The silicon film is also side etched at the same time.While the 600A silicon nitride film 2o is completely etched, the side etching of the silicon nitride film 16 is approximately 0.2 to 0.3 μm. The base oxide film 16 exposed by the sand etching is removed by buffer etching.In this state, only the side-etched portion of the silicon nitride film 16 of the poty gN4 is exposed.400 OA of Tsurekara pO4y8114 remains. N-type epitaxial layer 1 is etched using a hydrofluoric acid/nitric acid etching solution.
Chemical etching is performed until reaching 3. At this time, poty sN 9 is also removed at the same time. A hydrofluoric acid/nitric acid based etching solution etches pozy st, but does not etch oxide films or silicon nitride films. In this state, the poly si of 14 is 0.7~o,s
Apertures are self-aligned at a distance of μm (Fig. 3F)
. A major feature of using the present invention is that when the silicon nitride film 2o is removed, the silicon nitride film 16 is also side-etched at the same time, so that all poly sit 4 is self-aligned.
The reason is that the aperture can be made at a submicron distance.

第3図日においては、サイドエツチングされた窒化ケイ
素膜1eをマスクとして選択酸化により3000Aの酸
化膜24を形成している。この選択酸化により、形成さ
れた酸化膜24にてエミッタ部とベース・コンタク)t
での距離は1μm以下で分離されたことになる。その後
、窒化ケイ素膜16、下地酸化膜16をそれぞれ除去し
てからpoly sil 4を1000〜1500 A
 X−y テ7グする。
In FIG. 3, an oxide film 24 of 3000 Å is formed by selective oxidation using the side-etched silicon nitride film 1e as a mask. Through this selective oxidation, the formed oxide film 24 makes contact between the emitter part and the base.
This means that they are separated by a distance of 1 μm or less. After that, after removing the silicon nitride film 16 and the base oxide film 16, polysil 4 was heated at 1000 to 1500 A.
X-y te7gu.

この状態ではエミッタ及びコレクタΦコンタクトとなる
部分はpozy atが露出しているが、他の部分は全
て260OA以上の酸化膜が形成されている。
In this state, pozy at is exposed in the portions that will become the emitter and collector Φ contacts, but an oxide film of 260 OA or more is formed in all other portions.

よりて、酸化膜をマスクとして砒素(As)をイ第0 ン注入することによりて、エミッタ25及びコレクタ・
コンタクト26′を自己整合的に形成することができる
。エミッタは0.2μmの深さまで形成している。これ
で、エミッタ端部からベースコンタクトまでの距離は1
μm以下と非常に小さく形成することができベース抵抗
も極力小さくすることができる。また、高濃度のエミッ
タ26と高濃度の不活性ベース層22が直接接していな
いのでエミッタ・ベース間の接合が悪くなるということ
もなく雑音、を防止する効果も持りている。その後、p
ozy ail Atに電極取出し口を開口し、At配
線26をすることによりて素子が完成する(第3図H)
Therefore, by implanting arsenic (As) using the oxide film as a mask, the emitter 25 and the collector
Contact 26' can be formed in a self-aligned manner. The emitter is formed to a depth of 0.2 μm. Now the distance from the emitter end to the base contact is 1
It can be formed very small, less than μm, and the base resistance can also be made as small as possible. Furthermore, since the highly doped emitter 26 and the highly doped inactive base layer 22 are not in direct contact with each other, the junction between the emitter and the base is not deteriorated, which also has the effect of preventing noise. Then p
The device is completed by opening an electrode outlet in the ozy ail At and connecting the At wiring 26 (Fig. 3H).
.

以上述べてきたように、本発明は1回のマスク合せによ
りて、ベース抵抗を下げるための高濃度不活性ベース層
、エミッタを自己整合的に直接接することなく形成する
ことができ、マスク合せ工程の回数を減らし、プロセス
全体の工程も大幅に簡略化することができる。しかも、
第1の窒化ケイ素膜、poz7 si、第2の窒化ケイ
素膜の3層構1 1  <−; 造において、第2の窒化ケイ素膜を除去すると同時に第
1の窒化ケイ素膜もサイドエツチングされるため、エミ
ッタとベース・コンタクトまでの距″離を1μm以下に
自己整合的に形成することができる。故にベース抵抗r
bb/を極力小さくすることができ、高周波特性は大き
く改善され、高速化を図ることができる。
As described above, in the present invention, a high concentration inactive base layer for lowering base resistance and an emitter can be formed in a self-aligned manner without direct contact with each other by one mask alignment, and the mask alignment process The number of steps can be reduced and the overall process can be greatly simplified. Moreover,
In the three-layer structure 1 1 <-; of the first silicon nitride film, poz7 si, and second silicon nitride film, the first silicon nitride film is also side-etched at the same time as the second silicon nitride film is removed. , the distance between the emitter and the base contact can be formed in a self-aligned manner with a distance of 1 μm or less. Therefore, the base resistance r
bb/ can be made as small as possible, high frequency characteristics are greatly improved, and high speeds can be achieved.

以上のように本発明は自己整合的に形成できるため、工
程を非常に簡略化するとともに、高速化。
As described above, the present invention can be formed in a self-aligned manner, which greatly simplifies the process and speeds it up.

高密度化を図りた半導体装置の製造方法に大きく寄与し
、また、工業的にも非常に価値の高いものである。
It greatly contributes to the manufacturing method of high-density semiconductor devices, and is also of great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の絶縁分離方式を用いたトランジスタの構
造断面図、第2図は第1図のトランジスタの要部断面図
、第3図四〜に)は本発明の一実施例にかかる半導体装
置の要部製造工程図である。 14、 19−−・・−pot78i 、 f 6.2
0−・・−・−窒化ケイ素膜、21・・・・・・レジス
ト膜、22・−・・・・不活性ベース層、23,24・
・・・・・選択酸化により形成された絶縁膜、26・・
・・・・エミッタ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1 第1図 。 I2図 楓3図 /l    /Z
FIG. 1 is a cross-sectional view of the structure of a transistor using a conventional insulation isolation method, FIG. 2 is a cross-sectional view of a main part of the transistor shown in FIG. 1, and FIG. It is a manufacturing process diagram of the main part of the device. 14, 19--...-pot78i, f 6.2
0--Silicon nitride film, 21--Resist film, 22--Inactive base layer, 23,24-
...Insulating film formed by selective oxidation, 26...
...Emitter. Name of agent: Patent attorney Toshio Nakao and one other person1 Figure 1. Figure I2 Maple Figure 3 /l /Z

Claims (1)

【特許請求の範囲】[Claims] ベースとなる一方導電型半導体領域上に第1の導電性物
質及び第1の絶縁膜を形成し、ての後この上に、第2の
導電性物質及び第2の絶縁膜からなる所定パターンをレ
ジスト膜を用いて形成し、さらにこのレジストパターン
をマスクに前記第1の絶縁膜を除去する工程と、前記レ
ジストパターンをマスクに不活性ベースとなる高濃度一
方導電型半導体領域を形成し、前記第1の絶縁膜をマス
クとして酸化する工程と、前記第2導電性物質下の前記
第1絶縁膜をサイドエッチし、この残余前記第1の絶縁
膜をマスクとして酸化する工程と、前記残余筒1の絶縁
膜を除去した部分からエミッタとなる他方導電性半導体
領域を形成する工程とを備えたことを特徴とする半導体
装置の製造方法。
A first conductive material and a first insulating film are formed on a semiconductor region of one conductive type that will serve as a base, and then a predetermined pattern made of a second conductive material and a second insulating film is formed thereon. forming using a resist film, further removing the first insulating film using the resist pattern as a mask, forming a high concentration one conductivity type semiconductor region to serve as an inactive base using the resist pattern as a mask, oxidizing using the first insulating film as a mask; side-etching the first insulating film under the second conductive material and oxidizing using the remaining first insulating film as a mask; and oxidizing the remaining first insulating film as a mask; 1. A method of manufacturing a semiconductor device, comprising the step of forming another conductive semiconductor region to serve as an emitter from a portion from which an insulating film has been removed.
JP13116181A 1981-08-20 1981-08-20 Manufacture of semiconductor device Pending JPS5832456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13116181A JPS5832456A (en) 1981-08-20 1981-08-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13116181A JPS5832456A (en) 1981-08-20 1981-08-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5832456A true JPS5832456A (en) 1983-02-25

Family

ID=15051423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13116181A Pending JPS5832456A (en) 1981-08-20 1981-08-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5832456A (en)

Similar Documents

Publication Publication Date Title
JPH0340432A (en) Method of forming insulator at opening side wall
US4705599A (en) Method for fabricating bipolar transistor in integrated circuit
JPH06177345A (en) Semiconductor memory and its manufacture
JP2581652B2 (en) Method of manufacturing bipolar transistor structure
JPS62211917A (en) Formation of ohmic contact in p-type region
US4691436A (en) Method for fabricating a bipolar semiconductor device by undercutting and local oxidation
JPH0241170B2 (en)
KR100188085B1 (en) Method of manufacturing high-speed bipolar junction transistor
GB2179792A (en) Bipolar transistor
JPS5832456A (en) Manufacture of semiconductor device
JPH02153534A (en) Manufacture of semiconductor device
JP2663632B2 (en) Semiconductor device and manufacturing method thereof
JPH0136710B2 (en)
JPS6089969A (en) Semiconductor device and manufacture thereof
JP2574453B2 (en) Method for manufacturing semiconductor device
JP2004503937A (en) Heterostructure field effect transistor and method of manufacturing the same
JPS63114261A (en) Self-aligning base shunt for transistor
JPS61234564A (en) Manufacture of semiconductor device
JP2836393B2 (en) Semiconductor device and manufacturing method thereof
JP2575204B2 (en) Manufacturing method of bipolar semiconductor integrated circuit device
JPS62141768A (en) Semiconductor device and manufacture thereof
JPS60245171A (en) Manufacture of semiconductor integrated circuit device
JPH0157506B2 (en)
JPS63119264A (en) Semiconductor device
JPS60235460A (en) Semiconductor device