JPS5832365A - Mold nickel electrode - Google Patents

Mold nickel electrode

Info

Publication number
JPS5832365A
JPS5832365A JP56129830A JP12983081A JPS5832365A JP S5832365 A JPS5832365 A JP S5832365A JP 56129830 A JP56129830 A JP 56129830A JP 12983081 A JP12983081 A JP 12983081A JP S5832365 A JPS5832365 A JP S5832365A
Authority
JP
Japan
Prior art keywords
nickel
powder
tetravalent
active substance
nickel oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56129830A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Kenji Inoue
健次 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP56129830A priority Critical patent/JPS5832365A/en
Publication of JPS5832365A publication Critical patent/JPS5832365A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To produce a nickel electrode having high energy density by adding the tetravalent nickel oxide hydrate having high filling density in the nickel oxide as the main active substance thereby increasing the filling density of the nickel active substance and increasing the cell capacity. CONSTITUTION:The powder compound composed of 80wt% of nickel oxide powder as the main active substance, 5wt% of the metal nickel powder as the conductive agent, 10wt% of carbon powder and 5wt% of polyethylene as the binder is added with 1-10wt% of tetravalent nickel hydrate (NiO2.H2O) to produce the mixed powder which is molded under the preliminary molding pressure of 200kg/cm<2>. Then said molded pellet is covered with the nickel mesh of 100 mesh and finally molded with 300kg/cm<2>.

Description

【発明の詳細な説明】 本発明は成型式ニラケA/11%に関する%Oである・ アルカリニ次電池における正極活物質としてはニッケル
ーカドミウム電池、ニッケμ−亜鉛電池或いは:フケル
ー鉄電池に見られるように=ツケA/が最も優れ有用さ
れている。
Detailed Description of the Invention The present invention is a molded Nirake A/11% % O. As a positive electrode active material in an alkaline secondary battery, it is found in a nickel-cadmium battery, a nickel μ-zinc battery, or a fukeru iron battery. So = Tsuke A/ is the most excellent and useful.

而して、近年に至ってはより一層のコードレス化や電子
機−の小型化が進んでおり、これに伴い機器電源である
電池も小型化及び−エネルギー密度化が要望されている
In recent years, however, electronic equipment has become more cordless and electronic equipment has become more compact, and along with this, there has been a demand for smaller batteries, which serve as power sources for equipment, and higher energy density.

とζろでエネルギー密度について云えば、ニッケル電極
は他の正極、例えば酸化銀電1iK比して非常に劣って
いる。仁れはニッケル電極の利用率が悪いことに起因し
ている。従って□、ニッケル電極のエネルギー密度の向
上011Fi如何に多くの活物質をつめ込み、且このつ
め込んだ活物質を如何KltJ率よく反応させて利用率
を高めるかにある。
In terms of energy density, nickel electrodes are very inferior to other positive electrodes, such as silver oxide electrodes (1iK). The burr is caused by poor utilization of the nickel electrode. Therefore, □Improving the energy density of a nickel electrode 011Fi depends on how much active material can be packed in, and how well the packed active material can be reacted with KltJ rate to increase the utilization rate.

本発明者等は勘る□褪につIll々突験検討した結果、
主活物質たる水酸化=7ケ〜粉末に4価の酸化ニッケル
水和物粉素な加えることにより、利用率を低下させるこ
となくニッケル活物質の充填密度を高めることができ依
ってエネルギー密度を同上せしめることt見出した。
As a result of various unexpected studies, the inventors believe that
By adding tetravalent nickel oxide hydrate powder to the main active material hydroxide = 7 ke powder, the packing density of the nickel active material can be increased without reducing the utilization rate, thereby increasing the energy density. I found out that the same thing applies.

本発明は上記亭寮に基づきなされたものであり、以下そ
の実施例について詳述する。
The present invention is based on the above-mentioned dormitory, and examples thereof will be described in detail below.

主活物質としての水酸化エフケル粉末801量%、導電
剤としてのニッケル金属粉末51量%、カーボン粉末1
0重量%及び結着剤としてのポリエチレン5重量%より
なる混合粉末に、4価の酸化ニッケル水和物(Ni−0
2・H2O)を水酸化二フケ〜に対し1〜101量%宜
で添加量を変化させた潟合粉京を予備成型圧200#/
d′c成型し、つイテこノ成型後ベレットを100メツ
V二〇二フケμ金網で覆った後、500#/dで最終f
i!IIしてニッケル電極とした。
801% by weight of EFCEL hydroxide powder as the main active material, 51% by weight of nickel metal powder as a conductive agent, 1% by weight of carbon powder
Tetravalent nickel oxide hydrate (Ni-0
Pre-molding pressure 200 #/
d'c molding, after molding, cover the pellet with 100mm V202μ wire mesh, and then final f at 500#/d.
i! II and used as a nickel electrode.

第1図は4価の酸化ニッケμ水相物のゐ加量に対するニ
ッケル電極の厚み(賽m)及び利用率(破線)O変化を
示し、厚みについて云えば添加量が増すほど薄くなり充
填密度が増大することが伺え、又利用率について云えば
添加量が5重量%tでは無添加の場合と比較して変化な
くそれ以上になると若干愚くなることがわかる。
Figure 1 shows the changes in the thickness (m) and utilization rate (dashed line) of a nickel electrode with respect to the addition of the tetravalent nickel oxide μ aqueous phase.As for the thickness, as the amount added increases, it becomes thinner and the packing density increases. As for the utilization rate, it can be seen that when the amount added is 5% by weight, there is no change compared to the case where no additive is added, and when the amount is more than that, it becomes slightly poorer.

尚、電極としては同一厚みにおけるニッケル活物質の充
填密度と利用率との関連において容量の増大が計れゐ範
囲で用いられる。
Note that the electrode is used within a range that can increase the capacity in relation to the packing density and utilization rate of the nickel active material at the same thickness.

第2図は1記ニツケル電極と鞠知O亜鉛電極とを一合せ
て作成したニッケ〃−亜鉛電池において、4価の酸化ニ
ッケル水和物の添加量を変化させた場合の容量変化を示
し、その添加量が1〜10重量%の範囲において無添加
の場合及び10重量%を越える場合に比して容量が増加
していることがわかる。
Figure 2 shows the change in capacity when the amount of tetravalent nickel oxide hydrate added is changed in a nickel-zinc battery made by combining the nickel electrode mentioned above and the Marichi O zinc electrode. It can be seen that when the amount added is in the range of 1 to 10% by weight, the capacity increases compared to when it is not added and when it exceeds 10% by weight.

4価の酸化ニッケル水和物を添加することによって充填
密度が増大する環111Fi詳かでない。しかし4価O
酸化ニッケル水和物を単独で成型した成型体と、同量の
水酸化ニッケI&/を単独で成型した成型体とを比較し
たところ前者の方が厚みは薄く且強度を大であった。こ
のことより4愉の酸化ニッケル水和物は充填密度を高<
amしうみ性質を有すると考えられる。
The details of the ring 111Fi in which the packing density is increased by adding tetravalent nickel oxide hydrate are unknown. However, tetravalent O
When a molded body made of nickel oxide hydrate alone was compared with a molded body made of the same amount of nickel hydroxide I&/ alone, the former was thinner and stronger. From this, the nickel oxide hydrate of 4-Y has a high packing density.
It is considered to have am-staining properties.

又、−4価の酸化ニッケル水和物の添加によりニッケル
活物質の利用率がほとんど低下しないという理由を考察
すると、4価O酸化;ツケV水和物は高次の酸化物であ
るため、ニッケル活物質の充電反応時、即ちN1tOE
)t→Ni0OHO筐応過程においてnloomの核と
なって作用するためであると考えられる。
In addition, considering the reason why the utilization rate of nickel active material hardly decreases by adding -4-valent nickel oxide hydrate, it is found that since the 4-valent O oxide hydrate is a higher-order oxide, During charging reaction of nickel active material, that is, N1tOE
)t→Ni0OHO This is thought to be because it acts as the nucleus of nroom in the reaction process.

上述した如く、本発明は成型式ニッケル電極に係り、主
活物質としての水酸化ニッケA/に充填密度の高い4価
の酸化ニッケy水和物を添加することKより、ニッケy
活物質O充填密度を高めて電池容量を増大させ二ネμギ
ー密度の高いニッケル電極を提供するものであり、その
工業的価値IIi極めて大である。
As mentioned above, the present invention relates to a molded nickel electrode, and by adding tetravalent nickel oxide hydrate with a high packing density to nickel hydroxide A/ as the main active material, nickel hydroxide can be formed.
The present invention provides a nickel electrode that increases the battery capacity by increasing the active material O packing density and has a high two-μg density, and its industrial value is extremely large.

4+  −面の簡単−鴫明 第1aは4価の酸化ニッケy水和物の添加量に対するニ
ッケル電極の厚み変化(91!繰)と利用率変化(破線
)を示す−、第2mは4価の水和物の添加量を変化させ
たニッケル電極を夫々用いた;フケルー亜鉛電池の容量
を示す一7cToる。
4+ - Simple surface - Shimei No. 1a shows the change in the thickness of the nickel electrode (91! cycles) and the change in utilization rate (dashed line) with respect to the amount of tetravalent nickel oxide hydrate added -, No. 2m shows the change in the utilization rate (dashed line) Nickel electrodes with varying amounts of hydrate added were used;

\二−ノ′\Ni-no'

Claims (1)

【特許請求の範囲】 ■ 主活物質たる水酸化ニッケル粉末と、4価の酸化ニ
ッケル水和物粉京とを主成分とする混合粉末を加圧酸型
してなる成型式;ツケ〃電榛。 ■ 4価O峻化ニッケル水和物の添加量が水酸化=フケ
N量に対して1〜10重量%である特許請求の範囲第■
積紀叡のFl!、Il!1式ニッケルIK観。
[Claims] ■ A molding method in which a mixed powder containing nickel hydroxide powder as the main active material and tetravalent nickel oxide hydrate powder is pressed into an acid mold; . ■ Claim No. 1 in which the amount of the tetravalent O nickel hydrate added is 1 to 10% by weight based on the amount of hydroxide = dandruff N.
Kiyoshi Seki's Fl! , Il! Type 1 nickel IK view.
JP56129830A 1981-08-19 1981-08-19 Mold nickel electrode Pending JPS5832365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56129830A JPS5832365A (en) 1981-08-19 1981-08-19 Mold nickel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56129830A JPS5832365A (en) 1981-08-19 1981-08-19 Mold nickel electrode

Publications (1)

Publication Number Publication Date
JPS5832365A true JPS5832365A (en) 1983-02-25

Family

ID=15019275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56129830A Pending JPS5832365A (en) 1981-08-19 1981-08-19 Mold nickel electrode

Country Status (1)

Country Link
JP (1) JPS5832365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567326A1 (en) * 1984-07-04 1986-01-10 Wonder IMPROVEMENTS IN NICKEL HYDROXIDE POSITIVE ELECTRODES FOR ALKALINE ACCUMULATORS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982942A (en) * 1972-11-20 1974-08-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982942A (en) * 1972-11-20 1974-08-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567326A1 (en) * 1984-07-04 1986-01-10 Wonder IMPROVEMENTS IN NICKEL HYDROXIDE POSITIVE ELECTRODES FOR ALKALINE ACCUMULATORS

Similar Documents

Publication Publication Date Title
US3104990A (en) Electrodes containing silver and cadmium compounds
JP2002117842A (en) Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery
JPS5832365A (en) Mold nickel electrode
JP4273568B2 (en) Lithium manganese composite oxide particulate composition and its production and application to lithium ion secondary battery
JPS5966060A (en) Zinc electrode for alkaline zinc storage battery
JP2765028B2 (en) Sealed alkaline battery
JPH02234356A (en) Sealed-type alkali battery
JP3568337B2 (en) Hydrogen storage alloy electrode and metal hydride storage battery
JPH0346758A (en) Nickel-hydrogen battery
JPS60105170A (en) Electroconductive silver oxide and silver oxide battery
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JPH0793138B2 (en) Positive electrode plate for battery and manufacturing method thereof
JP2004296190A (en) Nickel-hydrogen storage battery
JP3075114B2 (en) Nickel positive electrode for alkaline storage batteries
JP2000106184A (en) Nickel hydroxide electrode for alkaline storage battery, and the alkaline storage battery using this electrode
JP3573789B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPS5853157A (en) Electrode for storage battery
JPH04169059A (en) Hydrogen absorbing alloy electrode for alkaline storage battery
JPS6054167A (en) Divalent silver oxide battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JPH03127452A (en) Flat type alkaline battery
JPS6074352A (en) Zinc negative electrode for alkaline battery
JPS6290861A (en) Cadmium anode for alkaline storage battery
JPS6347113B2 (en)