JPS6054167A - Divalent silver oxide battery - Google Patents

Divalent silver oxide battery

Info

Publication number
JPS6054167A
JPS6054167A JP58161713A JP16171383A JPS6054167A JP S6054167 A JPS6054167 A JP S6054167A JP 58161713 A JP58161713 A JP 58161713A JP 16171383 A JP16171383 A JP 16171383A JP S6054167 A JPS6054167 A JP S6054167A
Authority
JP
Japan
Prior art keywords
amalgamated
silver
zinc powder
negative electrode
metallic silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58161713A
Other languages
Japanese (ja)
Inventor
Yoshio Uetani
植谷 慶雄
Kimitaka Koseki
小関 公崇
Kaoru Hisatomi
久富 薫
Yukio Tamaru
田丸 行男
Kazuo Ishida
和雄 石田
Akira Asada
浅田 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP58161713A priority Critical patent/JPS6054167A/en
Publication of JPS6054167A publication Critical patent/JPS6054167A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To decrease consumption of cellophene which is composed of separator and prevent internal short by forming a negative electrode by adding metal silver or amalgamated silver to amalgamated zinc powder. CONSTITUTION:Zinc powder having a particle size of 50-150 mesh is amalgamated to form amalgamated zinc powder. Metal silver or amalgamated silver having a particle size of 1-50mum is added to amalgamated zinc powder. By de- creasing particle size in the above range, surface area is increased and catalytic action to the reaction of oxygen and zinc is increased. Addition of 0.05-5pts.wt., preparably about 1pt.wt., silver or amalgamated silver to 100pts.wt. amalgamated zinc powder is effective. By using this mixture as negative mix 7, generation of internal short of battery is decreased.

Description

【発明の詳細な説明】 この発明はアマルガム化!11j鉛粉に金属銀ないしア
マルガム化金属銀を加えたものを負極剤とした酸化第二
銀電池に関する。
[Detailed description of the invention] This invention is amalgamated! 11j This invention relates to a ferric oxide battery using a negative electrode material prepared by adding metallic silver or amalgamated metallic silver to lead powder.

酸化第二銀゛電池においては、貯蔵中に酸化第二銀かつ
きの化学式; %式% で示すように分解して酸素を発生し、この酸素がセパレ
ータを構成するセロファンと反応してセロファンをl向
背させるため、セロファンによる銀イオンの捕捉効果が
低下し、銀イオンが負極側へ移動して内部短絡を生しる
という問題かある。
In a ferric oxide battery, during storage, ferric oxide decomposes and generates oxygen as shown in the chemical formula; This causes a problem in that the silver ion trapping effect of cellophane is reduced, and the silver ions move toward the negative electrode, causing an internal short circuit.

かかる問題を回避するために、この出願人(j、すでに
酸化第二銀の分解で発生した酸素を負極活物質としての
亜鉛粉と優先的に反応させ、これによってセロファンと
酸素との反応を可及的に111L止する方法(特開昭5
8−4269号公報〕を提案した。すなわち、この方法
は、負極剤としてのアマルガム化亜鉛粉に改良を加え、
表面を鉋〜水銀−亜鉛で合金化した亜鉛粉を用いること
により、銀の触媒作用によって酸素と亜鉛との反応を促
進させ、以って酸素によるセロファンの消゛侍を低減さ
せるようにしたもので′ある。
In order to avoid such problems, the applicant (j) has developed a method in which oxygen generated by the decomposition of silver oxide is preferentially reacted with zinc powder as a negative electrode active material, thereby allowing the reaction between cellophane and oxygen. How to stop 111L (Unexamined Japanese Patent Publication No. 5
No. 8-4269] was proposed. In other words, this method improves the amalgamated zinc powder used as the negative electrode material,
By using zinc powder whose surface is planed and alloyed with mercury and zinc, the reaction between oxygen and zinc is promoted by the catalytic action of silver, thereby reducing the disappearance of cellophane by oxygen. There is.

ところが、上記の既]ノ□1案法においては、亜鉛粉の
表面を銀−水銀−亜鉛で合金化する操作が面倒で、しか
も金属銀の前記触媒作用がその反応有効面積の関係から
付着量(合金化量)に見合うはとに充分に発揮されにく
いという問題をも有していた。
However, in the above-mentioned method No. There was also the problem that it was difficult to achieve sufficient performance commensurate with the amount of alloying.

この発明者らは、」二記観点からさらに検mlした結果
、亜鉛粉の表面を削述の々■く合金化しないでアマルガ
ム化亜鉛粉に単に金属銀ないしアマルガム化金属銀を混
合したときても、亜鉛と銀との・屯気的接触によって酸
素と亜鉛粉との反応に対する金属銀の触媒作用が有効に
発揮され、1jiJ記既提案のものに勝るとも劣らぬセ
ロファンの消費低減効果およびこれに基づく内部短絡の
発生防止効果が1(1られるものであることを知り、こ
の発明を完成するに至った。
As a result of further investigation from the viewpoints mentioned above, the inventors found that when metallic silver or amalgamated metallic silver was simply mixed with amalgamated zinc powder without alloying the surface of the zinc powder. Also, the catalytic effect of metallic silver on the reaction between oxygen and zinc powder is effectively exerted by the atmospheric contact between zinc and silver, and the effect of reducing consumption of cellophane is comparable to that of the proposed method described in 1jiJ. The present invention was completed based on the knowledge that the effect of preventing the occurrence of internal short circuits is 1 (1).

すなわち、この発明は、アマルガム化亜鉛粉に金属銀な
いしアマルガム化金属銀を加えて負極剤を構成したこと
を特徴とする酸化第二銀電池に係るものである。この発
明によれば、既提案法のように亜鉛粉の表面をt肯定手
段で合金化する必要かないため、電池の製造作業性の面
で非常に有利となる。また、金属銀ないしアマルガム化
金属銀の添加tj″J・に応じて触媒作用を発揮さぜる
ための反応有効面積を容易に得ることができるため、セ
ロファンの消費低減これに基つく内81S短絡の発生防
止に良好な結果を得ることができる。
That is, the present invention relates to a silver oxide battery characterized in that a negative electrode material is formed by adding metallic silver or amalgamated metallic silver to amalgamated zinc powder. According to the present invention, there is no need to alloy the surface of the zinc powder with the t-positive means as in the previously proposed method, which is very advantageous in terms of battery manufacturing workability. In addition, since it is possible to easily obtain an effective reaction area for exerting a catalytic action according to the addition of metallic silver or amalgamated metallic silver, the consumption of cellophane can be reduced. Good results can be obtained in preventing the occurrence of

この発明においては、一般に50〜150メツシュ程度
の亜鉛粉をまずアマルガム化してアマルガム化亜鉛粉を
得る。この方法は従来のアマルガム化亜鉛粉のつ(り方
と特に異なるところはなく、アマルガム化の程度として
は、亜鉛粉100重量部に対して水銀の使用量が5〜1
5重量部の割合となるようにすればよい。
In this invention, zinc powder of about 50 to 150 meshes is first amalgamated to obtain amalgamated zinc powder. This method is not particularly different from the conventional method of producing amalgamated zinc powder, and the degree of amalgamation is such that the amount of mercury used is 5 to 1 part by weight per 100 parts by weight of zinc powder.
The proportion may be 5 parts by weight.

上記亜鉛粉に添加小j合する金1.i銀ないしアマルガ
ム化金属銀としては、粒子径が1〜5 Q pm程度の
粒子状物が用いられ、粒子径を上述の如く小さくして表
面積を大きくすることにより[俊素と亜鉛との反応に対
する触媒作用に良好な結果を得ることができる。
1. Add a small amount of gold to the above zinc powder. As silver or amalgamated metallic silver, particulate matter with a particle size of about 1 to 5 Q pm is used, and by reducing the particle size as described above and increasing the surface area, good results can be obtained in the catalytic action of

上記金属銀ないしアマルガム化金属銀の添加ち1゜とじ
ては、アマルガム化亜鉛粉100重量部に対して005
〜5重H7都、好適には約1止量部程度とするのがよい
。このB士が少なずきては所」υ1の効果が得られず、
また多く)Sりすきると負極活物質量が少なくなって電
気量が低−ドするため好ましくない。
The addition of the above metallic silver or amalgamated metallic silver is 0.005 parts by weight per 100 parts by weight of amalgamated zinc powder.
The amount is preferably about 1 part to 5 parts, preferably about 1 part. If a few of these B-men come, the effect of υ1 cannot be obtained,
Also, if the amount of S is removed, the amount of negative electrode active material decreases and the amount of electricity decreases, which is not preferable.

なお、金属銀のアマルガム化の方法は)」1j記即鉛粉
の場合と同じである。アマルガム化の程度としては、金
属銀100重量ill≦に対して水銀の使用む↓が50
〜150重量部の割合となるようにすればよい。
The method for amalgamating metallic silver is the same as in the case of instant lead powder described in 1j. As for the degree of amalgamation, the use of mercury ↓ is 50
The proportion may be set to 150 parts by weight.

上述したアマルガム化亜鉛粉と金属銀ないしアマルガム
化金属銀とを所定割合で均一に混合して負極剤とし、こ
れを常法により電池内に収納することにより、この発明
の酸化第二銀電池が得られる。この電池は、従来のアマ
ルガム亜鉛粉だけを負極剤とした電l[1!、に較べて
保存中の内部短絡の発生が少ないという特徴を有し、こ
の点て+)iJ記既提案の電池に比し勝るとも劣らぬ良
好な結果が得られるとともに、上記既提案の′r、ij
i池の如き製造作業−にの問題を一1uJ生しないとい
う利点を有している。
The amalgamated zinc powder and metallic silver or amalgamated metallic silver described above are uniformly mixed in a predetermined ratio to form a negative electrode material, and the silver oxide battery of the present invention is produced by storing this in a battery using a conventional method. can get. This battery uses only conventional amalgam zinc powder as the negative electrode material. , has the characteristic that internal short circuits occur less during storage, and in this respect +) results as good as those of the previously proposed battery described in iJ can be obtained. r,ij
It has the advantage that it does not cause any problems in manufacturing operations such as Ikei.

以下に、この発明の上記効果を明らかにするための実施
例を比較例と対比して記述する。なお、以下において部
とあるのは重−:11部を意味するものとする。
Examples for clarifying the above-mentioned effects of the present invention will be described below in comparison with comparative examples. In addition, in the following, parts shall mean 11 parts.

実施例1 アマルガム化亜鉛粉(亜鉛粉J O011’f4+i一
部に対して水銀9 j;ISを用いてアマルガム化した
もの)99部に粒子径1.0 pnrの金属銀1部を加
え、よく混合L7て負極剤とし、これを以下の4口く電
池内に収納して図面に示されるようなホタン型の酸化第
二銀電池を作製した。
Example 1 1 part of metallic silver with a particle size of 1.0 pnr was added to 99 parts of amalgamated zinc powder (99 parts of zinc powder JO011'f4+i to a part of mercury; amalgamated using IS), and Mixture L7 was used as a negative electrode material, and this was housed in the following four batteries to produce a phothane type silver oxide battery as shown in the drawing.

すなわち、電解液の一131≦がt]:、入された正極
缶1に、酸化第二銀粉末475都、酸化第一銀粉末47
5部および二酸化鉛粉末5部力)らなる混合物260t
7tyを5トン/c1rfで加圧成形して得た直径9 
nnn 、厚さ0.7 tllllの正極剤2を挿入し
、この正極剤2上にセパレータ3および電解液吸収体4
を順次載置した。
That is, the electrolytic solution is 131≦t]: Into the positive electrode can 1, 475 pieces of ferric oxide powder and 477 pieces of ferrous oxide powder are added.
260 t of a mixture consisting of 5 parts of lead dioxide powder and 5 parts of lead dioxide powder
Diameter 9 obtained by pressure forming 7ty at 5 tons/c1rf
A positive electrode material 2 with a thickness of 0.7 tllll is inserted, and a separator 3 and an electrolyte absorber 4 are placed on this positive electrode material 2.
were placed one after another.

一方、周縁部に環状ガスケット5を1代着させてなる負
極缶6に目d記方法で得た7 5 myの負極剤7と残
り大半部の電解液とを加え、この負極缶6に前記状態の
正極缶1を欧合し、正極缶1の開1」部を内方へ締め伺
゛けわん曲させてそのビ」川向を」栗状ガスケット5に
圧接させて封目することにより、図示されるような酸化
第二銀電池を得た。
On the other hand, 75 my of the negative electrode agent 7 obtained by the method described in item d and most of the remaining electrolyte were added to the negative electrode can 6 which had an annular gasket 5 attached to the peripheral edge, and the By aligning the positive electrode can 1 in this state, the open part of the positive electrode can 1 is tightened inward, and the open part is bent inward, and the open part of the positive electrode can 1 is pressed against the chestnut-shaped gasket 5 to seal it. A silver oxide battery as shown was obtained.

なお、使用した正極/1111は鉄製で表面をニッケル
メッキしたものであり、負極化6は銅−ステンレス鋼−
ニッケルクラッド板製である。セパレータ3としてはセ
ロファンの両側にグラフトフィルム(架橋低密度ポリエ
チレンフィルムにメタクリル酸をグラフト重合させたク
ラフトフィルム)をラミネートした複合j摸を使用し、
電解液吸収体4はポリプロピレン不織布からなるものを
用いた。
The positive electrode 1111 used was made of iron with a nickel-plated surface, and the negative electrode 6 was made of copper-stainless steel.
Made of nickel clad plate. As the separator 3, a composite J model is used in which a graft film (a craft film made by graft polymerizing methacrylic acid to a cross-linked low-density polyethylene film) is laminated on both sides of cellophane.
The electrolyte absorber 4 was made of polypropylene nonwoven fabric.

また、電解液としては酸化亜鉛を溶解させた25%水酸
化すトリウム水溶液を使用した。この′電池の直径は9
.5 ノ〃II+ 、高さは2.7 mノ〃である0実
施例2 粒子径10/1mの金属銀]、 00部に対して水銀5
0部を用いてアマルガム化したアマルガム化金属銀1部
を、アマルガム化亜鉛粉(実施例Jに記載のものと同じ
)99部に加え、よく混合して負極剤とし、辺、下この
負極剤を用いて実施例1と同1.1゜にしCボタンfi
、lJの酸化第一、銀′電池をイ′1製した。
Further, as the electrolytic solution, a 25% thorium hydroxide aqueous solution in which zinc oxide was dissolved was used. The diameter of this battery is 9
.. Example 2 Metallic silver with a particle diameter of 10/1 m], mercury 5 to 00 parts
Add 1 part of amalgamated metallic silver amalgamated using 0 parts to 99 parts of amalgamated zinc powder (same as described in Example J), mix well to prepare a negative electrode material, to 1.1° as in Example 1 using C button fi.
A first silver oxide battery of 1J was fabricated.

j七中父1夕日 5%の水設化すトリウムの水溶液に111棉1)粉を投
入し、視性しη上が1−)1震度5%の硝酸銀水溶液を
君・−下して」二記亜鉛粉の表面に金属銀を析出伺着さ
ぜた。この付層:)1は亜鉛粉100部に苅して] :
jl≦であった。つぎに、金属銀が析出付着した亜鉛粉
を含む溶液中に亜鉛粉100nBに対して9部となる割
合の水銀を加えてアマルガム化し、その後水洗乾燥して
表面が銀−水銀−亜鉛で合金化された亜鉛粉からなる負
極剤を得た。この負極剤を用いた以外は、前記実施例1
と全く同様にしてボタン型の酸化第二銀電池を作製した
1) Add 111 cotton 1) powder to a 5% thorium aqueous solution and visualize it. Metallic silver was deposited on the surface of the zinc powder. This layer:) 1 was coated with 100 parts of zinc powder]:
jl≦. Next, mercury is added at a ratio of 9 parts to 100 nB of zinc powder to a solution containing zinc powder on which metallic silver has been precipitated to form an amalgam, and then washed with water and dried to form an alloy of silver-mercury-zinc on the surface. A negative electrode material made of zinc powder was obtained. Example 1 except that this negative electrode material was used
A button-shaped ferric oxide battery was produced in exactly the same manner as described above.

比較例2 負極剤として、従来のアマルガム化亜&’t F/)を
用いた以外は、実施例1と全く同様にしてボタン型の酸
化第二銀電池を作製した。
Comparative Example 2 A button-shaped ferric oxide battery was produced in exactly the same manner as in Example 1, except that conventional amalgamated aluminum (F/) was used as the negative electrode material.

上記実施例および比較例に係る各電池を60°゛Cで所
定期間貯蔵し、試料個数1000個中でビ旧j1≦短絡
の発生した個数を調へた結果は、下記の表に小されると
おりてあった。41お、内部i、l、i絡の発生は、閉
路電圧の急激な降下で判定した。
Each of the batteries according to the above examples and comparative examples was stored at 60°C for a predetermined period of time, and the number of batteries in which a short circuit occurred among 1000 samples was determined.The results are summarized in the table below. It was there. 41. The occurrence of an internal i, l, i circuit was determined by a sudden drop in the closed circuit voltage.

上記の結果から明らかなように、この発明によれはI’
l isl≦短絡の発生か抑えられた、この点で既提案
法(比較例1)の電池となんら遜色のない酸化第二銀電
池を製造容易に提供できるものであることがわかる。
As is clear from the above results, according to this invention, I'
It can be seen that it is possible to easily produce a silver oxide battery in which the occurrence of l isl ≦ short circuit is suppressed and is comparable to the battery of the previously proposed method (Comparative Example 1) in this respect.

【図面の簡単な説明】[Brief explanation of the drawing]

図11」1しこの発明の酸化第二銀電池の一例を示ず断
ぽ11図である。 7 負1・υ4剤。
FIG. 11 is a partially cutaway view showing an example of the silver oxide battery of the present invention. 7 Negative 1/υ4 agent.

Claims (1)

【特許請求の範囲】[Claims] +1+アマルガム化亜鉛粉に金属銀ないしアマルガム化
金属銀を加えて負極剤を構成したことを特徴とする酸化
第二銀電池。
+1+ A ferric oxide battery characterized in that a negative electrode material is formed by adding metallic silver or amalgamated metallic silver to amalgamated zinc powder.
JP58161713A 1983-09-01 1983-09-01 Divalent silver oxide battery Pending JPS6054167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58161713A JPS6054167A (en) 1983-09-01 1983-09-01 Divalent silver oxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58161713A JPS6054167A (en) 1983-09-01 1983-09-01 Divalent silver oxide battery

Publications (1)

Publication Number Publication Date
JPS6054167A true JPS6054167A (en) 1985-03-28

Family

ID=15740459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58161713A Pending JPS6054167A (en) 1983-09-01 1983-09-01 Divalent silver oxide battery

Country Status (1)

Country Link
JP (1) JPS6054167A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146011A (en) * 1982-02-22 1983-08-31 Matsushita Electric Ind Co Ltd Video tape recorder
JPS58198973A (en) * 1982-05-14 1983-11-19 Matsushita Electric Ind Co Ltd Video tape recorder
JPS59103478A (en) * 1982-12-03 1984-06-14 Sony Corp Magnetic recording and reproducing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146011A (en) * 1982-02-22 1983-08-31 Matsushita Electric Ind Co Ltd Video tape recorder
JPS58198973A (en) * 1982-05-14 1983-11-19 Matsushita Electric Ind Co Ltd Video tape recorder
JPS59103478A (en) * 1982-12-03 1984-06-14 Sony Corp Magnetic recording and reproducing device

Similar Documents

Publication Publication Date Title
JPS6079678A (en) Rechargeable manganese dioxide/zinc battery
JPS62237667A (en) Nickel positive electrode for alkaline storage battery
JPS6054167A (en) Divalent silver oxide battery
JPS6074349A (en) Divalent silver oxide battery
US1373733A (en) Storage-battery electrode and process of making same
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPS6074347A (en) Manufacture of divalent silver oxide battery
JPS6264062A (en) Positive plate for alkaline storage battery
JPS6054168A (en) Manufacture of divalent silver oxide battery
JPS6074358A (en) Divalent silver oxide battery
JPS584269A (en) Argentic oxide cell
JPS6074352A (en) Zinc negative electrode for alkaline battery
JPS584271A (en) Argentic oxide cell
JPS63175342A (en) Manufacture of hydrogen absorption electrode
JPS612270A (en) Alkaline battery
JPS58163165A (en) Manufacturing method of argentic oxide cell
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JPH0232750B2 (en)
JPS6074348A (en) Divalent silver oxide battery
JPS60146455A (en) Zinc alkaline battery
JPS6074350A (en) Divalent silver oxide battery
JPS5851475A (en) Silver-dioxide battery
JPS61290652A (en) Zinc alkaline battery
JPS60124357A (en) Negative electrode of nonaqueous electrolyte secondary battery
JPS5983345A (en) Manufacture of negative cadimium plate