JPS5851475A - Silver-dioxide battery - Google Patents

Silver-dioxide battery

Info

Publication number
JPS5851475A
JPS5851475A JP56148299A JP14829981A JPS5851475A JP S5851475 A JPS5851475 A JP S5851475A JP 56148299 A JP56148299 A JP 56148299A JP 14829981 A JP14829981 A JP 14829981A JP S5851475 A JPS5851475 A JP S5851475A
Authority
JP
Japan
Prior art keywords
ago
battery
granules
active material
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56148299A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishiuchi
石内 博
Akira Asada
浅田 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP56148299A priority Critical patent/JPS5851475A/en
Publication of JPS5851475A publication Critical patent/JPS5851475A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/54Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of silver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the discharge capacity of an AgO battery, improve the moldability of the positive mixture, and suppress the decomposition of AgO caused during the preservation of the battery by using as a positive active material, AgO granules the surfaces of which are reduced into Ag2O. CONSTITUTION:After a granular AgO powder is made into granules with grain diameters of 50-500mu, the surfaces of the granules are reduced into Ag2O. Thus treated granules are used as a positive active material for a silver-oxide battery. By the means mentioned above, the electric potential of AgO can be extinguished with a smaller reducing power than that need when a granular AgO powder is used as the positive active material. As a result, the discharge capacity of the battery can be increased. Besides, the moldability of the positive active material can be improved by granulating the AgO powder. In addition, the decomposition of AgO caused during the preservation of the battery can be suppressed due to the reduced specific surface area of the positive active material.

Description

【発明の詳細な説明】 本発明は酸化第二銀電池の改良Kiシ、酸化第二銀を顆
粒化し、粉末状のものに比べて少ない還元量で酸化第二
銀電位を消去し、それに基づいて放電容量を向上させる
と共に、成形性を改良し、かつ貯蔵中における酸化第二
銀の分解を抑制することを目的とする〇 酸化第二銀電池では二段放電を防止するために酸化第二
銀の電位を消去する必要がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an improved method for producing a ferric oxide battery. The purpose is to improve discharge capacity, improve moldability, and suppress decomposition of ferric oxide during storage. In ferric oxide batteries, ferric oxide is used to prevent double discharge. It is necessary to erase the silver potential.

そこで酸化第二銀粉末の表面を酸化第−銀に還元したり
、酸化第二銀粉末に酸化第一銀粉末を添加することなど
が行なわれているが、酸化第二銀粉末の表面を酸化第−
銀に還元する場合、酸化第二銀粉末が粒径0.1−10
μm程度の微粉末で比表面積が大きいため、かなシの量
を還元しなければならず、そのため放電容量が低下する
という問題があ夛、ま九駿化第二銀粉末に酸化第一銀粉
末を添加する場合は多量の酸化第一銀粉末を添加しない
かぎシ酸化第二銀電位を消去することは不可能である・ 本発明者らはそのような事情に鑑み種々研究を重ねえ結
果、酸化第二銀粉末を粒径660−600aの拳粒状に
造粒し、この酸化第二am粒の表面を酸化第−銀に還元
し、これを正極活物質として用いるときは、粉末状の酸
化第二銀を用いる・場合よりも少ない還元量で酸化第二
銀電位を消去することができ、それによって放電容量を
向上でき、また顆粒化によシ成形性を改良でき、かつ比
表面積の減少により電池貯蔵中における酸化第二銀の分
解が抑制できることを見出し、本発明を完成するKいた
った◇ 本発明において酸化第二銀を顆粒状にするには、九とえ
ば粒径0.1〜l Q psm程度の通常の酸化第二銀
粉末を水でスリラー状にし、造粒機で造粒し、好ましく
は球形整粒機で整粒したのち乾燥する仁とKよって行な
われる。
Therefore, attempts have been made to reduce the surface of the ferric oxide powder to ferric oxide or to add ferrous oxide powder to the ferric oxide powder. No.-
When reducing to silver, ferric oxide powder has a particle size of 0.1-10
Since it is a fine powder of about μm size and has a large specific surface area, it is necessary to reduce the amount of particles, which causes the problem of lowering the discharge capacity. When adding ferrous oxide, it is impossible to eliminate the potential of ferrous oxide without adding a large amount of ferrous oxide powder. In view of such circumstances, the present inventors conducted various studies, and as a result, When granulating ferric oxide powder into fist-like particles with a particle size of 660 to 600 a and reducing the surface of the ferric oxide particles to silver oxide and using this as a positive electrode active material, powdered oxide Using ferric silver, it is possible to erase the ferric oxide potential with a smaller amount of reduction than in the case of using ferric silver, thereby improving the discharge capacity, improving formability through granulation, and reducing the specific surface area. It was discovered that the decomposition of ferric oxide during battery storage could be suppressed, and the present invention was completed with only ◇ In order to make ferric oxide into granules in the present invention, for example, the particle size is 0.1 to 9. The process is carried out by making ordinary silver oxide powder of about 1 Q psm into a thriller form with water, granulating it with a granulator, preferably granulating it with a spherical granulator, and drying it.

そして、得られた酸化第二鎖顆粒の表面を酸化第−銀に
還元するには、窒素雰囲気中で熱分解するか、あるいは
アルカリ水溶液中でエチルアルコールやホルムアルデヒ
ドなどで還元すればよく、その際の還元量としては6〜
20%(重量%、以下同様)にするのが好ましい。これ
は還元量が少なすぎると酸化第二銀電位の消去が困−で
あシ、逆に多すぎると放電容量が低下するからである〇
また酸化第二鎖顆粒の粒径を50〜塁OO声−としたの
は、粒径が60μN1より小さい場合は比表面積が増大
し、還元量が多くなるという欠点があシ、逆に粒径が5
00amより大きくなると充填量のバラツキが大きくな
シ、ま九成形性が悪くなるからである。
The surface of the obtained second oxidized chain granules can be reduced to silver oxide by thermal decomposition in a nitrogen atmosphere or by reduction with ethyl alcohol or formaldehyde in an alkaline aqueous solution. The amount of return is 6~
It is preferable to set it to 20% (weight %, the same applies hereinafter). This is because if the reduction amount is too small, it will be difficult to erase the silver oxide potential, and if it is too large, the discharge capacity will decrease. Also, the particle size of the oxidized second chain granules should be adjusted to 50 to 50 mm. The reason for this is that when the particle size is smaller than 60μN1, the specific surface area increases and the amount of reduction increases.
This is because if it is larger than 00 am, there will be large variations in the filling amount and the moldability will be poor.

第1図は酸化第二銀(Age)と酸化第−銀(AgzO
)との組成比と開路電圧の関係を示す図であり、第1図
において、曲線aは酸化第二鎖顆粒を還元した場合、曲
−すは酸化第二銀粉末を還元した場合、曲線Cは酸化第
二銀粉末と酸化第一銀粉末を混合し次場合を示す。−曲
線aKおける酸化第二鎖顆粒は粒径が平均粒径で110
0pであり、還元は熱分解によって行なわれ、曲線bK
おける酸化第二銀粉末は粒径が平均粒径で5pmであり
、還元は顆粒の場合と同様に熱分解によって行なわれた
ものである0なお曲線Cは平均粒径5 ppmの酸化第
二銀粉末と平均粒径6PIRの酸化第一銀粉末とを混合
したものである。
Figure 1 shows ferric oxide (Age) and silver oxide (AgzO).
) is a diagram showing the relationship between the composition ratio and the open circuit voltage. In FIG. 1, curve a is when oxidized second chain granules are reduced, curve C is when ferric oxide powder is reduced, and curve C is when oxidized second chain granules are reduced. shows the following case when ferric oxide powder and ferrous oxide powder are mixed. - The average particle size of the oxidized second chain granules in curve aK is 110
0p, the reduction is carried out by pyrolysis, and the curve bK
The average particle size of the ferric oxide powder is 5 pm, and the reduction was carried out by thermal decomposition in the same way as in the case of granules.Curve C shows the ferric oxide powder with an average particle size of 5 ppm. It is a mixture of powder and ferrous oxide powder with an average particle size of 6 PIR.

第1図に示す結果から明らかなように、酸化第一銀粉末
を還元する場合は粉末状のものを、還元する場合に比べ
て少ない還元量で酸化第二銀の電位を消去することがで
きる〇 第2図は平均粒径10Gpmの酸化第二鎖顆粒を10S
a化第−銀に還元したもの1gと平均粒径5sstの酸
化第二銀粉末を10−酸化第一銀に還元したものIPを
それぞれ25’14水酸化ナトリウム水溶液中に46℃
で貯蔵した際の貯蔵時間と酸素ガス発生量との関係を示
す図である〇 第2図に示すようK、顆粒の場合は粉末に比べて酸素ガ
ス発生量が少ない0これは顆粒の方が粉末状のものより
、酸化第二銀の分解が少ないことを示している@ つぎの第1表は平均粒径101+mの酸化第二鎖顆粒の
表面を酸化第−銀に還元したものを正極活物質として用
い九本発明の電池Aと平均粒径6μmの酸化第二銀粉末
の表面を酸化第−銀に還元したものを正極活物質として
用いた従来型fiBの電気特性を示すもので多る0 電池Aでは酸化第二銀の電位を消去するために5″’q
btm化、第−銀へ還元し、電池Bでは8096&化第
−銀へ還元している0なお、還元は窒素雰囲気中100
°Cで熱分解することKよって行なわれ九〇電池はいず
れも第8図に示すような構成からなる直径11.6M、
厚さ2.0mのボタン形電池で、正極(1)は上記のよ
うな酸化第二銀210’lFを5 t/a2で直径11
Qu、厚さ0.4−に加圧成形し九ものであるOそして
(2)は正極缶、(3)はセしくレータであり、このセ
パレータ(3)はセロノ1ンの両側にグラ7トフイルム
(架橋低密度ポリエチレンフィルムにメタクリル酸をグ
ラフト重合させたグラフトフィルム)をラミネートした
ものである。(4)はポリプロピレン不織布よシなる電
解液吸収体で、(5)はアマルガム化亜鉛を活物質とす
る負極であシ、電池Aでは90qのアマルガム化亜鉛が
用いられ、電池Bでは7@atのアマルガム化鉛が用い
られている0(6)は負l17A熾子板で、(7)は環
状ガスケットであり、電解液としては酸化亜鉛を溶解さ
せfC26%水酸化ナトIJりム水溶液が使用されてい
るO 開路電圧は20℃で鴫定し、閉路電圧は20℃、2にΩ
で5秒放電後に測定し九ものでhυ、放電、容量は20
℃、15にΩで終止電圧1.2vまで連続放電させ測定
したものであるO 第   1   表 第1表に示すように本発明の電池Aは従来電池Bに比べ
て放電容量が大きい。これは酸化第二鎖を顆粒化するこ
とにより、酸化第二銀電位の消去のための還元量が少な
くなったためであると考えられる。
As is clear from the results shown in Figure 1, when reducing ferrous oxide powder, the potential of ferric oxide can be erased with a smaller amount of reduction than when reducing powdered silver oxide powder. 〇Figure 2 shows 10S oxidized second chain granules with an average particle size of 10Gpm.
1 g of silver a-chloride reduced to 1 g and 1 g of ferric oxide powder with an average particle size of 5 sst reduced to 10-ferrous oxide were each added to a 25'14 sodium hydroxide aqueous solution at 46°C.
This is a diagram showing the relationship between the storage time and the amount of oxygen gas generated when stored in K. As shown in Figure 2, granules generate less oxygen gas than powder. This shows that the decomposition of ferric oxide is less than that of powdered granules. The following Table 1 shows that the surface of oxidized second chain granules with an average particle size of 101+m was reduced to ferric oxide and used as a positive electrode active material. The electrical properties of the battery A of the present invention used as the material and of the conventional fiB using as the positive electrode active material the surface of ferric oxide powder with an average particle size of 6 μm reduced to silver oxide are often shown. 0 In battery A, 5'''q is applied to eliminate the potential of silver oxide.
btm, reduced to ferrous chloride, and in battery B, reduced to 8096 & ferric oxide. In addition, the reduction was carried out at 100% in a nitrogen atmosphere.
The 90 batteries were made by thermal decomposition at °C and had a diameter of 11.6 m, each having the configuration shown in Figure 8.
It is a button type battery with a thickness of 2.0 m, and the positive electrode (1) is made of 210'lF of silver oxide as described above at 5 t/a2 with a diameter of 11
Qu, pressure molded to a thickness of 0.4 mm, (2) is a positive electrode can, (3) is a separator, and this separator (3) has glass 7 on both sides of the cello no. It is a laminated film (a graft film in which methacrylic acid is graft-polymerized to a cross-linked low-density polyethylene film). (4) is an electrolyte absorber made of polypropylene nonwoven fabric, and (5) is a negative electrode using amalgamated zinc as an active material.Battery A uses 90q of amalgamated zinc, and battery B uses 7@at. 0 (6) is a negative 117A glass plate in which amalgamated lead is used, and (7) is an annular gasket. As the electrolyte, an aqueous solution of fC 26% sodium hydroxide IJ lime is used by dissolving zinc oxide. The open circuit voltage is set at 20°C, and the closed circuit voltage is set to 2Ω at 20°C.
Measured after discharging for 5 seconds, hυ, discharge, capacity is 20
Table 1 As shown in Table 1, the battery A of the present invention has a larger discharge capacity than the conventional battery B. This is considered to be because the amount of reduction required to eliminate the silver oxide potential was reduced by granulating the oxidized second chain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸化第二銀と酸化第−銀の組成比と閉路電圧と
の関係を示す図、第2図は酸化第二銀の貯蔵時間と酸素
ガス発生量との関係を示す図、第8図は本発明の酸化第
二銀電池の一実施例を示す断面図である。 (1)・・・正極 特許出願人   日立マクセル株式会社Ag2O020
406080100 Ag100A  80 60 40 20 0第2図 100      200 貯A吟間(h) 第3図 α
Figure 1 is a diagram showing the relationship between the composition ratio of silver oxide and silver oxide and the closed circuit voltage, Figure 2 is a diagram showing the relationship between the storage time of silver oxide and the amount of oxygen gas generated; FIG. 8 is a cross-sectional view showing one embodiment of the silver oxide battery of the present invention. (1)...Cathode patent applicant Hitachi Maxell Ltd. Ag2O020
406080100 Ag100A 80 60 40 20 0 Fig. 2 100 200 Storage A Ginma (h) Fig. 3 α

Claims (1)

【特許請求の範囲】[Claims] l1表面を酸化第−銀に還元した粒径50〜600μm
の酸化第二鎖顆粒を正極活物質として用いたことを特徴
とする酸化第二銀電池。
Particle size 50 to 600 μm with l1 surface reduced to silver oxide
A silver oxide battery characterized by using oxidized second chain granules of as a positive electrode active material.
JP56148299A 1981-09-19 1981-09-19 Silver-dioxide battery Pending JPS5851475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56148299A JPS5851475A (en) 1981-09-19 1981-09-19 Silver-dioxide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56148299A JPS5851475A (en) 1981-09-19 1981-09-19 Silver-dioxide battery

Publications (1)

Publication Number Publication Date
JPS5851475A true JPS5851475A (en) 1983-03-26

Family

ID=15449668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56148299A Pending JPS5851475A (en) 1981-09-19 1981-09-19 Silver-dioxide battery

Country Status (1)

Country Link
JP (1) JPS5851475A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887199A (en) * 1986-02-07 1989-12-12 Astec International Limited Start circuit for generation of pulse width modulated switching pulses for switch mode power supplies
USRE34462E (en) * 1986-02-07 1993-11-30 Astec International, Ltd. Start circuit for generation of pulse width modulated switching pulses for switch mode power supplies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887199A (en) * 1986-02-07 1989-12-12 Astec International Limited Start circuit for generation of pulse width modulated switching pulses for switch mode power supplies
USRE34462E (en) * 1986-02-07 1993-11-30 Astec International, Ltd. Start circuit for generation of pulse width modulated switching pulses for switch mode power supplies

Similar Documents

Publication Publication Date Title
SK47697A3 (en) Alkaline galvanic cell and manufacturing process thereof
JPS627661B2 (en)
JPS6145352B2 (en)
JPS5851475A (en) Silver-dioxide battery
JPH0222984B2 (en)
US2692215A (en) Alkaline dry cell
JPH0317181B2 (en)
JPS61264682A (en) Organic electrolyte battery
JPS5978455A (en) Battery
JPS58163166A (en) Argentic oxide cell
JPS59186255A (en) Alkali primary battery
JPS6124147A (en) Alkaline battery
JPH0317182B2 (en)
JPS58163170A (en) Argentic oxide cell
JPS6084766A (en) Zinc alkaline battery
JPS5999671A (en) Silver suboxide battery
JPS62168344A (en) Nonaqueous electrolyte battery
JPS584271A (en) Argentic oxide cell
JPS59146158A (en) Silver(ii) oxide cell
JPS58155662A (en) Molten-carbonate fuel cell
JPS584269A (en) Argentic oxide cell
JPS6074358A (en) Divalent silver oxide battery
JPS59224060A (en) Manufacture of silver peroxide battery
JPS5864766A (en) Silver oxide battery
JPS6041760A (en) Mercury battery