JPS583215B2 - Onkiyo Kougakoshi no Seizouhou - Google Patents

Onkiyo Kougakoshi no Seizouhou

Info

Publication number
JPS583215B2
JPS583215B2 JP101273A JP101273A JPS583215B2 JP S583215 B2 JPS583215 B2 JP S583215B2 JP 101273 A JP101273 A JP 101273A JP 101273 A JP101273 A JP 101273A JP S583215 B2 JPS583215 B2 JP S583215B2
Authority
JP
Japan
Prior art keywords
medium
transducer
ultrasonic
transducers
pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP101273A
Other languages
Japanese (ja)
Other versions
JPS4988533A (en
Inventor
内田直也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP101273A priority Critical patent/JPS583215B2/en
Publication of JPS4988533A publication Critical patent/JPS4988533A/ja
Publication of JPS583215B2 publication Critical patent/JPS583215B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、超音波光回折現象を利用した光偏向器、光変
調器等の音響光学素子において、広い周波数範囲で動作
させるために超音波波面を周波数とともに傾けるように
設計された階段構造を持つ素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to an acousto-optic device such as an optical deflector or optical modulator that utilizes the phenomenon of ultrasonic light diffraction, in which the ultrasonic wavefront is tilted with the frequency in order to operate in a wide frequency range. The present invention relates to a method of manufacturing an element having a designed staircase structure.

超音波による光回折現象を利用した光偏向、変調素子等
のいわゆる音響光学素子においては、通常その素子に対
する光の入射角を一定に保ったまま、超音波の周波数を
変化させて光偏向或いは変調を行なっていた。
In so-called acousto-optic devices, such as optical deflection and modulation elements that utilize the optical diffraction phenomenon caused by ultrasonic waves, the frequency of the ultrasonic waves is usually kept constant while the incident angle of the light to the element is kept constant to deflect or modulate light. was doing.

しかるに、光回折現象は入射光ビームが媒体中で、超音
波波面に対して次式で与えられるブラッグ角θB (ここにkは空気中での光の波数、nは媒体の屈折率、
Kは媒体中の超音波の波数)で入射する時に、同じくθ
Bで反射されるものであり、入射角がθBからずれた時
には、回折能率が減少する。
However, the optical diffraction phenomenon is caused by the Bragg angle θB (where k is the wave number of light in air, n is the refractive index of the medium, and
K is the wave number of the ultrasonic wave in the medium), and θ
It is reflected by B, and when the incident angle deviates from θB, the diffraction efficiency decreases.

回折効率ηの入射角依存性は ここに X=KL(θ−θB)/2 (3)(
Lは光と超音波が相互作用を行なう長さ、θは媒体中で
測った入射角である)で与えられる。
The dependence of the diffraction efficiency η on the angle of incidence is as follows: X=KL(θ−θB)/2 (3)(
L is the length over which light and ultrasound interact, and θ is the angle of incidence measured in the medium).

このようにブラッグ角θBは超音波周波数の関数である
から、先に述べたように、ある一定の中心超音波周波数
f0に対して(1)式のブラッグ条件をみたすように、
光の入射角をセットした状態で、超音波周波数fを変化
させると、中心周波数f0に対するずれに従ってブラッ
グ角を変化し、回折効率(2),(3)式に従って減少
する。
In this way, the Bragg angle θB is a function of the ultrasonic frequency, so as mentioned earlier, for a certain central ultrasonic frequency f0, the Bragg condition of equation (1) is satisfied.
When the ultrasonic frequency f is changed with the incident angle of light set, the Bragg angle changes according to the deviation from the center frequency f0, and the diffraction efficiency decreases according to equations (2) and (3).

(3)式から解るように、広帯域で動作させるために超
音波周波数を高くする場合、即ちKを大きくする場合、
また光回折能率を上げるためにLを長くする場合におい
てはf0からのずれによる回折効率の減少の割合が著じ
るしくなり、実用上大きな制約因子となっていた。
As can be seen from equation (3), when increasing the ultrasonic frequency to operate in a wide band, that is, when increasing K,
Furthermore, when L is lengthened in order to increase the optical diffraction efficiency, the rate of decrease in the diffraction efficiency due to the deviation from f0 becomes significant, which has become a major limiting factor in practical use.

これを防止するために、Kerpel等( Proce
−edings of the IEEE 54 (1
966) pp−1429−1437)は第1図に示す
ような階段型構造を持つ素子を作成した。
To prevent this, Kerpel et al. (Proce
-edings of the IEEE 54 (1
966) pp-1429-1437) created an element having a stepped structure as shown in FIG.

即ち超音波を伝播させると共に光ビートと相互作用を行
なわせる媒体1の一面は階段状をなし、その各段に超音
波トランスジューサ2〜5が取付けられる。
That is, one surface of the medium 1 through which the ultrasonic waves propagate and interact with the optical beats has a stepped shape, and ultrasonic transducers 2 to 5 are attached to each step.

階段の高さhを、中心周波数での超音波波長Λ0の1/
2に、隣接するトランスジューサ間隔SをΛ。
The height h of the stairs is 1/of the ultrasonic wavelength Λ0 at the center frequency.
2, the adjacent transducer spacing S is Λ.

2/nλ(λは空気中での光の波長)に選定される。2/nλ (λ is the wavelength of light in air).

かつトランスジューサ2〜5はその隣接するものが逆位
相になるように高周波電源6により励振され、光ビーム
7は媒体1の階段形成方向と平行に媒体1に入射される
The transducers 2 to 5 are excited by a high frequency power source 6 so that adjacent transducers have opposite phases, and the light beam 7 is incident on the medium 1 in parallel to the step formation direction of the medium 1.

このようにすると一定の光入射角に対して、広い周波数
範囲で近似的にプラッグ条件を満足するように超音波波
面が等価的に傾斜する。
In this way, the ultrasonic wavefront is equivalently tilted so as to approximately satisfy the Plagg condition over a wide frequency range for a constant light incident angle.

この構造における階段の段数は実験の結果、最低4段必
要であることが報告されている。
As a result of experiments, it has been reported that the number of steps in this structure is at least four.

通常は4段から10段程度が使われる。Usually, 4 to 10 stages are used.

また一般的な素子の大きさは、トランスジューサを取り
付ける媒体面が5mm×5mm〜10mm×10mm程
度で、媒体の高さが5〜25mm程度である。
Further, the general size of the element is such that the medium surface on which the transducer is attached is about 5 mm x 5 mm to 10 mm x 10 mm, and the height of the medium is about 5 to 25 mm.

トランスジューサ間隔Sは、上記したごとくΛ02/n
λに選定される。
The transducer spacing S is Λ02/n as described above.
λ is selected.

Λ0=v/f0(Vは媒体中の音速)であるから、トラ
ンスジューサ間隔Sはf02に反比例する。
Since Λ0=v/f0 (V is the speed of sound in the medium), the transducer spacing S is inversely proportional to f02.

偏向器は通常、中心周波数f0が100〜200MHz
の範囲で使用されることが多い、したがって、トランス
ジューサ間隔Sは0.3〜1.2mm程度と小さなもの
になる。
Deflectors typically have a center frequency f0 of 100-200MHz
Therefore, the transducer spacing S is as small as about 0.3 to 1.2 mm.

さて、このような階段型構造音響光学素子を作るには、
従来、まず媒体1の表面を機械的研磨あるいは化学的エ
ッチング等により、階段状に仕上げ、その階段状の各段
面上に希望する厚みのトランスジューサ2〜5をそれぞ
れ接着するか、あるいは最終目標厚より厚いトランスジ
ューサを接着後研磨する。
Now, in order to make such a stepped structure acousto-optic element,
Conventionally, the surface of the medium 1 is first finished into a stepped surface by mechanical polishing or chemical etching, and the transducers 2 to 5 of the desired thickness are adhered to each stepped surface, or the final target thickness is Polish thicker transducers after gluing.

この場合、トランスジューサの厚味が著しく薄く、これ
を接着する媒体1の階段状の各段面の平面度、平行度が
充分よいことが要求される。
In this case, the thickness of the transducer is extremely thin, and the stepped surfaces of the medium 1 to which the transducer is bonded are required to have sufficiently good flatness and parallelism.

しかしその加工が極めて困難であった。特に例えば数1
0MHz以上で動作させる素子を作成する場合には、著
しく高い精度の平面度が要求され、加工上の困難さがま
すます増大する傾向にあった。
However, its processing was extremely difficult. Especially for example number 1
When producing an element that operates at 0 MHz or higher, extremely high flatness accuracy is required, and processing difficulties tend to increase.

また超音波を均一にかつ能率よく媒体1に送り込むため
には、接着の際にかなりの圧力(例えば50kg/cm
2以上)を必要とするため、最初から目標厚に研磨(例
えば中心周波数150MHzでは通常20μ程度の厚み
となる)したトランスジューサでは機械的に弱く破損の
恐れがあった。
In addition, in order to send ultrasonic waves uniformly and efficiently to the medium 1, a considerable amount of pressure (for example, 50 kg/cm) is required during bonding.
2 or more), therefore, transducers that are polished to a target thickness from the beginning (for example, at a center frequency of 150 MHz, the thickness is usually about 20 μm) are mechanically weak and may be damaged.

一方、厚いトランスジューサを接着後研磨するには高い
平面度と平行度を実現するには素子の階段構造のため非
常な困難を伴ない、これが満足されない場合には得られ
た素子の特性に悪影響を及ぼすことになる。
On the other hand, polishing a thick transducer after bonding is very difficult to achieve high flatness and parallelism due to the stepped structure of the element, and if this is not satisfied, the characteristics of the obtained element will be adversely affected. It will have a negative impact.

この発明は上述した階段状構造の音響光学素子を比較的
容易に、かつ高精度に作る製造方法を得んとするもので
ある。
The present invention aims to provide a method of manufacturing the acousto-optic element having the above-mentioned stepped structure relatively easily and with high precision.

このため本発明では第2図Aに示すように超音波と光と
が相互作用を行なう直方体状の媒体1の平面をなす一面
1aに短冊状トランスジューサ2〜5が平行に配列して
接着される。
For this reason, in the present invention, as shown in FIG. 2A, strip-shaped transducers 2 to 5 are arranged in parallel and bonded to one plane surface 1a of a rectangular parallelepiped medium 1 in which ultrasonic waves and light interact. .

この場合トランスジューサ2〜5が取付けられる面1a
は所要の平面度に研磨される。
In this case, the surface 1a on which the transducers 2 to 5 are attached
is polished to the required flatness.

この面に取付けられたトランスジューサ2〜5は所定の
厚味(通常20μ程度)に研磨された後、トランスジュ
ーサ2〜5の表面に電極が蒸着又は塗布により被着され
る。
The transducers 2 to 5 attached to this surface are polished to a predetermined thickness (usually about 20 μm), and then electrodes are deposited on the surfaces of the transducers 2 to 5 by vapor deposition or coating.

次に点線で示すようにそれぞれ1個のトランジューサを
含むように面1aに対して垂直に媒体1を切断して素片
8a,8b,8c,8dを第2図Bに示すように得る。
Next, the medium 1 is cut perpendicularly to the surface 1a so as to each contain one transducer, as shown by the dotted lines, to obtain pieces 8a, 8b, 8c, and 8d as shown in FIG. 2B.

この切断面は光学的に研磨して高い平面度、平行度をも
ち、所定の寸法Sとなるように仕上げる。
This cut surface is optically polished to have high flatness and parallelism, and is finished to a predetermined dimension S.

ここで素片の寸法は、巾5〜10mm、高さ5〜25m
m,厚さS0.3〜1mm程度となる。
Here, the dimensions of the piece are width 5-10mm and height 5-25m.
m, and the thickness S is about 0.3 to 1 mm.

次に第2図Cに示すようにトランスジューサ2〜5が取
付けられた面がその面と略直角な方向において順次所定
値だけずらした状態で組合せて階段構造を得る。
Next, as shown in FIG. 2C, the surfaces on which the transducers 2 to 5 are attached are sequentially shifted by a predetermined value in a direction substantially perpendicular to the surface, and are assembled to form a staircase structure.

素片8a〜8b間の接着方法として最もすぐれているも
のは光学的接着法で、光ビーム7をほとんど完全に損失
なしに媒体1中を伝播させうる。
The most excellent bonding method between the pieces 8a and 8b is an optical bonding method, which allows the light beam 7 to propagate through the medium 1 almost completely without loss.

その他屈折率が媒体1とマッチした透明な接着剤で素片
を貼り合わせてもよく、必要に応じて防反射膜を挾むこ
とも可能である。
Alternatively, the pieces may be bonded together using a transparent adhesive whose refractive index matches that of the medium 1, and an anti-reflection film may be sandwiched therebetween if necessary.

さらに、周辺部に接着剤9をつげ、上記接着を補強させ
ることもでき、或いは接着剤9のみで保持させることも
可能である。
Further, the adhesive 9 can be applied to the peripheral portion to reinforce the adhesive, or the adhesive 9 can be used alone to hold it.

要するに、光学的品質を全《落とさずに、各素片は光学
的に従続接続される。
In short, each element is optically cascaded without compromising optical quality.

接着部での超音波ビームの乱れの問題があるが超音波の
回折角にみあった量だけ階段の平坦部の長さをトランス
ジューサの長さに比して長くしておけばその問題は解決
する。
There is a problem of disturbance of the ultrasonic beam at the adhesive part, but this problem can be solved by making the flat part of the stairs longer than the length of the transducer by an amount that matches the diffraction angle of the ultrasonic wave. do.

超音波の回折は周波数に逆比例して小さくなるから、こ
の発明製造法が特に有用な高周波においては、上記長さ
の比を小さくすることができる。
Since the diffraction of ultrasonic waves decreases in inverse proportion to the frequency, the above-mentioned length ratio can be made small at high frequencies where the manufacturing method of the present invention is particularly useful.

また、通常媒体1にはトランスジューサの接着された面
と対向する面に超音波吸収体を附加して媒体1中の超音
波がその面で反射しないように構成される。
Further, the medium 1 is usually configured such that an ultrasonic absorber is added to the surface opposite to the surface to which the transducer is bonded so that the ultrasonic waves in the medium 1 are not reflected from that surface.

よって超音波回折にきく伝播長としては、トランスジュ
ーサの接着された面とその対向面間の距離のみを考えれ
ばよい。
Therefore, as the propagation length for ultrasonic diffraction, only the distance between the bonded surface of the transducer and its opposing surface needs to be considered.

尚、第2図Aにおいてトランスジューサ2〜5を用いる
かわりに、一枚の大きなトランスジューサを接着、研磨
し、その後媒体1とともに切断し、第2図Bのように各
素片にわける方法をとることも極めて有効である。
In addition, instead of using transducers 2 to 5 in FIG. 2A, a method may be used in which one large transducer is glued and polished, and then cut together with the medium 1 to be divided into individual pieces as shown in FIG. 2B. is also extremely effective.

これは中心周波数f0が高くSが小さい場合(例えば0
.5mm以下)に特に有効な方法である。
This is true when the center frequency f0 is high and S is small (for example, 0
.. 5 mm or less).

第2図Cにおいて各素片は必らずしも密着している必要
はないができるだけなめらかな超音波波面の傾きを得る
には、間隔が狭い方がよい。
In FIG. 2C, the individual pieces do not necessarily have to be in close contact with each other, but in order to obtain the smoothest possible inclination of the ultrasonic wavefront, it is better to have a narrower interval.

以上説明したように、本発明製造方法においては音響光
学媒体を階段構造とする前に、トランスジューサを取付
ける面を所要の平行度や平面度に仕上げた後に、トラン
スジューサを取付け、このトランスジューサを所定の厚
さに研磨し、しかる後媒体を切断して階段構造に組合せ
るものであるから、音響的、光学的、音響光学的特性を
損なうことなく優れた階段構造の音響光学素子が得られ
る。
As explained above, in the manufacturing method of the present invention, before forming the acousto-optic medium into a stepped structure, the surface on which the transducer is attached is finished to the required parallelism and flatness, and then the transducer is attached. Since the medium is polished and then cut and assembled into a staircase structure, an acousto-optic element with an excellent staircase structure can be obtained without impairing the acoustic, optical, and acousto-optic properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの階段構造の音響光学素子を示す斜視図、第
2図は本発明製造方法の一例を示す工程図である。
FIG. 1 is a perspective view showing an acousto-optic element having a staircase structure, and FIG. 2 is a process diagram showing an example of the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 超音波と光とが相互作用をなす直方体状の媒体の一
つの面にトランスジューサを被着し、該トランスジュー
サを所定の厚さに研磨した後、該トランスジューサの被
着面と直交する方向に上記媒体を切断して上記トランス
ジューサが一端面に被着された複数の素片を形成し、該
素片の一端面がその面と直角な方向において順次ずらさ
れるように組合せて階段構造にすることを特徴とする音
響光学素子の製造法。
1. A transducer is attached to one surface of a rectangular parallelepiped medium in which ultrasonic waves and light interact, and after polishing the transducer to a predetermined thickness, the above-mentioned Cutting the medium to form a plurality of pieces having the transducer attached to one end face, and combining the pieces so that one end face of the pieces is sequentially shifted in a direction perpendicular to the plane to form a step structure. Characteristic manufacturing method for acousto-optic elements.
JP101273A 1972-12-23 1972-12-23 Onkiyo Kougakoshi no Seizouhou Expired JPS583215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP101273A JPS583215B2 (en) 1972-12-23 1972-12-23 Onkiyo Kougakoshi no Seizouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP101273A JPS583215B2 (en) 1972-12-23 1972-12-23 Onkiyo Kougakoshi no Seizouhou

Publications (2)

Publication Number Publication Date
JPS4988533A JPS4988533A (en) 1974-08-23
JPS583215B2 true JPS583215B2 (en) 1983-01-20

Family

ID=11489650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP101273A Expired JPS583215B2 (en) 1972-12-23 1972-12-23 Onkiyo Kougakoshi no Seizouhou

Country Status (1)

Country Link
JP (1) JPS583215B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155112U (en) * 1983-04-05 1984-10-18 石川島播磨重工業株式会社 Mixer for concrete, etc.
JPH0337925Y2 (en) * 1982-09-08 1991-08-12
JPH0557085B2 (en) * 1987-12-09 1993-08-23 Taiheiyo Kiko Kk

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134342A (en) * 1973-04-26 1974-12-24
JPS5932773B2 (en) * 1975-01-14 1984-08-10 松下電器産業株式会社 acousto-optic filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337925Y2 (en) * 1982-09-08 1991-08-12
JPS59155112U (en) * 1983-04-05 1984-10-18 石川島播磨重工業株式会社 Mixer for concrete, etc.
JPH0557085B2 (en) * 1987-12-09 1993-08-23 Taiheiyo Kiko Kk

Also Published As

Publication number Publication date
JPS4988533A (en) 1974-08-23

Similar Documents

Publication Publication Date Title
US4075516A (en) Diffraction electroacoustic transducer
US4843335A (en) Acoustooptic modulation device capable of avoiding impedance mismatching over a wide frequency band
US4624534A (en) Acoustooptic deflection device capable of reducing a reflection loss over a wide frequency band
JPS583215B2 (en) Onkiyo Kougakoshi no Seizouhou
JPH07263998A (en) End face reflecting surface wave resonator
US4146955A (en) Method of fabricating a stepped-array acousto-optic beam deflector
US2957142A (en) Ultrasonic delay line
US4151492A (en) Surface acoustic wave grating
JPS6210411B2 (en)
US4527866A (en) Acousto-optic transducer
JPS5931246B2 (en) Hyomen Hasoshi
JPS6343728B2 (en)
JPS6212489B2 (en)
JPS60242716A (en) Surface sound wave band pass filter
JPS62168411A (en) Surface acoustic wave resonator
JPH03248488A (en) Coherent light distribution feedback type mirror
JPS6218520A (en) Ultrasonic optical modulator
JPS5946127B2 (en) surface acoustic wave reflector
JPS5642419A (en) Surface elastic wave resonator
JPS58188919A (en) Lamb wave electronic device
JPS6163103A (en) Frequency adjusting method of surface acoustic wave resonator
JPH03249620A (en) Acoustooptic element
JPS5925403B2 (en) surface acoustic wave device
JPS60133432A (en) Thin film type optical deflecting device
JPH03107928A (en) Acoustooptical device and its manufacture