JPS60133432A - Thin film type optical deflecting device - Google Patents

Thin film type optical deflecting device

Info

Publication number
JPS60133432A
JPS60133432A JP24089183A JP24089183A JPS60133432A JP S60133432 A JPS60133432 A JP S60133432A JP 24089183 A JP24089183 A JP 24089183A JP 24089183 A JP24089183 A JP 24089183A JP S60133432 A JPS60133432 A JP S60133432A
Authority
JP
Japan
Prior art keywords
light
angle
waveguide
deflection
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24089183A
Other languages
Japanese (ja)
Inventor
Mamoru Miyawaki
守 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24089183A priority Critical patent/JPS60133432A/en
Publication of JPS60133432A publication Critical patent/JPS60133432A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • G02F1/335Acousto-optical deflection devices having an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To realize a wide angle of deflection by providing a reflecting surface for diffracted waveguide light corresponding to part of a circle which runs on a diffraction position of a waveguide. CONSTITUTION:The Bragg angle to a surface acoustic wave 44 is denoted as thetaB and incident waveguide light 43 is incident at the Bragg angle to the surface acoustic wave 44. One point on a straight line in the wave front direction of the surface acoustic wave 44 from the point A of mutual operation between the incident waveguide light 43 and surface acoustic wave 44 is denoted as O. The angle psi of deflection of reflected light 46 to the incident light 43 is pi-4thetaB. When the surface acoustic wave is varied in pitch by varying the high frequency, waveguide light 47 diffracted with the surface acoustic wave 44 is deflected by -2thetaB-DELTAtheta to the incident light 43 and the angle psi' of deflection of reflected light 48 to the incident light 43 becomes pi-4thetaB-3DELTAtheta. The angle DELTApsi of deflection of a device when the high frequency is varied is 3DELTAtheta, and an angle of deflection which is three times that of a conventional optical deflecting device is realized. Consequently, the frequency band of the applied high frequency of a transducer for obtaining a specific angle of deflection by a deflecting device may by reduced greatly.

Description

【発明の詳細な説明】 〔技り8j分野〕 本発明は導波光の回折を利用した薄膜型光偏向装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Technique 8j] The present invention relates to a thin film type optical deflection device that utilizes diffraction of guided light.

〔従来技術〕[Prior art]

超音波光−回器(A10偏向器と、亦す)は、ポリ了ン
ミラー、ガ゛ルバノミラー等の機械釣元偏向器に比べて
高速定配が可能なため、商運し−ザービームグリンター
、TVディスプレイ寺への適用が期待されている。しか
し、従来の方式のA10IJiil向器においてはその
偏向角(走査可能な角度範囲)が小さいという欠点があ
った。
Ultrasonic beam printers (hereinafter referred to as A10 deflectors) can achieve higher speed and fixed distribution compared to mechanical deflectors such as polygon mirrors and galvanometer mirrors, so they are very popular in business. , it is expected to be applied to TV display temples. However, the conventional A10IJiil deflector has a drawback in that its deflection angle (scannable angular range) is small.

ここで、従来のA10−回器及びその問題点に関し、図
面を参照しつつ詳細に説明する。
Here, the conventional A10-circuit and its problems will be described in detail with reference to the drawings.

第1図は従来の体Ijt型のA10偏向器の斜視図であ
る。第1図において、1はPLZT等の圧電物からなる
トランスデユーサ−であシ、この超音波トランスデユー
サ−1はTe O2等の超督波導波体2に密着凸装置さ
れている。このトランスデー−サ−1に外部から50〜
1000 MHz −wi域の高周波α圧が印加される
と、超音波が導諷体2中を疎峠彼の形で進行し、導波体
2中に屈折率の変化による回折格子構造が形成される。
FIG. 1 is a perspective view of a conventional Ijt type A10 deflector. In FIG. 1, reference numeral 1 denotes a transducer made of a piezoelectric material such as PLZT, and this ultrasonic transducer 1 is closely attached to an ultrasonic waveguide 2 made of TeO2 or the like. This transducer 1 is
When a high-frequency α pressure in the 1000 MHz-Wi range is applied, the ultrasonic wave propagates through the waveguide 2 in a rough shape, and a diffraction grating structure is formed in the waveguide 2 due to a change in the refractive index. Ru.

この導波体2にレーザービーム3を入射させると、該ビ
ームは上記回折洛子傳造によシブラッグ回折を受け、回
折光束4として射出される。この時、4次回折光束5と
回折光束4とのなす角、即ち回折角θはトランスデユー
サ−1に印加する高周波の周波数により変化し、θは次
式で与えられる。
When a laser beam 3 is made incident on this waveguide 2, the beam undergoes Sibrag diffraction by the above-mentioned diffraction beam 4, and is emitted as a diffracted light beam 4. At this time, the angle formed by the fourth-order diffracted light beam 5 and the diffracted light beam 4, that is, the diffraction angle θ, changes depending on the frequency of the high frequency wave applied to the transducer 1, and θ is given by the following equation.

ここで、Vは超音波の速度、fは印加高周波の周波数、
λは入射)YS末の生気中での波長、nは導波体20ノ
U(折率である。
Here, V is the speed of the ultrasonic wave, f is the frequency of the applied high frequency,
λ is the wavelength in live air at the end of the YS (incidence), and n is the refractive index of the waveguide 20 mm.

上式から、付加周波数fを変えることによりθを変化さ
せ出射光束4を飼向走在させ得ることが理解される。こ
の偏向角の最大振シ角はブラッグ回折の角度選択幅で決
まシ、ある周波数以上になると入射光束が超音波の嚇に
よる回折格子構造のカッシリング条トドからはずれてし
まい回折効率は低下する。そのため、最大t@向角は限
定されてしまい、従来例ではせいぜい3°程度であった
From the above equation, it is understood that by changing the additional frequency f, it is possible to change θ and cause the emitted light beam 4 to travel in the feed direction. The maximum deflection angle is determined by the angular selection range of Bragg diffraction, and when the frequency exceeds a certain level, the incident light beam deviates from the Cassilling striations of the diffraction grating structure due to the threat of ultrasonic waves, and the diffraction efficiency decreases. Therefore, the maximum t@direction angle is limited, and in the conventional example, it was about 3 degrees at most.

第2図は従来の薄膜導波路型のA10偏向器の斜視図で
ある。第2図において、LiNbO5等の圧電性結晶基
板6の表面にT1を拡散させて光導波路7が形成されて
いる。この光導波路7は厚みが2μm程度であシ、その
屈折率は基板6のLiNbO3の屈折率2.2に対し約
0.0またけ高い。光導波路7に高屈折不のノリズム8
を近接させ、該プリズム8内に外部からレーザー光束9
を入射させ、該光束を導波路7内に導く。導波路70面
上にはくしの来状の超音波励起用の′電極10が1投け
られている。この′成極10に尚周波を印加することに
よシ、結晶60表面に超音波励起用が発生−ノーる。導
波路7中に入射した光束11はこの超晋波表1Hj波に
より回折され1桶向光東12となる。?iJ記の体積型
A / 0圓向器の場合と同様に、電極工0に印加する
高周波の周反故を変えることにより光束12は「4向さ
れる。−向光束12は射出用グリズム13によシ外部に
射出される。この導波路型A / O偏向器の場合もブ
ラッグ回折のカッシリング条件によシ最犬輔向角はil
+tJ :服される。
FIG. 2 is a perspective view of a conventional thin film waveguide type A10 deflector. In FIG. 2, an optical waveguide 7 is formed by diffusing T1 on the surface of a piezoelectric crystal substrate 6 such as LiNbO5. This optical waveguide 7 has a thickness of about 2 μm, and its refractive index is about 0.0 higher than the refractive index of LiNbO3 of the substrate 6, which is 2.2. High refractive index 8 in optical waveguide 7
are placed close to each other, and a laser beam 9 is introduced from the outside into the prism 8.
is made incident, and the light beam is guided into the waveguide 7. A comb-shaped electrode 10 for excitation of ultrasonic waves is placed on the surface of the waveguide 70. By applying a frequency wave to this polarization 10, ultrasonic excitation is generated on the surface of the crystal 60. The light beam 11 that has entered the waveguide 7 is diffracted by this super-high-frequency wave 1Hj wave and becomes a light beam 12 directed toward one tube. ? As in the case of the volume type A/0 circular deflector described in iJ, the light beam 12 is directed in four directions by changing the frequency of the high frequency applied to the electrode 0. The -direction light beam 12 is directed to the grism 13 for injection In the case of this waveguide type A/O deflector, the maximum direction angle is also
+tJ: Subjected.

導波路型A10偏向器において偏向角を増大させるいく
つかの試みがなされている。この様な例は、たとえば、
文献IEEFJ* Transactions onc
ircuttand Systems 、vol、CA
S−26No、12 + p 1072[Gulded
 −Wave Acouato −0pt lc Br
agg Modulationsfor Wide −
Band Integrated 0ptic Cor
rrnunications andSignal P
rocessing J by C,S、 TSAIに
詳しく述べられている。その−例は、第3図に示される
如く、広周波該帝域を共振帯域の異なる仮数のトランス
デユーサ−14によシ分担させ、且つ各トランスデー−
゛す−を互いにわずかづつ1頃けて1杷置することによ
り全1↑を域で入射光束がカッシリングされる様に工夫
されている。4個のトランスデユーサ−を用いた例では
680 Mf(zの帯域が得られている。
Several attempts have been made to increase the deflection angle in waveguide type A10 deflectors. Examples of this kind are, for example:
LiteratureIEEFJ* Transactions onc
Ircutand Systems, vol. CA
S-26No, 12 + p 1072 [Gulded
-Wave Acouato -0pt lc Br
agg Modulations for Wide −
Band Integrated 0ptic Cor
rrnunications and Signal P
Processing J by C,S, TSAI. An example of this is as shown in FIG.
It is devised so that the incident light beam is cascaded in the area of 1↑ by placing the 2 and 2 beams slightly apart from each other by 1 point. In an example using four transducers, a band of 680 Mf (z) is obtained.

この時の偏向角は約4°である。また、他の例は、第4
図に示される如く、くシの来状の′成極15のピッチp
と1頃きψを順次変化させ低域から高域になるにつれ超
音波の進行方向が変化し、広4jf域で入射光束がカッ
シリングされる様に工夫されている。
The deflection angle at this time is about 4°. Also, another example is the fourth
As shown in the figure, the pitch p of polarization 15 in the current state of the comb
By sequentially changing ψ and 1, the direction of propagation of the ultrasonic waves changes as the range goes from low to high, so that the incident light flux is cascaded over a wide 4jf range.

これら改良型の扁内器でも、ドライバー技術、くしの両
電極の/4’ターン加工技術等の制約にょ9、以上の様
にして偏向角を増大させる方法においては偏向角の増大
にともなって広い周波数帯域の電圧印加用発振器が必要
となるが、−役に広い周波数帯域の発振器を得るのは困
難である。
Even with these improved flattened devices, there are limitations such as driver technology and /4' turn processing technology for both electrodes of the comb. Although an oscillator for voltage application with a frequency band is required, it is difficult to obtain an oscillator with a wide frequency band.

周波数帯域を広げないで偏向角を広角化する方法として
、同一周波数帯域のトランスデユーサ−を第5図に示さ
れる如く腹故個配列し、それらの頌き角を変え且つ入射
光束の方向もそれら各トランスデユーサーの傾き角に対
応して変えて、各入射光束と各トランスデユーサ−との
組合せを順次切許えて広い偏向角を得ることも考えられ
る。この場合には超音波トランスデー−サー周波数が極
端に高くならないという利点がある。しかし、この場合
の間魂点はこの種の偏向器に存在する4次回折光の影響
である。即ち、第5図において第1のトランスデユーサ
−16によυ励起された超音波17に第1の光束18を
入射させると、その一部は偏向光束となるが一部の光束
は回折されずに零次光19となる。この第1のトランス
デー−サI C+fF IQ IJ−+1Fil 婚4
b Q l’1 品、r−赫爪IF 子荀9Aまでの間
の糾;鍜都21の角度範囲が走査される。
As a method of widening the deflection angle without widening the frequency band, transducers of the same frequency band are arranged in a random arrangement as shown in Fig. 5, and their angles are changed and the direction of the incident light beam is also changed. It is also conceivable to obtain a wide deflection angle by changing the angle of inclination of each transducer and sequentially selecting combinations of each incident light beam and each transducer. In this case, there is an advantage that the ultrasonic transducer frequency does not become extremely high. However, the difference in this case is due to the influence of the fourth-order diffracted light existing in this type of deflector. That is, in FIG. 5, when the first light beam 18 is made incident on the ultrasonic wave 17 excited by the first transducer 16, a part of it becomes a deflected light beam, but a part of the light beam is diffracted. Instead, it becomes zero-order light 19. This first transducer IC+fF IQ IJ-+1Fil marriage 4
b Q l'1 product, r-edge IF test up to child 9A; the angular range of the capital 21 is scanned.

この第1の偏向範囲21に頃続して、時系列的に切替え
られた第2のトランスデユーサ−22と入射光束23と
の組合せにより最大回折角24から最小回折角26まで
の間の斜線郡25の1桶向範囲が走査される。この偏向
範囲25の中には先の第1の光束18による零次回折光
19がq在することになる。そのため、この偏向器をし
”−ザービーム記録またはレーザーディスプレイに用い
た場合には、この零次光束19は偏向光束に対し静止光
束となるためその元叶が多少低い場合でも偏向範囲21
.25中に琲祿ノイズとなってi己録またはディスルレ
イに非常に有博となる。
Following this first deflection range 21, a diagonal line between a maximum diffraction angle 24 and a minimum diffraction angle 26 is formed by a combination of a second transducer 22 and an incident light beam 23 which are switched in time series. One bucket direction range of group 25 is scanned. Within this deflection range 25, there are q zero-order diffracted lights 19 caused by the first light beam 18. Therefore, when this deflector is used for laser beam recording or laser display, this zero-order light beam 19 becomes a stationary light beam with respect to the deflected light beam, so even if its original value is somewhat low, the deflection range 21
.. During the 25th, it becomes a noise and becomes very useful for recording or recording.

〔本発明の目的〕[Object of the present invention]

本発明は、以上のμm」き従来技術に鑑み、広い偏向角
を実現できる4j漠型元偏向装置を提供することを目的
とする。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional technology with a diameter of .mu.m, it is an object of the present invention to provide a 4J wide deflection device capable of realizing a wide deflection angle.

以上の如き目的は、導波の回折位置を通る円の一部分に
相当する回折導波光反射面を設けることにより達成され
る。
The above objects are achieved by providing a diffractive waveguide light reflecting surface corresponding to a portion of a circle passing through the diffraction position of the waveguide.

〔本発明の実施例〕[Example of the present invention]

以下、図面を参照しつつ本究明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第6図は本究明の漣:模型光偏向装置の第1実施−クリ
を示す平面図である。第6図において、31はTi拡散
y板L i N b O5光導波路、32.33はグレ
ーティング光結合器、34は円弧状にIνtMされた光
導波路肩面、35はAl薄膜等を蒸着することによシ構
成された反射膜、36は〈シB1電極である。外部から
のTEモードのHe −Neレーザー入射元(波長63
28X)37はグレーティング光結合器32を通って光
導波路31内に導びかれ、導波光38となる。この導波
光38は、くシ型心極36によシ発生せしめられた弾性
表面波39により回折せしめられ、回折導波光40とな
る。回折光40は反射膜35を付せられた導波路端ll
l134で反射され、反射導波光41となる。反射光4
1は出力用グレーティング光結合器33を通って外部に
出射される。
FIG. 6 is a plan view showing the first implementation of the present invention's model optical deflection device. In FIG. 6, 31 is a Ti diffused Y plate L i N b O5 optical waveguide, 32, 33 is a grating optical coupler, 34 is a shoulder surface of the optical waveguide which is IνtM in an arc shape, and 35 is an Al thin film etc. deposited on it. The reflective film 36 is a B1 electrode. External TE mode He-Ne laser incident source (wavelength 63
28X) 37 is guided into the optical waveguide 31 through the grating optical coupler 32 and becomes guided light 38. This guided light 38 is diffracted by a surface acoustic wave 39 generated by the comb-shaped core 36, and becomes a diffracted guided light 40. The diffracted light 40 is at the end of the waveguide provided with the reflective film 35.
It is reflected by l134 and becomes reflected guided wave light 41. reflected light 4
1 is emitted to the outside through the output grating optical coupler 33.

第7図は本発明の詳細な説明図である。第7図において
、43は導波光、44は連性表山1波、45.47はz
J≠波元43が弾性表面波44で回折されて生じた回折
導波光、46.48は回折導波光45.47が導波路端
[lX149で反射されて生じた反射導波光である。弾
性表面波44に対するブラッグ角をθ8とし、入射導波
光43が弾性表面波44に対してブラッグ角で入射する
様に配置されている。第7図に示される如く、入射導波
光43と)fト性表面波44との相互作用の位置をAと
し、点Aから弾性表面波440波面方向(ここで、波面
方向とは弾性表面波の進行する方向に直交する方向を、
依i禾するものとする)の直線上の一点を0とする。そ
して、導波路端面49の形状は、点0を中心とじAoを
半径とする円弧であるとする。
FIG. 7 is a detailed explanatory diagram of the present invention. In Fig. 7, 43 is the waveguide light, 44 is the connected table top 1 wave, and 45.47 is the z
J≠The diffracted guided light generated by the wave source 43 being diffracted by the surface acoustic wave 44, 46.48 is the reflected guided light generated by the diffracted guided light 45.47 reflected at the waveguide end [lX149. The Bragg angle with respect to the surface acoustic wave 44 is set to θ8, and the incident guided light 43 is arranged so as to be incident with the surface acoustic wave 44 at the Bragg angle. As shown in FIG. 7, the position of the interaction between the incident guided wave 43 and the surface acoustic wave 44 is defined as A, and the wavefront direction of the surface acoustic wave 440 starts from point A (here, the wavefront direction refers to the surface acoustic wave The direction perpendicular to the direction of movement of
Let one point on the straight line be 0. It is assumed that the shape of the waveguide end face 49 is a circular arc whose center is at point 0 and whose radius is Ao.

弾性表面波44の波長がブラッグ条件を満足する時、回
折光45は入射導波光43に対して、−2θB偏向をう
ける・。ただし、角度の符号は反時計まわりを正とする
ことにする。回折光45は、導波路端面49のB点で反
射されるわけであるが、導波1l18端1111の形状
が点Oを中+l’>とする円「甚ゆう、端面に入射する
回折光45の入射角はθBとなる。したがって、と記1
3点での反射により、回折光45はπ−2θB1M回を
うける。最終的に入射光43に対する反射光46の1h
ti向角ψは\ ψ=−208+π−20.=π−40. ・・・(1)
となる。
When the wavelength of the surface acoustic wave 44 satisfies the Bragg condition, the diffracted light 45 is deflected by -2θB with respect to the incident guided light 43. However, the sign of the angle is assumed to be positive when counterclockwise. The diffracted light 45 is reflected at point B of the waveguide end face 49, but if the shape of the waveguide 1l18 end 1111 is a circle with point O as the center +l'>, the diffracted light 45 incident on the end face The incident angle of is θB. Therefore, write 1
Due to reflection at three points, the diffracted light 45 undergoes π-2θB1M times. Finally, 1 h of reflected light 46 with respect to incident light 43
Ti direction angle ψ is \ ψ=-208+π-20. =π−40. ...(1)
becomes.

次に、くし型屯池に印加する高周波の周波数を変化させ
、弾性表面波のピッチを変えると、弾性表面波44によ
り回折された。!4波光47は入射光43に対して−2
08−Δθ偏向をうける。回折光47は導波路端面49
のB′点で反射されるわけであるが、三角形AOB’も
二等辺三角形であるので端面に入射する回折光47の入
射角はθ8+Δθとなる。したがって、上記B′点での
反射により、回折光47はπ−20Il−2Δθ偏向を
うけ、最終的に入射光43に対する反射光48の偏向角
ψ′は、ψ1−−208−Δθ+π−2θB−2Δθ=
π−4θB−3Δθ ・・・(2)となる。
Next, when the frequency of the high frequency wave applied to the comb-shaped pond was changed and the pitch of the surface acoustic wave was changed, the surface acoustic wave 44 was diffracted. ! The four-wave light 47 is -2 with respect to the incident light 43.
08- Δθ deflection. The diffracted light 47 is transmitted to the waveguide end face 49
Since the triangle AOB' is also an isosceles triangle, the incident angle of the diffracted light 47 entering the end face is θ8+Δθ. Therefore, due to the reflection at the point B', the diffracted light 47 is deflected by π-20Il-2Δθ, and finally the deflection angle ψ' of the reflected light 48 with respect to the incident light 43 is ψ1--208-Δθ+π-2θB- 2Δθ=
π-4θB-3Δθ (2).

このように、くし型′厄イ返に印加する高周波の周波数
を変化させた場合の振れ角Δψは、(1)式及び(2)
式から、 Δψ=ψ′−ψ=3Δθ ・・・(3)となシ、A点に
おける回折光の1脹れ角Δθの3倍の偏向角が得られる
ことになる。第7図においては光束を光線と近似したが
、有限の幅をもつ光束は厳密には、上記(3)式の関係
を満足しない。しかし、光束幅に対して半径OAを十分
大きくとれば、(3)式の関係は良い近似で成シ立っ。
In this way, the deflection angle Δψ when changing the frequency of the high frequency wave applied to the comb-like pattern is calculated using equations (1) and (2).
From the formula, Δψ=ψ′−ψ=3Δθ (3), and a deflection angle that is three times as large as one bulge angle Δθ of the diffracted light at point A can be obtained. Although the luminous flux is approximated as a light ray in FIG. 7, a luminous flux with a finite width does not strictly satisfy the relationship of equation (3) above. However, if the radius OA is made sufficiently large with respect to the beam width, the relationship in equation (3) holds true with good approximation.

今、くシ型電極36に、印加する高周波の周波数を連続
的に変化させた時の弾性表面波による回折の最大の振れ
角をΔθ、工とすると、本第1実施列の光偏向装置の最
大の振れ角Δψmaxは、(3)式の関係からΔψma
x=3Δθmax −(4) となシ、3倍の偏向角を得ることができる。
Now, if the maximum deflection angle of diffraction due to surface acoustic waves when the frequency of the high frequency wave applied to the comb-shaped electrode 36 is continuously changed is Δθ, then the optical deflection device of the first embodiment The maximum deflection angle Δψmax is Δψmax from the relationship of equation (3).
x = 3Δθmax - (4) Therefore, it is possible to obtain a deflection angle three times larger.

第8図は本発明の薄膜型光偏向装置の第2の実施例を示
す平面図である。第8図において31は、Ti拡散y 
& LiNbO3光導波路、32.33は、グレーティ
ング光結合器、36はくし型電極である。
FIG. 8 is a plan view showing a second embodiment of the thin film type optical deflection device of the present invention. In FIG. 8, 31 is Ti diffusion y
& LiNbO3 optical waveguide, 32.33 is a grating optical coupler, and 36 is a comb-shaped electrode.

光偏向原理は上記第1実施例と同様であるが、本実施例
においては、グレーティング反射器42を用いて弾性表
面波44による回折光40を反射′させるように構成さ
れている。上記グレーティング反射器のグレーティング
の形状は、第1実施例の導波路端面34の円弧形状と同
じであるため、本実施例の場合も(3)式と同様の関係
を満足する。本実施例の場合は、第1実施例に比べて導
波路端面を円弧状に加工する必要がないため、作製が容
易であるという効果を有する。
The light deflection principle is the same as that of the first embodiment, but in this embodiment, a grating reflector 42 is used to reflect the diffracted light 40 caused by the surface acoustic wave 44. Since the shape of the grating of the grating reflector is the same as the arcuate shape of the waveguide end face 34 of the first embodiment, the same relationship as equation (3) is satisfied in this embodiment as well. In the case of this embodiment, since there is no need to process the waveguide end face into an arc shape compared to the first embodiment, it has the advantage of being easier to manufacture.

以上の実施例においては、音4元学効果を用いた装置を
説明したが、本発明はこれに限らず、導波光の回折を利
用した薄膜型光偏向装置には全て用いることが出来る。
In the above embodiments, a device using the sound quaternary effect has been described, but the present invention is not limited to this, and can be applied to any thin film type optical deflection device that utilizes diffraction of guided light.

例えば、第9図は電気光学効果を利用したもので、第8
図と共通の部分は同一の符号を附した。Ti拡散yMi
、L1Nb05光導波路31にグレーティング光結合器
32を介して結合された入射光37は、導波光38とな
る。光導波路31は、くし型電極43に電圧を印加する
と、電気光学効果によって、屈折率が周期的に変化し、
前記導波光38を回折導波光40のように回折せしめる
。この回折導波光40は、くし型電極43による回折位
置を通る円の一部分に相当する円弧形状に形成されたグ
レーティング反射器42で反射されて、グレーティング
光結合器33で導波路外に導出される。本実施例でも(
3ン式を満足し、導出された偏向光は大きな偏向角を有
する。
For example, Figure 9 uses the electro-optic effect;
Parts common to those in the figure are given the same reference numerals. Ti diffusion yMi
, the incident light 37 coupled to the L1Nb05 optical waveguide 31 via the grating optical coupler 32 becomes guided light 38. When a voltage is applied to the comb-shaped electrode 43 of the optical waveguide 31, the refractive index changes periodically due to the electro-optic effect.
The guided light 38 is diffracted like a diffracted guided light 40. This diffracted waveguide light 40 is reflected by a grating reflector 42 formed in an arc shape corresponding to a portion of a circle passing through the diffraction position by the comb-shaped electrode 43, and guided out of the waveguide by a grating optical coupler 33. . In this example, (
3, and the derived polarized light has a large deflection angle.

第9図のくし型電極43の代わシに第10図に示す様な
はしご型構造のヒーター材よ構成る電極を用いて加熱し
、熱光学効果を利用して光導波路31に周期的な屈折率
変化を生じさせて、導波光38を回折させても良い。こ
のような回折を利用した薄膜型光偏向装置は、一般に偏
向角が小さいので、本発明による偏向角の増大は、非常
に有効である。
Instead of the comb-shaped electrode 43 in FIG. 9, an electrode made of a heater material with a ladder-shaped structure as shown in FIG. The guided light 38 may be diffracted by causing a rate change. Since such a thin film optical deflection device using diffraction generally has a small deflection angle, increasing the deflection angle according to the present invention is very effective.

〔本発明の効果〕[Effects of the present invention]

以上の如き本発明の薄j漠型光調向装置によれば、通常
の光偏向装置に比べ3倍の偏向角を実現できる。又、弾
性表面波を用いた偏向装置においては、サー印加高周波
の周波数帯域はかなシ狭くてもよいという効果がある。
According to the thin, narrow type light control device of the present invention as described above, a deflection angle three times as large as that of a normal light deflection device can be realized. Further, in a deflection device using surface acoustic waves, there is an effect that the frequency band of the high frequency wave applied to the surface may be very narrow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は従来の光偏向器の斜視図であシ、第4
図及び第5図は従来の光偏向器の部分平面図である。第
6図、第8図及び第9図は本発明の光偏向装置の平面図
であシ、第7図は本発明の詳細な説明図である。第10
図は′電極構造の一例を示す平面図である。 31・・・光導波路、32.33・・・グレーティング
光結合器、34.49・・・導波路端面、35・・・反
射膜、36.43・・・くし型電極、37・・・入射光
、38.43・・・導波光、39.44・・・弾性表面
波、40.45.47・・・回折導波光、41.46.
48・・・反射導波光、42・・・グレーティング反射
器。 ゛・ia1図 ス @ 2 図 笛 3 図 箪 4 図 !!5 図 第 6 図 1 9 @8図 1
Figures 1 to 3 are perspective views of conventional optical deflectors.
1 and 5 are partial plan views of a conventional optical deflector. 6, 8, and 9 are plan views of the optical deflection device of the present invention, and FIG. 7 is a detailed explanatory diagram of the present invention. 10th
The figure is a plan view showing an example of an electrode structure. 31... Optical waveguide, 32.33... Grating optical coupler, 34.49... Waveguide end face, 35... Reflective film, 36.43... Comb-shaped electrode, 37... Incident Light, 38.43... Guided light, 39.44... Surface acoustic wave, 40.45.47... Diffraction guided light, 41.46.
48...Reflected waveguide light, 42...Grating reflector.゛・ia1 figure @ 2 figure flute 3 figure 4 figure! ! 5 Figure 6 Figure 1 9 @8 Figure 1

Claims (1)

【特許請求の範囲】 (1)ブレーナ−型光導波路に周期的な屈折率変化を生
じさせ、導波光を回折せしめる簿膜型の光偏向装置nに
おいて、光導波路に回折導波光を反射せしめるための反
射面が形成されておシ、該反射面は導波光の回折位置を
通る円の一部分に相当することを特徴とする、薄膜型光
偏向装置。 (2ン 反射面が)t4波路端面によ多構成される、第
1項の(4模型元詞向装置。 (3)反射面が光導波路上に付されたグレーティングに
よ多構成される、第1項の41漠型元偏向装置O
[Claims] (1) In a film-type optical deflection device n that causes a periodic refractive index change in a Brener-type optical waveguide and causes the guided light to be diffracted, for causing the optical waveguide to reflect the diffracted guided light. 1. A thin film type optical deflection device, characterized in that a reflecting surface is formed, the reflecting surface corresponding to a part of a circle passing through a diffraction position of guided light. (2) The reflecting surface is composed of the t4 waveguide end face, (4 model element direction device of item 1. (3) The reflecting surface is composed of the grating attached to the optical waveguide, Paragraph 1, 41, vague type original deflection device O
JP24089183A 1983-12-22 1983-12-22 Thin film type optical deflecting device Pending JPS60133432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24089183A JPS60133432A (en) 1983-12-22 1983-12-22 Thin film type optical deflecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24089183A JPS60133432A (en) 1983-12-22 1983-12-22 Thin film type optical deflecting device

Publications (1)

Publication Number Publication Date
JPS60133432A true JPS60133432A (en) 1985-07-16

Family

ID=17066221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24089183A Pending JPS60133432A (en) 1983-12-22 1983-12-22 Thin film type optical deflecting device

Country Status (1)

Country Link
JP (1) JPS60133432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286428A (en) * 2006-04-18 2007-11-01 Sumitomo Osaka Cement Co Ltd Optical waveguide type optical modulator and optical waveguide type modulator with output light monitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286428A (en) * 2006-04-18 2007-11-01 Sumitomo Osaka Cement Co Ltd Optical waveguide type optical modulator and optical waveguide type modulator with output light monitor
JP4536679B2 (en) * 2006-04-18 2010-09-01 住友大阪セメント株式会社 Optical waveguide type optical modulator and optical waveguide type optical modulator with output light monitor

Similar Documents

Publication Publication Date Title
EP0015685B1 (en) Acousto-optical modulator
EP0387354B1 (en) Light deflecting element
EP0775929A2 (en) Electro-optical device having inverted domains formed inside a ferro-electric substrate
US5007694A (en) Light wavelength converter
US4929042A (en) Variable acoustical deflection of an optical wave in an optical waveguide
JPH0611672A (en) Total-reflection type electron-optics modulator
JPS6157614B2 (en)
JPS60133432A (en) Thin film type optical deflecting device
JP3633045B2 (en) Wavelength filter
JPS6360889B2 (en)
JPS6150291B2 (en)
JPH06118458A (en) Optical beam deflector having bragg lattice
JP2553367B2 (en) Multiple reflection type surface acoustic wave optical diffraction element
JPS6210411B2 (en)
JPS622293B2 (en)
US3502391A (en) Optical beam deflector using diverging or converging beams
US4473276A (en) Acousto-optic deflector utilizing internal deflection
JP3276088B2 (en) Waveguide type acousto-optic device
JPH07270736A (en) Waveguide type acousto-optical element
JPH0375730A (en) Optical deflector
JPS60136719A (en) Acoustooptic device
JPS63147140A (en) Acoustooptic element
JPS59198425A (en) Ultrasonic optical modulator
JPS62242921A (en) Optical deflecting device for surface acoustic wave
JPS6083919A (en) Acoustooptical element