JPS5832153A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPS5832153A
JPS5832153A JP12939981A JP12939981A JPS5832153A JP S5832153 A JPS5832153 A JP S5832153A JP 12939981 A JP12939981 A JP 12939981A JP 12939981 A JP12939981 A JP 12939981A JP S5832153 A JPS5832153 A JP S5832153A
Authority
JP
Japan
Prior art keywords
bismuth
lanthanum
cobalt
atom
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12939981A
Other languages
Japanese (ja)
Inventor
Terunobu Yoshisato
善里 「ひで」信
Hiroyuki Okitsu
沖津 弘之
Teizo Yamaji
山路 禎三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP12939981A priority Critical patent/JPS5832153A/en
Publication of JPS5832153A publication Critical patent/JPS5832153A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Abstract

PURPOSE:To make the action possible even in <=500 deg.C comparatively low temperature ranges, by using a metallic oxide complex consisting essentialy of oxides of lanthanum, bismuth and cobalt. CONSTITUTION:A metallic oxide complex serving as an oxygen sensor element consists essentially of oxides of lanthanum, bismuth and cobalt. It is desirable that the component ratio of each atom is fixed in the range that 0.1-10g atom lanthanum and 0.1-15g atom bismuth per 1g atom cobalt are present and also, the ratio of the sum of each g valence of lanthanum and bismuth to that of cobalt is desirable to be 0.2-15 and moreover, the ratio of g valence of bismuth to that of lanthanum is disirable to be 0.1-10. This metallic oxide compound has an oxygen ion conductive property and at the same time, has an electron conductive property and the electrically conductive property is varied with the variation of partial pressure of oxygen atmosphere.

Description

【発明の詳細な説明】 本発明は気体中における11ノ〕検知あるいは貴度橢定
等のw!jlkセンサーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is capable of detecting 11 items in gas or determining the degree of purity, etc. This is related to the jlk sensor.

従来気体中に含まれているh索の濃度を検出する酸素セ
ンサーとしては、主として酸化ジルコニクム喀の酸素イ
オン導電性を有する固体電解質を素子として用いた。濃
淡電池タイプのものが実用化されている。しかしこのタ
イプのセンサーはその構造が複雑であり、電極として貴
金属である白金の多孔質体を用いているため。
Conventionally, as an oxygen sensor for detecting the concentration of h-wires contained in a gas, a solid electrolyte made of zirconium oxide having oxygen ion conductivity has been mainly used as an element. Concentration battery type batteries have been put into practical use. However, this type of sensor has a complex structure and uses a porous material made of platinum, a noble metal, as an electrode.

電解質との密着性の問題や、高価である等の経済的間賄
があり、これに代る安価な酷累センサーが望まれている
。また−化ジルコニクム系酸素センサーでは使用温度が
一般に700’C付近の高温であり、SOO℃以下の温
度では使用できないという欠点もある。一 本発明の目的は、従来の酸素センサーでは検知できなか
ったSOO℃以下の比較的低111g4域においても作
動可能な酸素センサーを提供するととくある。
There are problems with adhesion with the electrolyte and economical problems such as high cost, and there is a desire for an inexpensive alternative sensor. In addition, zirconium chloride-based oxygen sensors have the disadvantage that the operating temperature is generally around 700'C, and that they cannot be used at temperatures below SOO°C. One object of the present invention is to provide an oxygen sensor that can operate even in the relatively low 111g4 range below SOO°C, which conventional oxygen sensors could not detect.

本発明の他の目的は、より安価な酸素センサオン導電性
とイオン導電性の混合導電性を有する固体電解質のうち
ランク1ン、ビスマスおよびコバルトの酸化物を主体と
する金属酸化物複合体を#索センサー素子として用いる
ことにより達成されることがわかった。
Another object of the present invention is to use a metal oxide composite mainly composed of oxides of bismuth and cobalt, which is ranked No. 1 among solid electrolytes having a mixed conductivity of oxygen sensor on conductivity and ionic conductivity, which is cheaper. It was found that this can be achieved by using it as a cable sensor element.

tKVC1本発明についてさらに詳細な説明を口な5.
tKVC1 Please provide a more detailed explanation of the present invention5.
.

本発明に用いられるランタン、ビスマスおよびコバルト
の酸化物を主体とする金III@酸化物複合体は、49
に高温において優れた酸素イオン導電性と同時に優れた
電子導電性を有するいわゆる高い混合導電性を有するこ
とと、さらには雰囲気中の酸素分圧によって該導電性が
変わるいわゆるPalの半導性を有することが本発明者
らKより明らかにされた。
The gold III@oxide complex mainly composed of lanthanum, bismuth and cobalt oxides used in the present invention is 49
It has so-called high mixed conductivity, which has excellent oxygen ion conductivity and excellent electronic conductivity at high temperatures, and also has so-called Pal semiconductivity, in which the conductivity changes depending on the oxygen partial pressure in the atmosphere. This was revealed by the present inventors.

本発明によれば、とのよ5なランタン、ビスマスおよび
コバルトの酸化物を主体とする金属酸化物交合体の優れ
た混合導電性を利用して、雰囲気中の酸素分圧を検知又
は測定することが可蛯である。すなわち1例えば雰囲気
中の酸素分圧が増加すると、それに対応して該複合酸化
物の導電性が増加し、従って電気抵抗が小さくなる性質
を利用することによって雰囲気中の酸素分圧を検知又は
測定することができる。
According to the present invention, the oxygen partial pressure in the atmosphere is detected or measured by utilizing the excellent mixed conductivity of a metal oxide complex mainly composed of oxides of lanthanum, bismuth, and cobalt. That is possible. In other words, 1. For example, when the oxygen partial pressure in the atmosphere increases, the conductivity of the composite oxide increases accordingly, and the electrical resistance decreases. can do.

本発明における酸素センサーの素子となる金属酸化物交
合体はう°ンタン、ビスマスおよびコバルトの酸化物を
主体としており、各原子の組成比は、コパル) j j
lfi子に対しランタンはQl〜ioy原子、好ましく
は(L 2〜51i Jlil、子、特に好ましくは0
.2Isへ4JI原子、ビスマスはQ、1〜1!ijl
厚子、好ましくは12〜10Jil原子、%に好ましく
は(L25〜sy原子の範囲が適当である。さらにコバ
ルトの9原子数に対するランタンおよびビスマスのIf
g子数0和の割合はa2〜1s、好ましくはα3〜10
の範囲が望ましく、さらにランタンのIi厚子数に対す
るビスマスの9原子数の割合はα1〜]0、好ましくは
α2へ8の範囲が望ましい。
The metal oxide complex that is the element of the oxygen sensor in the present invention is mainly composed of oxides of uranium, bismuth, and cobalt, and the composition ratio of each atom is that of copal.
Lanthanum has Ql~ioy atoms, preferably (L2~51i Jlil, children, particularly preferably 0
.. 4JI atoms to 2Is, Bismuth is Q, 1~1! ijl
Atsuko, preferably 12 to 10 Jil atoms, % (a range of L25 to sy atoms is suitable. Furthermore, If of lanthanum and bismuth relative to the number of 9 atoms of cobalt
The ratio of the sum of g-numbers 0 is a2 to 1s, preferably α3 to 10
Further, the ratio of the number of nine atoms of bismuth to the number of Ii atoms of lanthanum is preferably in the range of α1 to ]0, preferably α2 to 8.

本発明記載のランタン、ビスマス及びコバルトの酸化物
を主体とする金属酸化物複合体は。
The metal oxide composite mainly composed of oxides of lanthanum, bismuth and cobalt according to the present invention.

酸素イオン導電性を有すると同時に電子導電性を有し且
つ通常P型の半導性を有し、前述した如く雰囲気の酸素
分圧の変化に、従って導電性が変化する特性を有してい
る。かかる性質を損わない範囲において、応答性、感度
の向上、安定性、再現性向上、さらKは機械的強度や寿
命向上等の目的のために少量の添加物等を加えてもさし
つかえない。
It has oxygen ion conductivity, electronic conductivity, and usually P-type semiconductivity, and as mentioned above, it has the characteristic that its conductivity changes according to changes in the oxygen partial pressure of the atmosphere. . As long as such properties are not impaired, small amounts of additives may be added for the purpose of improving responsiveness, sensitivity, stability, reproducibility, mechanical strength, and life span.

該金属酸化物交合体の形態としては特に限定されるもの
ではな(・が、感度、応答性が良好であることや経時安
定性が優れてること等の理由にヨj)、一般にはベレッ
ト状焼結体を構成する形態、薄膜あるいは厚膜の膜状を
構成する形態等が好ましい。
The form of the metal oxide complex is not particularly limited (but this is due to its good sensitivity and responsiveness and its excellent stability over time), but it is generally pellet-shaped. Preferable forms include a sintered body, a thin film or a thick film, and the like.

該金属酸化物複合体をペレット状焼結体の形態に成形す
る方法としては種々あるが、その方法の1つトシて、ラ
ンタン、ビスマス、コバルトの各々の金属原子を含む化
合物、殊に後述する焼成により踏化物に転換し得る化合
物1例えハ、酸化ランタン、酸化ビスマス、m化コバル
トの如き酸化物、あるいは、好ましくは硝酸塩。
There are various methods for forming the metal oxide composite into a pellet-like sintered body. Compounds that can be converted into tread compounds by calcination, such as oxides such as lanthanum oxide, bismuth oxide, cobalt mide, or preferably nitrates.

嶽酸塩であるが、他Ka@塩、リン酸塩等の無機酸塩、
酢酸塩、シュク酸塩等の有機酸塩、塩化物、臭化物、W
り化物等のハpゲン化物、あるいは水酸化物、オキシハ
クゲン化物を所望の割合で混合し、焼成する方法がある
Although it is a sulfate, other inorganic salts such as Ka@salt and phosphate,
Organic acid salts such as acetates and succinates, chlorides, bromides, W
There is a method of mixing halogenides such as hydrogen oxides, hydroxides, and oxyhalides in a desired ratio and firing the mixture.

また、上記記載の、それぞれの金属の塩の混合水溶液を
、7ンモニ7水等のアルカリ水溶液で、加水分解する、
いわゆる共沈澱法により調製した後焼成してもよい。さ
らに、それぞれの金属の混合物または合金を皺化し、焼
成する等の方法があげられる。これらの焼結体を得る場
合の焼成温度は400〜1400”c、好ましくは40
0−1300℃の範囲が適当である。
Further, the mixed aqueous solution of each of the metal salts described above is hydrolyzed with an alkaline aqueous solution such as 7 mmoni7 water,
It may be prepared by a so-called coprecipitation method and then fired. Furthermore, methods such as creasing and firing a mixture or alloy of the respective metals may be mentioned. The firing temperature for obtaining these sintered bodies is 400 to 1400"c, preferably 40"c.
A range of 0-1300°C is suitable.

該金属酸化物交合体を膜状忙成形するいわゆる成膜方法
としては1例えばベレット、シート状等の固形物を切断
、研磨等の@械的加工により、成膜してもよく、粉末状
のものを加圧成形あるいはペーストにして、過当な支持
体上に塗布し焼結させても良い。
As a so-called film-forming method for forming the metal oxide complex into a film, for example, a film may be formed by mechanical processing such as cutting or polishing a solid material such as a pellet or sheet; The material may be pressed or made into a paste, coated on a suitable support and sintered.

さらに、真空蒸着法、アセチレン溶射法、プラズマジェ
ット法1反応性スノ(ツタリング法。
In addition, vacuum evaporation method, acetylene spraying method, plasma jet method 1 reactive snow (tsutaring method).

化学気相蒸着法(c、v、n法)、化学スプレー法9合
金メッキの酸化等の成膜方法があげられる。
Film forming methods include chemical vapor deposition (C, V, N method), chemical spray method, and oxidation of 9 alloy plating.

本発明のセンサーを用いた#/j素の有無あるいは濃度
の検出方法は、素子をある一定源!fK保った上での抵
抗値の変化を鈎定する一般的な方法によって行うことが
できる。例えば索子に一定の値流電流を流し電気抵抗変
化を電圧記録計で検出する方法やホイートストンブリッ
ジ回路により可変抵抗器と検流計により抵抗変化を検出
する方法等があり、素子の抵抗*、便用■約や用途に応
じ適当な検出方法を用いることができる。
The method for detecting the presence or absence or concentration of element #/j using the sensor of the present invention requires that the element be used as a constant source! This can be done by a general method of determining the change in resistance value while maintaining fK. For example, there are methods such as passing a constant value current through the element and detecting changes in electrical resistance with a voltage recorder, or detecting changes in resistance using a variable resistor and a galvanometer using a Wheatstone bridge circuit. An appropriate detection method can be used depending on convenience and usage.

かくして本発明により、従来のものに比べ、低温度で作
動し且つ調製も容易で経済的にも有利な種々の特徴を有
する酸素ガスセンサーが提供される。
Thus, the present invention provides an oxygen gas sensor that operates at lower temperatures, is easier to prepare, and has various economically advantageous features than conventional sensors.

以下本発明を実施例により詳述するが、何らこt’LK
I定されない。尚実施例中、部とあるのは重量部であり
、変化率は下記1.II式で定義されるもので酸素セン
サー素子としての性能を表わすものである。
Hereinafter, the present invention will be explained in detail with reference to Examples.
I am not determined. In the examples, parts are parts by weight, and the rate of change is as shown in 1. It is defined by Formula II and represents the performance as an oxygen sensor element.

Ri−空気中での抵抗値〔Ω〕 実施例1〜IL 酸化ランタン(L幻03)429部、醸化ビスマX (
Bi!O,)9. II 0部、酢酸コバルトt238
1Iを乳鉢でよく混合し600℃で30分分解ゼしめる
。これを乳鉢でよく混合し、2sokg/cdの圧力で
成形して940′c6時間焼成する。再び乳鉢で破砕混
合し、]0Okj/cIiの圧力で成型し910℃で4
時間焼成する。
Ri - Resistance value in air [Ω] Examples 1 to IL 429 parts of lanthanum oxide (Lgen 03), fermented bisma X (
Bi! O,)9. II 0 parts, cobalt acetate t238
1I was mixed well in a mortar and decomposed at 600°C for 30 minutes. The mixture was thoroughly mixed in a mortar, molded at a pressure of 2 sokg/cd, and fired at 940'c for 6 hours. Crush and mix again in a mortar, mold at a pressure of ]0 Okj/cIi, and heat at 910°C for 4
Bake for an hour.

かくして得られたランタン、ビスマスおよびコバルトの
酸化物を主体とべる金14師化vA物合体の焼結体(組
成LaqnBltnCOe、+40+、s )をlさα
5■、巾翫Om%長さ12.0■にし【両端に銀ペース
トを塗布、乾燥した後、銀板電極ではさんで、両端にそ
れぞれガス入口とガス出口を設けた内径20mのガラス
管中に挿入し、該ガラス管を電気炉に挿入する。かくし
て該焼結体を電気炉内にセットした状態で500℃から
300、□ ℃までの各温度で、空気中および酷累濃度02チのアル
ゴンガスの2種類の雰&111気下での抵抗値(インピ
ータンス)を交流ブリッジ法にょう求めた。その結果を
第1表に示す。
The thus obtained sintered body (composition LaqnBltnCOe, +40+, s) of a gold-14-fermented VA compound mainly composed of oxides of lanthanum, bismuth, and cobalt was α
5■, Width Om% Length 12.0■ [Apply silver paste to both ends, dry it, sandwich it between silver plate electrodes, and put it in a glass tube with an inner diameter of 20 m with a gas inlet and a gas outlet at each end. and insert the glass tube into an electric furnace. Thus, with the sintered body set in an electric furnace, the resistance values were measured at temperatures ranging from 500°C to 300°C and under two types of atmospheres: air and argon gas with a severe cumulative concentration of 0.2°C and 111°C. (impedance) was determined using the AC bridge method. The results are shown in Table 1.

第1表 実施例4〜IL 酸化ランタン(Let Os L h化ビスマス(Bl
*Os )および酢酸コバルトの各々の所定量を用いて
、実施例1とほに同様な操作により租々の組成のランタ
ン、ビスマスおよびコバルトの酸化物を主体とする金属
酸化物複合体の焼結体を調整した。さらKその焼結体を
用いて、実施例1と同じ方法によって空気中およびal
チ厳累含鳴アルゴン中での抵抗値をそれぞれ一定した。
Table 1 Example 4~IL Lanthanum oxide (Let Os L Bismuth chloride (Bl)
Sintering of metal oxide composites mainly composed of oxides of lanthanum, bismuth, and cobalt having various compositions using predetermined amounts of each of *Os ) and cobalt acetate in the same manner as in Example 1. I adjusted my body. Further, using the sintered body of K, the same method as in Example 1 was carried out in air and in Al.
The resistance values in the argon atmosphere were kept constant.

それらの結果を第2表にまとめて示す。The results are summarized in Table 2.

第212 手続補正書 昭和56年10月21日 特許庁長官殿 1、事件の表示 特願昭 55 − 129399  号2、発明の名称 酸素センサー 3、補正をする者 事件との関係  特許出願人 大阪市東区南本町1丁目11番地 (300)帝人株式会社 代表者 徳 末 知 夫 5、補正の対象 (1)  明細書の第2jl[第13行の[イオン導電
性の混合導電性]を[電子導電性の混合導電性1と訂正
する。
No. 212 Procedural Amendment Written October 21, 1980 Mr. Commissioner of the Japan Patent Office 1, Indication of the case Patent Application No. 1983-129399 2, Name of the invention Oxygen sensor 3, Person making the amendment Relationship to the case Patent applicant Higashi, Osaka City 1-11 Minamihonmachi, Ward (300) Teijin Ltd. Representative Tomoo Tokusue 5 Subject of amendment (1) Item 2jl of the specification Correct it as mixed conductivity 1.

(2)  明細書の第3頁第6行および第4頁第14行
の「半導性1をそれぞれ「半導体特性1と訂正する。
(2) "Semiconductivity 1" on page 3, line 6 and page 4, line 14 of the specification is corrected to "semiconductor property 1."

(3)明細書の第3頁第13行〜第14行の「該複合酸
化物]を1−鍍金属酸化物複合体Jと訂正する。
(3) "The composite oxide" on page 3, lines 13 to 14 of the specification is corrected to 1-plated metal oxide composite J.

(4) 明細書の1s7頁第7行と第8行の間に以下の
文章を挿入する。
(4) Insert the following sentence between lines 7 and 8 on page 1s7 of the specification.

[本発明の酸素センサーを使用する場合の温度は、雰囲
気中の酸素酸度の変化による抵抗値の変化が大きい程好
ましい。それ故該温度は通常zoo〜700℃、好まし
くは300〜600℃の範囲が採用される。#温度が7
00℃より高い場合には、雰囲気中の酸素濃度の変化に
よる抵抗値の変化が小さくなるので好ましくなく、−1
該温度が200℃よりも低い場合には、雰囲気中の酸素
濃度に対応した抵抗値を示すまでに長時間を要し、セン
サーとしての応答性が悪くなったりするので好ましくな
い。J (5)  明細書の第10頁、第2表における比抵抗の
単位「Ωcyn−’ Jを「Ω(」と訂正する。
[The temperature at which the oxygen sensor of the present invention is used is preferably such that the change in resistance value due to the change in oxygen acidity in the atmosphere is large. Therefore, the temperature is usually in the range of zoo to 700°C, preferably 300 to 600°C. #Temperature is 7
If it is higher than 00°C, the change in resistance value due to the change in oxygen concentration in the atmosphere will be small, which is undesirable, and -1
If the temperature is lower than 200° C., it takes a long time to show a resistance value corresponding to the oxygen concentration in the atmosphere, which is not preferable because the responsiveness of the sensor becomes poor. J (5) The unit of specific resistance in Table 2 on page 10 of the specification, ``Ωcyn-' J, is corrected to ``Ω(''.

以  上that's all

Claims (1)

【特許請求の範囲】[Claims] ランタン、ビスマスおよびコ・;ルトの酸化物を主体と
する金属酸化物複合体イ酸素七ンサー素子として用いた
ことを特徴とrる酸素センサー 〇
An oxygen sensor characterized in that a metal oxide composite mainly composed of oxides of lanthanum, bismuth, and co-oxide is used as an oxygen sensor element.
JP12939981A 1981-08-20 1981-08-20 Oxygen sensor Pending JPS5832153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12939981A JPS5832153A (en) 1981-08-20 1981-08-20 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12939981A JPS5832153A (en) 1981-08-20 1981-08-20 Oxygen sensor

Publications (1)

Publication Number Publication Date
JPS5832153A true JPS5832153A (en) 1983-02-25

Family

ID=15008597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12939981A Pending JPS5832153A (en) 1981-08-20 1981-08-20 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPS5832153A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8365696B2 (en) 2008-12-25 2013-02-05 Teikoku Piston Ring Co., Ltd. Piston device for internal combustion engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8365696B2 (en) 2008-12-25 2013-02-05 Teikoku Piston Ring Co., Ltd. Piston device for internal combustion engines

Similar Documents

Publication Publication Date Title
EP0400042B1 (en) Metal oxide electrodes
EP0101249B1 (en) Gas sensor
CA2051556C (en) Gas sensor
Singh et al. Electrocatalytic activity of high specific surface area perovskite-type LaNiO3 via sol-gel route for electrolytic oxygen evolution in alkaline solution
JP3053865B2 (en) Sensor for detecting carbon monoxide
EP0022369B1 (en) Combustible gas detecting elements
JPS5832153A (en) Oxygen sensor
KR100631276B1 (en) pH sensing electrode having a solid-state electrolyte layer and pH measuring system containing same
JPS5814043B2 (en) humidity sensor element
KR100480504B1 (en) Process for selectively sensing carbon monoxide gas
Restovic et al. Oxygen evolution electrocatalysis at thin Cu1. 4Mn1. 6O4 spinel films on CdO and nickel substrates
US20040050692A1 (en) Cermet electrodes containing platinum for the electrochemical reduction of oxygen
Farr et al. The exchange reaction Zn (II)/Zn (Hg) in alkali
RU2022264C1 (en) Material for electrodes of electrochemical sensors of oxygen
EP0115953A2 (en) Gas sensor
JPH0239740B2 (en)
JPS5871446A (en) Gas sensor for oxygen and carbon monoxide
JPH022534B2 (en)
Tanabe et al. Cathodic polarization characteristics of the oxygen electrodes/stabilized Bi2O3 solid electrolyte interface
Canaday et al. Protonic conductivity of HyceramTM, a bonded hydronium NASICON
JP2001194337A (en) Method for measuring gas concentration
JPH06231771A (en) Electrode material
JP3919306B2 (en) Hydrocarbon gas detector
JPH03287061A (en) Gaseous hydrogen sensor element
KR940009954B1 (en) Manufacturing method of sensing element for gas sensor