JPH06231771A - Electrode material - Google Patents

Electrode material

Info

Publication number
JPH06231771A
JPH06231771A JP5037417A JP3741793A JPH06231771A JP H06231771 A JPH06231771 A JP H06231771A JP 5037417 A JP5037417 A JP 5037417A JP 3741793 A JP3741793 A JP 3741793A JP H06231771 A JPH06231771 A JP H06231771A
Authority
JP
Japan
Prior art keywords
electrode
spinel
oxide
crystal structure
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5037417A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Ina
克芳 伊奈
Takuji Yoshimura
卓二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP5037417A priority Critical patent/JPH06231771A/en
Publication of JPH06231771A publication Critical patent/JPH06231771A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To provide a material, which costs low and is good on safety, instead of noble metals and perovskite double oxides by using a double oxide including spinel crystal structure as a suitable material for an air electrode of a solid electrolyte type fuel cell and an electrode of a solid electrolyte type oxygen sensor. CONSTITUTION:MxMn3-xO4 is used for a double oxide including spinel crystal structure. In this chemical formula, M represents at least one kind of substance selected among Ni, Cu, and Zn, while x is set to 0.1<=x<=1.5. A percentage content of spinel crystal structure is 50weight%, or more, and is desirably 70weight% or more, so that mutual contact between spinel particles is improved, and consequently, electrode performance is improved. Other materials but spinel crystal structure are included on condition that a spinel structure characteristic is not damaged. For example, the material includes following substances such as platinum and palladium for adding more element conductivity, zirconium oxide and cerium oxide for adding more ion conductivity, and glass group inorganic hinder for improving a contact property with a solid electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電極材料に係り、特に固
体電解質型燃料電池用空気極、及び、固体電解質型酸素
センサー用電極等酸素電極用に好適な電極材料に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode material, and more particularly to an air electrode for a solid electrolyte type fuel cell, and an electrode material suitable for an oxygen electrode such as an electrode for a solid electrolyte type oxygen sensor.

【0002】[0002]

【従来の技術】従来、酸素の電気化学的酸化、還元反応
を速やかに生じさせる電極材料として、白金、金、銀、
パラジウムなどの貴金属及びランタン、ストロンチウ
ム、カルシウム、鉄、コバルト、ニッケル、マンガン等
からなるペロブスカイト型複酸化物の単独または混合物
が知られている。これらの材料は、酸素の吸脱着及び酸
素分子の解離、イオン化が容易に進行し、且つ導電性を
有するため、固体電解質型燃料電池用の空気極及び酸素
センサー用の電極として使用されている。しかしなが
ら、従来の電極材料のうち貴金属を用いた電極材料は高
価であり、その大量使用には問題がある。一方、ペロブ
スカイト型複酸化物を用いた電極材料は、還元ガス雰囲
気中でその性能は著しく劣化し、特に酸素センサー用電
極に用いる場合に問題がある。
2. Description of the Related Art Conventionally, platinum, gold, silver, and the like have been used as electrode materials for promptly causing electrochemical oxidation and reduction reactions of oxygen.
A single or a mixture of noble metals such as palladium and perovskite type complex oxides composed of lanthanum, strontium, calcium, iron, cobalt, nickel, manganese and the like are known. These materials are used as an air electrode for a solid oxide fuel cell and an electrode for an oxygen sensor because they have a property of adsorbing and desorbing oxygen, dissociation of oxygen molecules and ionization, and having conductivity. However, among the conventional electrode materials, the electrode material using a noble metal is expensive, and there is a problem in using it in large quantities. On the other hand, the performance of the electrode material using the perovskite type double oxide is significantly deteriorated in a reducing gas atmosphere, and there is a problem particularly when it is used as an electrode for an oxygen sensor.

【0003】[0003]

【発明が解決しようとする課題】本発明はこのような事
情に鑑み為されたものであって、その目的とするところ
は、貴金属及びペロブスカイト型複酸化物に代わる安価
で安定性に優れた新規電極材料を提供するにある。本発
明の他の目的及び効果は以下の説明から明らかにされよ
う。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide a novel inexpensive and excellent alternative to a noble metal and a perovskite type complex oxide. In providing the electrode material. Other objects and effects of the present invention will be apparent from the following description.

【0004】[0004]

【課題を解決するための手段】上述の目的は、下記一般
式(1)にて示されるスピネル型結晶構造を含む複酸化
物からなる電極材料により達成される。 MX Mn3-X 4 ・・・・・(1) (ただし、MはNi,Cu,Znから選択される少なく
とも1種の元素であり、且つ、0.1≦X≦1.5であ
る。)
The above-mentioned object is achieved by an electrode material composed of a double oxide containing a spinel type crystal structure represented by the following general formula (1). M X Mn 3-X O 4 (1) (where M is at least one element selected from Ni, Cu and Zn, and if 0.1 ≦ X ≦ 1.5) is there.)

【0005】本発明のスピネル型金属・マンガン複酸化
物電極は酸素の電気化学的酸化・還元反応に対する触媒
作用を有し、電子伝導性と酸素イオン伝導性の両者の電
気伝導機構を有する所謂混合導電性材料である。この混
合導電性を有する為、酸素の吸脱着反応は容易となり、
電子の移動によりその反応に伴うエネルギーを電気的な
エネルギーとして取り出したり、あるいは、供給したり
出来る。
The spinel-type metal-manganese composite oxide electrode of the present invention has a catalytic action for the electrochemical oxidation / reduction reaction of oxygen, and is a so-called mixture having both electron conductivity and oxygen ion conductivity. It is a conductive material. Due to this mixed conductivity, the adsorption and desorption reaction of oxygen becomes easy,
The energy accompanying the reaction can be taken out or supplied as electric energy by the movement of electrons.

【0006】本発明の電極を構成する第一元素はマンガ
ンであり、第二元素はNi,Cu,Znから選択される少なくと
も1種の元素である。上記元素以外の元素から構成され
る電極では、混合導電性が出現しない為、若しくはその
導電率が小さすぎる為、本発の電極としては相応しくな
い。
The first element constituting the electrode of the present invention is manganese, and the second element is at least one element selected from Ni, Cu and Zn. An electrode composed of an element other than the above elements is not suitable as the electrode of the present invention because mixed conductivity does not appear or its conductivity is too low.

【0007】本発明の上記一般式(1)Mx Mn3-X O4
おいて、Xが0.1 未満あるいは1.5を越ると、酸素イオ
ン伝導性及び電子伝導性の両者が小さくなり本発明の電
極としては相応しくない。従って、本発明のXの範囲
は、0.1≦X≦1.5であり、好ましくは0.3≦X
≦0.8である。
In the above general formula (1) M x Mn 3-X O 4 of the present invention, when X is less than 0.1 or exceeds 1.5, both the oxygen ion conductivity and the electron conductivity are reduced, and the electrode of the present invention is obtained. Is not suitable for Therefore, the range of X in the present invention is 0.1 ≦ X ≦ 1.5, preferably 0.3 ≦ X
≦ 0.8.

【0008】本発明におけるスピネル型結晶とは、低温
安定相である正方晶スピネル及び高温安定相である立方
晶スピネルの両者を意味する。どちらの晶系において
も、前記混合導電機構は存在する。従って、これらの晶
系を単独で用いても、両晶系を混在させて用いても良
い。
The spinel type crystal in the present invention means both a tetragonal spinel which is a low temperature stable phase and a cubic spinel which is a high temperature stable phase. The mixed conduction mechanism is present in both crystal systems. Therefore, these crystal systems may be used alone, or both crystal systems may be mixed and used.

【0009】本発明の電極材料におけるスピネル型結晶
構造の含有率は、好ましくは50重量%以上、更に好ま
しくは70重量%以上である。含有率が少なすぎるとス
ピネル粒子相互の接触が保たれ難くなり、その為、電極
としての性能が劣り好ましくない。
The content of the spinel type crystal structure in the electrode material of the present invention is preferably 50% by weight or more, more preferably 70% by weight or more. If the content is too low, it becomes difficult to keep the mutual contact of the spinel particles, and therefore the performance as an electrode is poor, which is not preferable.

【0010】本発明においてスピネル型結晶構造以外の
材料も上記スピネル型の有する特性を損なわない範囲内
で種々の目的に従って含有することが出来る。例えば、
電子伝導性を更に付与する為、白金、パラジウム、金、
銀等の貴金属、酸素イオン伝導性を更に付与する為の酸
化ジルコニウム、酸化セリウム、酸化チタン等の酸化
物、更に、ジルコニア等の固体電解質との接触性を向上
させる為ガラス系の無機バインダーなどが挙げられる。
In the present invention, materials other than the spinel type crystal structure may be contained according to various purposes within a range not impairing the characteristics possessed by the spinel type. For example,
In order to further impart electron conductivity, platinum, palladium, gold,
Noble metals such as silver, zirconium oxide for further imparting oxygen ion conductivity, oxides such as cerium oxide and titanium oxide, and a glass-based inorganic binder for improving contact with a solid electrolyte such as zirconia. Can be mentioned.

【0011】本発明の電極材料の粒子径は、細かいほど
高活性で好ましいが、細かすぎる場合その合成及びその
取り扱いが難しく、又、使用温度によっては粒子成長を
生じ、性能が劣化する恐れがある。従って、好ましい粒
子径は、0.01μm〜10μmである。
The finer the particle size of the electrode material of the present invention is, the higher the activity is, which is preferable. However, if it is too small, it is difficult to synthesize and handle the particle size, and particle growth may occur depending on the use temperature, resulting in deterioration of performance. . Therefore, the preferable particle size is 0.01 μm to 10 μm.

【0012】本発明のスピネル型複酸化物は、通常実施
されているセラミックスの合成法により合成される。例
えば、所定量の酸化物をボールミル等の粉砕混合装置を
用いて均一に混合し、次いで1000℃程度の高温中に
て合成せしめる方法。或は、所定量の金属塩の水溶液を
蒸留もしくは中和共沈させた後、800℃程度の温度で
焼成し合成する方法。所望の金属を含有するアルコキシ
ドを用いたゾル・ゲル法。或は、所望の金属を含有する
気体を用いて酸化物を高温で析出せしめる所謂CVD法
等が挙げられる。
The spinel type double oxide of the present invention is synthesized by a commonly used ceramic synthesizing method. For example, a method in which a predetermined amount of oxide is uniformly mixed using a pulverizing and mixing device such as a ball mill and then synthesized at a high temperature of about 1000 ° C. Alternatively, a method in which a predetermined amount of an aqueous solution of a metal salt is distilled or neutralized and coprecipitated, and then calcined at a temperature of about 800 ° C. for synthesis. Sol-gel method using alkoxide containing desired metal. Alternatively, there is a so-called CVD method in which an oxide is deposited at a high temperature using a gas containing a desired metal.

【0013】スピネル型複酸化物電極の設置も、通常実
施されている電極の設置法を用いる。例えば、刷毛塗り
後焼き付け、或は、スパッタリング、CVD、溶射等に
より基材に直接設置される。
The spinel type double oxide electrode is also installed by using a commonly used electrode installation method. For example, it is directly applied to the substrate by brushing, baking, or by sputtering, CVD, thermal spraying, or the like.

【発明の効果】【The invention's effect】

【0014】本発明の電極材料は、酸素イオン伝導性と
電子伝導性の両者の伝導機構を有する混合伝導性材料で
ある。従って、酸素の吸脱着が容易となり、酸素分子を
イオン化しそのエネルギーを電気的エネルギーに変換さ
せたり、逆に電気的エネルギーを酸素分子の生成及び、
酸素のイオン化の為に消費させたり出来る。従って、こ
のようなエネルギー変換を必要とする固体電解質型燃料
電池及び酸素濃度検出素子等の電極材料として有効であ
る。しかも、ニッケル、銅、亜鉛、マンガンは貴金属に
比べ安価であることから経済的に有利であり、また、ペ
ロブスカイト構造となっていないため、還元ガスによる
劣化が少ない等の利点がある。
The electrode material of the present invention is a mixed conductive material having both oxygen ion conductive and electronic conductive mechanisms. Therefore, the adsorption and desorption of oxygen is facilitated, the oxygen molecule is ionized and its energy is converted into electric energy, and conversely, the electric energy is generated and the oxygen molecule is generated.
It can be consumed for the ionization of oxygen. Therefore, it is effective as an electrode material for a solid oxide fuel cell, an oxygen concentration detecting element and the like which requires such energy conversion. In addition, nickel, copper, zinc, and manganese are economically advantageous because they are cheaper than precious metals, and because they do not have a perovskite structure, they have advantages such as little deterioration due to reducing gas.

【実施例】【Example】

実施例1 Example 1

【0015】(1)式Mx Mn3-X O4においてXが0.6
となるように酸化ニッケル(NiO)、酸化銅(CuO) 、酸化
亜鉛(ZnO) 及び酸化マンガン(MnO2) を秤量し、ボール
ミルにて湿式で10時間混合し、その後濾過、乾燥させ
て、大気雰囲気下1000℃で10間焼成し、Ni0.6Mn
2.4O4, Cu0.6Mn2.4O4,Zn0.6Mn2.4O4,Ni0.2Cu0.2Zn0.2Mn
2.4O4の4種のスピネル型複酸化物サンプルNo.1,
No.2,No.3及びNo.4を得た。得られた複酸
化物を再度メタノール中で50時間粉砕した後、乾燥し
て、電極材料とした。尚、上記物質が立方晶スピネル型
構造(面指数(311)、(220)及び(400)の
回折ピークから確認)単一相、若しくは、立方晶スピネ
ル型構造及び正方晶スピネル型構造(面指数(31
1)、(113)及び(202)の回折ピークから確
認)の混在相であることを粉末X線から確認した。
(1) In the formula M x Mn 3-X O 4 , X is 0.6
Nickel oxide (NiO), copper oxide (CuO), zinc oxide (ZnO) and manganese oxide (MnO 2 ) are weighed and mixed in a ball mill for 10 hours in a wet manner, then filtered and dried, and then air Ni atmosphere for 10 minutes at 1000 ℃ Ni 0.6 Mn
2.4 O 4, Cu 0.6 Mn 2.4 O 4 , Zn 0.6 Mn 2.4 O 4 , Ni 0.2 Cu 0.2 Zn 0.2 Mn
2.4 O 4 spinel type complex oxide sample No. 4 1,
No. 2, No. 3 and No. Got 4. The obtained double oxide was pulverized again in methanol for 50 hours and then dried to obtain an electrode material. The above substance is a cubic spinel structure (confirmed from the diffraction peaks of surface indices (311), (220) and (400)) single phase, or a cubic spinel structure and a tetragonal spinel structure (face index). (31
It was confirmed from a powder X-ray that the mixed phase of (1), (113) and (202) diffraction peaks) was a mixed phase.

【0016】6モル%のイットリアをドープした直径4
0mm、厚さ1mmのジルコニアディスクの両面に上記
電極材料をメタノール中に分散させたスラリーを直径1
0mmとなるように刷毛塗りし、乾燥後950℃で2時
間焼き付けて電極とした。次いで、図1に示すようにア
ルミナチューブ及び無機接着剤で上記ディスクをシール
接着し、それぞれの電極に白金リード線が設置された、
酸素濃淡電池方式の酸素センサー素子を作製した。アル
ミナチューブ内に1%の酸素を含む窒素バランスの混合
標準ガスを150cc/minの流量で流し、700℃
での起電力を測定した。尚、対側の電極は、大気と接し
ている。結果を表1に示す。本発明の電極が酸素電極と
して動作していることを確認した。
Diameter 4 doped with 6 mol% yttria
A slurry in which the above electrode material was dispersed in methanol on both surfaces of a zirconia disk having a thickness of 0 mm and a thickness of 1 mm had a diameter of 1
A brush was applied to 0 mm, and the electrode was dried and baked at 950 ° C. for 2 hours. Next, as shown in FIG. 1, the above disks were seal-bonded with an alumina tube and an inorganic adhesive, and platinum lead wires were installed on the respective electrodes.
An oxygen concentration cell type oxygen sensor element was produced. A nitrogen-balanced mixed standard gas containing 1% oxygen was flowed in an alumina tube at a flow rate of 150 cc / min to 700 ° C.
The electromotive force was measured. The opposite electrode is in contact with the atmosphere. The results are shown in Table 1. It was confirmed that the electrode of the present invention operates as an oxygen electrode.

【表1】 実施例2[Table 1] Example 2

【0017】電極組成が表2に示す様に成るように各種
硝酸塩を蒸留水に溶かし、次いでアンモニア水を滴下し
共沈させ、濾過、乾燥後、大気雰囲気下900℃で5時
間焼成し、スピネル型複酸化物No.5〜No.35を
得た。尚、何れの組成についても立方晶スピネル型構造
単一相、若しくは、正方晶スピネル型構造との混在相で
あることを実施例1と同様に粉末X線から確認した。
Various nitrates were dissolved in distilled water so that the electrode composition was as shown in Table 2, and then ammonia water was added dropwise to coprecipitate, filtered, dried, and then calcined at 900 ° C. for 5 hours in the air atmosphere to give spinel. Type complex oxide No. 5 to No. 35 was obtained. In addition, it was confirmed from the powder X-rays as in Example 1 that each composition had a cubic spinel structure single phase or a mixed phase with a tetragonal spinel structure.

【0018】次いで、実施例1と同様に電極材料を作製
し、ジルコニアディスクの両面に塗布し、これを焼き付
けた。次いで、両電極に白金のリード線を設置し、60
0℃の電気炉内で大気雰囲気での複素インピーダンスを
測定した。複素インピーダンスは、FRAとしてS57
20C(エヌエフ回路設計ブロック製)を、電力源とし
てHA−501G(北斗電工製)を用いて、周波数範囲
1mHz〜10kHz、印加電圧0.2Vの条件で測定
した。
Then, an electrode material was prepared in the same manner as in Example 1, coated on both sides of the zirconia disk, and baked. Next, install platinum lead wires on both electrodes,
The complex impedance in the atmosphere was measured in an electric furnace at 0 ° C. Complex impedance is S57 as FRA
20C (manufactured by NF Circuit Design Block) was measured using HA-501G (manufactured by Hokuto Denko) as a power source under the conditions of a frequency range of 1 mHz to 10 kHz and an applied voltage of 0.2V.

【0019】表2にこれらの電極抵抗を示す。電極抵抗
は、複素インピーダンスの測定結果をコールコールプロ
ットし、電極部の抵抗値を示す3番目の円弧の直径を電
極抵抗として求めた。尚、比較の為、白金サンプルN
o.36及びペロブスカイト型酸化物La0.6Sr0.4MnO3
ンプルNo.37を電極とした場合についても同様に測
定を行なった。
Table 2 shows these electrode resistances. The electrode resistance was obtained by Cole-Cole plot of the measurement result of the complex impedance, and the diameter of the third arc indicating the resistance value of the electrode portion was determined as the electrode resistance. For comparison, platinum sample N
o. 36 and perovskite oxide La 0. 6 Sr 0.4 MnO 3 Sample No. The same measurement was performed when 37 was used as an electrode.

【0020】表2から、本発明のスピネル型複酸化物電
極は、白金及びペロブスカイト型複酸化物電極と同様な
電極抵抗を示すこがわかる。これは、本発明の電極材料
が酸素の吸脱着反応及び解離、イオン化の平衡状態を容
易にさせることを意味する。又、0.1≦X≦1.5の
範囲にて電極抵抗が低く抑えられていることがわかる。
From Table 2, it can be seen that the spinel type mixed oxide electrode of the present invention exhibits the same electrode resistance as platinum and perovskite type mixed oxide electrodes. This means that the electrode material of the present invention facilitates the equilibrium state of adsorption / desorption reaction of oxygen, dissociation, and ionization. Further, it can be seen that the electrode resistance is kept low in the range of 0.1 ≦ X ≦ 1.5.

【表2】 実施例3[Table 2] Example 3

【0021】表1に示されるスピネル型複酸化物(M=
Ni)サンプルNo.1及びペロブスカイト型複酸化物
(La0.6Sr0.4MnO3)を設置したジルコニアディスクを一
酸化炭素が15%含有する(窒素バランス)還元性ガス
雰囲気下、700℃で10時間処理した。次いで、還元
性ガス処理を行なったジルコニアディスクを用いて実施
例1と同様に酸素濃淡電池方式の酸素センサー素子を作
製し、酸素濃度に対する起電力を測定し、実施例2と同
様に複素インピーダンスを測定した。
Spinel type complex oxides (M =
Ni) Sample No. A zirconia disk on which 1 and perovskite type complex oxide (La 0.6 Sr 0.4 MnO 3 ) were installed was treated at 700 ° C. for 10 hours in a reducing gas atmosphere containing 15% of carbon monoxide (nitrogen balance). Then, an oxygen concentration cell type oxygen sensor element was prepared in the same manner as in Example 1 using the zirconia disk treated with reducing gas, and the electromotive force with respect to the oxygen concentration was measured to obtain the complex impedance in the same manner as in Example 2. It was measured.

【0022】その結果、スピネル型複酸化物電極の起電
力値は、63.3mVを示し、ペロブスカイト型複酸化
物電極の起電力は、38.1mVを示した。
As a result, the electromotive force value of the spinel type double oxide electrode was 63.3 mV, and the electromotive force of the perovskite type double oxide electrode was 38.1 mV.

【0023】一方、複素インピーダンス測定から得られ
た電極部の抵抗値は、スピネル型複酸化物電極の場合還
元ガス処理前の1.6倍であったのに対し、ペロブスカ
イト型複酸化物電極では、100倍以上に電極抵抗が増
加した。還元ガス処理によってペロブスカイト型複酸化
物は大きく劣化しているのに対し、本発明のスピネル型
複酸化物電極はほとんど劣化していないことが判かる。 実施例4
On the other hand, the resistance value of the electrode portion obtained from the complex impedance measurement was 1.6 times that before the reducing gas treatment in the case of the spinel type mixed oxide electrode, whereas in the perovskite type mixed oxide electrode. The electrode resistance increased 100 times or more. It can be seen that the perovskite-type mixed oxide is greatly deteriorated by the reducing gas treatment, whereas the spinel-type mixed oxide electrode of the present invention is hardly deteriorated. Example 4

【0024】実施例1で使用したスピネル型複酸化物
(M=Cu)サンプルNo.2と3モルのイットリアをド
プしたジルコニア粉末(0.3μm)を第3表に示す種
々の割合で混合し、実施例1と同様にジルコニアディス
ク上に焼き付けて、濃淡電池式酸素センサー素子の性能
を評価した。尚、評価条件は、被検ガス濃度1%、温度
650℃とした。結果を表3に示す。
The spinel type complex oxide (M = Cu) sample No. 1 used in Example 1 was used. Zirconia powder (0.3 μm) doped with 2 and 3 mol of yttria was mixed at various ratios shown in Table 3 and baked on a zirconia disk in the same manner as in Example 1 to prepare a concentration cell type oxygen sensor element. The performance was evaluated. The evaluation conditions were a test gas concentration of 1% and a temperature of 650 ° C. The results are shown in Table 3.

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る酸素濃淡電池方式の酸素センサ−
素子の説明図である。
FIG. 1 is an oxygen concentration cell type oxygen sensor according to the present invention.
It is explanatory drawing of an element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)にて示されるスピネル
型結晶構造を含む複酸化物からなる電極材料。 MX Mn3-X 4 ・・・・・(1) (ただし、MはNi,Cu,Znから選択される少なく
とも1種の元素であり、且つ、0.1≦X≦1.5であ
る。)
1. An electrode material comprising a double oxide containing a spinel type crystal structure represented by the following general formula (1). M X Mn 3-X O 4 (1) (where M is at least one element selected from Ni, Cu and Zn, and if 0.1 ≦ X ≦ 1.5) is there.)
JP5037417A 1993-02-01 1993-02-01 Electrode material Pending JPH06231771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5037417A JPH06231771A (en) 1993-02-01 1993-02-01 Electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5037417A JPH06231771A (en) 1993-02-01 1993-02-01 Electrode material

Publications (1)

Publication Number Publication Date
JPH06231771A true JPH06231771A (en) 1994-08-19

Family

ID=12496952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5037417A Pending JPH06231771A (en) 1993-02-01 1993-02-01 Electrode material

Country Status (1)

Country Link
JP (1) JPH06231771A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930068B2 (en) * 1999-12-15 2005-08-16 Nissan Motor Co., Ltd. Methanol reforming catalyst
WO2011160904A1 (en) * 2010-06-24 2011-12-29 Epcos Ag Cobalt-free ntc ceramic and method for producing a cobalt-free ntc ceramic
JP2016540641A (en) * 2013-10-16 2016-12-28 クリーン ディーゼル テクノロジーズ インコーポレーテッドClean Diesel Technologies, Inc. OSM heat-stable composition containing no rare earth metal
CN110361430A (en) * 2018-04-09 2019-10-22 恩德莱斯和豪瑟尔分析仪表两合公司 Sensing element for potentiometric sensor
CN110600703A (en) * 2019-09-19 2019-12-20 安徽工业大学 Five-element transition metal oxide high-entropy material for lithium ion battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930068B2 (en) * 1999-12-15 2005-08-16 Nissan Motor Co., Ltd. Methanol reforming catalyst
WO2011160904A1 (en) * 2010-06-24 2011-12-29 Epcos Ag Cobalt-free ntc ceramic and method for producing a cobalt-free ntc ceramic
CN102958866A (en) * 2010-06-24 2013-03-06 爱普科斯公司 Cobalt-free NTC ceramic and method for producing a cobalt-free NTC ceramic
US9058913B2 (en) 2010-06-24 2015-06-16 Epcos Ag Cobalt-free NTC ceramic and method for producing a cobalt-free NTC ceramic
JP2016540641A (en) * 2013-10-16 2016-12-28 クリーン ディーゼル テクノロジーズ インコーポレーテッドClean Diesel Technologies, Inc. OSM heat-stable composition containing no rare earth metal
CN110361430A (en) * 2018-04-09 2019-10-22 恩德莱斯和豪瑟尔分析仪表两合公司 Sensing element for potentiometric sensor
US11391688B2 (en) 2018-04-09 2022-07-19 Endress+Hauser Conducta Gmbh+Co. Kg Sensor element for a potentiometric sensor
CN110600703A (en) * 2019-09-19 2019-12-20 安徽工业大学 Five-element transition metal oxide high-entropy material for lithium ion battery
CN110600703B (en) * 2019-09-19 2022-09-30 安徽工业大学 Five-element transition metal oxide high-entropy material for lithium ion battery

Similar Documents

Publication Publication Date Title
US5037525A (en) Composite electrodes for use in solid electrolyte devices
Taguchi et al. Synthesis of Perovskite‐type (La1− xSrx) MnO3 (OX 0.3) at low temperature
JP3527099B2 (en) Cathode composition for solid oxide fuel cell
Hammouche et al. Crystallographic, thermal and electrochemical properties of the system La1− xSrxMnO3 for high temperature solid electrolyte fuel cells
KR100352099B1 (en) Mixed ions containing conductor and device using the same
US6060420A (en) Composite oxides of A-site defect type perovskite structure as catalysts
US5401372A (en) Electrochemical catalytic reduction cell for the reduction of NOx in an O2 -containing exhaust emission
JPH0986928A (en) A-site deficient perovskite double oxide and catalyst composed thereof
JP3417090B2 (en) Electrode material for solid electrolyte
US6548203B2 (en) Cathode composition for solid oxide fuel cell
JP3927663B2 (en) Mixed ion conductor
JPH06231771A (en) Electrode material
Dai et al. Mixed potential NH3 sensor based on Ag-Doped La2NiO4+ δ sensing electrode
JP4574628B2 (en) Mixed ion conductor
CN109962251A (en) Anode of solid oxide fuel cell material with resistant to sulfur, carbon accumulation resisting ability
JP4479039B2 (en) Electrochemical devices
Meng et al. Synthesis and properties of Ba0. 5Sr0. 5 (Co0. 6Zr0. 2) Fe0. 2O3− δ perovskite cathode material for intermediate temperature solid-oxide fuel cells
JPH06231770A (en) Electrode material
JP4587663B2 (en) Fuel electrode for solid oxide fuel cell and method for producing the same
JPH07289903A (en) Catalyst for oxygen reducing electrode
JPH09295866A (en) Mixed ion connector
JP2003123772A (en) Electrode material, solid electrolyte fuel cell, solid electrolyte gas sensor, and manufacturing method for electrode material
JP3598344B2 (en) High oxide ion conductive ceria based solid electrolyte
CN113451594A (en) Cathode material of solid oxide fuel cell and preparation method thereof
JP2004259642A (en) Fuel electrode for solid oxide fuel cell, and its manufacturing method