JPS5831855B2 - Manufacturing method of pressure measuring device - Google Patents

Manufacturing method of pressure measuring device

Info

Publication number
JPS5831855B2
JPS5831855B2 JP7335877A JP7335877A JPS5831855B2 JP S5831855 B2 JPS5831855 B2 JP S5831855B2 JP 7335877 A JP7335877 A JP 7335877A JP 7335877 A JP7335877 A JP 7335877A JP S5831855 B2 JPS5831855 B2 JP S5831855B2
Authority
JP
Japan
Prior art keywords
housings
insulator
pressure
cylindrical
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7335877A
Other languages
Japanese (ja)
Other versions
JPS548572A (en
Inventor
毅 安原
満 玉井
忠徳 湯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7335877A priority Critical patent/JPS5831855B2/en
Priority to DE19782827725 priority patent/DE2827725A1/en
Publication of JPS548572A publication Critical patent/JPS548572A/en
Publication of JPS5831855B2 publication Critical patent/JPS5831855B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance

Description

【発明の詳細な説明】 本発明は金属製測定用ダイヤフラムにより、被測定圧と
基準圧との差または他の被測定圧との差を測定する圧力
測定装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a pressure measuring device that measures a difference between a pressure to be measured and a reference pressure or a difference between another pressure to be measured using a metal measuring diaphragm.

容量の変化によって差圧を測定する圧力測定装置におい
ては、測定用ダイヤフラムは、通常溶接により金属製有
底円筒状ハウジングの周縁部に結合される。
In pressure measuring devices that measure differential pressure by changes in capacitance, a measuring diaphragm is typically joined to the peripheral edge of a bottomed metal cylindrical housing by welding.

ところが、この差圧測定装置においては、その溶接の際
の高熱により、測定用ダイヤフラムが異常な熱変形を生
じて歪み、そのために差圧に正確に比例した出力信号を
得られないという問題があった。
However, this differential pressure measuring device has the problem that the measuring diaphragm undergoes abnormal thermal deformation and distortion due to the high heat during welding, making it impossible to obtain an output signal that is accurately proportional to the differential pressure. Ta.

そこで、本件出願人により、溶接の際の高熱により生じ
た測定用ダイヤフラムの歪を除去するようにした圧力測
定装置が提案された。
Therefore, the applicant proposed a pressure measuring device that eliminates the distortion of the measuring diaphragm caused by high heat during welding.

この圧力測定装置は、測定用ダイヤフラムとして、高弾
性を有し、熱処理することによって収縮する析出硬化形
金属(たとえは商品名エリンバ−1商品名サーメラスト
、商品名ニッケルスパンC)によって成形されたダイヤ
フラムを使用することを特徴とするものである。
This pressure measuring device uses, as a measuring diaphragm, a diaphragm molded from a precipitation hardening metal that has high elasticity and shrinks through heat treatment (for example, the product name Elinvar-1, the product name Themerast, and the product name Nickel Spun C). It is characterized by the use of

しかして、このような析出硬化形金属よりなる測定用ダ
イヤフラムをハウジングに溶接によって結合した後に、
その測定用ダイフラムを熱処理する。
After the measuring diaphragm made of such a precipitation-hardened metal is connected to the housing by welding,
The measurement diaphragm is heat treated.

そうすると、測定用ダイヤフラムは、その熱処理により
体積が収縮し、収縮応力が生じる。
Then, the measurement diaphragm shrinks in volume due to the heat treatment, and shrinkage stress is generated.

この収縮応力によって、溶接時に生じた測定用ダイヤフ
ラムの歪は除去される。
This shrinkage stress removes the strain on the measuring diaphragm that occurs during welding.

ところが、本発明者達が種々の実験と研究とを重ねた結
果、このような方法によれば、溶接時に生じた測定用ダ
イヤフラムの歪を除去できるという利点のほかに、次の
ような欠点、すなわち熱処理を高温度たとえば約600
℃にて行なうために、ハウジングと、このハウジング内
に設けられた絶縁体とが異常な熱変形を生じ、この変形
が測定用ダイヤフラムに測定精度上好ましくないストレ
スを与えるという欠点が生じることが判明した。
However, as a result of various experiments and research conducted by the present inventors, in addition to the advantage that this method can eliminate the distortion of the measurement diaphragm that occurs during welding, it also has the following disadvantages: That is, the heat treatment is performed at a high temperature, e.g.
℃, the housing and the insulator provided within the housing undergo abnormal thermal deformation, and it has been found that this deformation causes stress on the measuring diaphragm that is undesirable in terms of measurement accuracy. did.

このストレスについて、第1図により説明する。This stress will be explained with reference to FIG.

この第1図において、圧力測定装置1は、有底円筒状の
第1および第2ハウジング2,3と、これらハウジング
2,3により絶縁部を挾持され、かつ溶接により結合さ
れている測定用ダイヤフラム4と、第1および第2ハウ
ジング2,3内面に結合された第1および第2絶縁体5
,6とから構成されている。
In FIG. 1, a pressure measuring device 1 includes first and second housings 2 and 3 each having a cylindrical shape with a bottom, and a measuring diaphragm having an insulating portion sandwiched between the housings 2 and 3 and connected by welding. 4, and first and second insulators 5 coupled to the inner surfaces of the first and second housings 2 and 3.
, 6.

これらの絶縁体5,6が測定用ダイヤフラム4に対向す
る側面に球欠面状の壁面7゜8を形成し、金属箔9,1
0を設ける。
These insulators 5 and 6 form a spherical wall surface 7°8 on the side facing the measurement diaphragm 4, and metal foils 9 and 1
Set 0.

この金属箔9,10は測定用ダイヤフラム4と共に、可
変コンデンサの電極を構成する。
Together with the measuring diaphragm 4, these metal foils 9 and 10 constitute the electrodes of the variable capacitor.

また測定用ダイヤフラム4と絶縁体5,6の壁面7,8
との間に空間部11.12を設け、導圧孔13,14に
より異なった被測定圧をそれぞれ導入する。
In addition, the walls 7 and 8 of the measurement diaphragm 4 and the insulators 5 and 6
A space 11, 12 is provided between the two, and different pressures to be measured are introduced through the pressure guiding holes 13, 14, respectively.

この測定用ダイヤフラム4は、析出硬化形金属(例えは
商品名エリンバ、サーメラス、エルジロイ、ニッケルス
パンC,KRNなと)によって成形されており、高温例
えば約500℃ないし600℃で約1時間の熱処理を行
うと、金属間化合物が結晶内で析出し、体積が収縮する
This measuring diaphragm 4 is made of precipitation hardening metal (for example, trade names: Elinva, Thermelas, Elgiloy, Nickel Spun C, KRN, etc.), and is heat-treated at a high temperature, for example, about 500°C to 600°C for about 1 hour. When this is done, intermetallic compounds precipitate within the crystal, causing the volume to shrink.

従って、測定用ダイヤフラム4の周縁部を第1、第2ハ
ウジング2,3の周縁部に溶接によって結合した後に、
測定用ダイヤフラム4を熱処理すると、この測定用ダイ
ヤフラム4には収縮によって均一な収縮応力が生じ、こ
の収縮応力により、このダイヤフラム4の溶接作業中に
生じた歪が取り除かれる。
Therefore, after joining the peripheral edge of the measuring diaphragm 4 to the peripheral edges of the first and second housings 2 and 3 by welding,
When the measuring diaphragm 4 is heat-treated, a uniform shrinkage stress is generated in the measuring diaphragm 4 due to contraction, and this shrinkage stress removes the strain generated during the welding operation of the diaphragm 4.

この際、第1および第2ハウジング2,3の内面に結合
される第1および第2絶縁体5,6の材質は、約500
℃ないし600℃の高温の熱処理温度に耐え、かつ熱膨
張がこれらのハウジング2,3の金属の熱膨張に比較的
近い値を有するものが選定され、たとえばフルステライ
ト、アルミナなどの磁器(セラミック)が採用されてい
る。
At this time, the material of the first and second insulators 5 and 6 coupled to the inner surfaces of the first and second housings 2 and 3 is approximately 500%
A material that can withstand high heat treatment temperatures of ℃ to 600 ℃ and has a thermal expansion value relatively close to that of the metal of these housings 2 and 3 is selected, such as porcelain (ceramic) such as fullsterite and alumina. has been adopted.

この磁器製絶縁体5.6は通常金属製ハウジング2,3
の内面に焼付温度約700 ’Cないし800℃の高温
で焼付される。
This porcelain insulator 5,6 is usually connected to the metal housing 2,3.
It is baked on the inner surface at a high temperature of about 700'C to 800C.

第2図は金属と磁器との熱膨張線図を示す。FIG. 2 shows a thermal expansion diagram of metal and porcelain.

図において、特性線Aは金属の熱膨張特性であり、特性
線Bは磁器の熱膨張特性である。
In the figure, characteristic line A is the thermal expansion characteristic of metal, and characteristic line B is the thermal expansion characteristic of porcelain.

この図からも判るように、金属と磁器とは熱膨張特性が
本質的に異なり、この種の差圧測定装置において使用さ
れる金属は、低温領域では磁器よりも熱膨張係数が小さ
く、高温領域では磁器よりも熱膨張係数が大きい。
As can be seen from this figure, metals and porcelain have essentially different thermal expansion characteristics, and the metals used in this type of differential pressure measuring device have a smaller coefficient of thermal expansion than porcelain in low-temperature regions, and in high-temperature regions. It has a larger coefficient of thermal expansion than porcelain.

第3図は第1図における圧力測定装置の熱処理の際の熱
膨張について説明するための説明図を示す。
FIG. 3 shows an explanatory diagram for explaining thermal expansion during heat treatment of the pressure measuring device in FIG. 1.

図において第1図と同一の機能を有する部分は同一の符
号が付されている。
In the figure, parts having the same functions as in FIG. 1 are designated by the same reference numerals.

いま、圧力測定装置を析出硬化形金属製測定用ダイヤフ
ラム4の熱処理温度例えば600℃に加熱すると、金属
製ハウジング2,3の底部17,18の領域の熱膨張量
は、第2図にて説明したように、金属の熱膨張特性線A
に従って高温度においては金属の方が磁器よりも熱膨張
係数が大きいので、磁器製絶縁体5.6を内部に有する
磁気と金属との複合体を形成する円筒部15.16の領
域の熱膨張量が熱処理温度600℃における金属の熱膨
張特性線Aと、磁器の熱膨張特性線Bとの中間の熱膨張
量であるから、円筒部15.16の領域の熱膨張量より
も大きくなる。
Now, when the pressure measuring device is heated to the heat treatment temperature of the precipitation hardened metal measuring diaphragm 4, for example, 600°C, the amount of thermal expansion in the bottom portions 17, 18 of the metal housings 2, 3 will be explained in FIG. As mentioned above, the thermal expansion characteristic line A of metal
Accordingly, at high temperatures metal has a larger coefficient of thermal expansion than porcelain, so the thermal expansion in the region of the cylindrical part 15.16 forming the magnetic-metal composite with the porcelain insulator 5.6 inside. Since the amount of thermal expansion is intermediate between the thermal expansion characteristic line A of metal and the thermal expansion characteristic line B of porcelain at a heat treatment temperature of 600° C., it is larger than the amount of thermal expansion in the area of the cylindrical portion 15.16.

このために圧力測定装置1は点線にて示すような熱膨張
を生じ矢印に方向に彎曲する、バイメタル効果のような
熱変形が発生する。
For this reason, the pressure measuring device 1 undergoes thermal expansion as shown by the dotted line and bends in the direction of the arrow, resulting in thermal deformation similar to a bimetallic effect.

この熱変形は第1および第2ハウジング2,3に永久変
形を発生させる。
This thermal deformation causes permanent deformation in the first and second housings 2,3.

この変形により、測定用ダイヤフラム4の特性の安定化
が得られなかった。
Due to this deformation, the characteristics of the measurement diaphragm 4 could not be stabilized.

また、絶縁体5,6がハウジング2,3に焼付される際
にも、上述した如き矢印に方向への熱変形が発生し、そ
のために絶縁体5,6が破損され、それにより絶縁体5
,6の焼付不良を生ずる恐れもあった。
Furthermore, when the insulators 5 and 6 are baked into the housings 2 and 3, thermal deformation occurs in the direction indicated by the arrows as described above, which causes the insulators 5 and 6 to be damaged.
, 6, there was also a risk of causing defective printing.

本発明は上述の点に鑑み、従来技術の欠点を除き測定用
ダイヤフラムに安定した均一な張力を与えることができ
る圧力測定装置を提供することを目的とする。
In view of the above-mentioned points, it is an object of the present invention to provide a pressure measuring device capable of applying a stable and uniform tension to a measuring diaphragm without the drawbacks of the prior art.

本発明の他の目的は絶縁体の焼付作業が改善され、生産
能率が向上される圧力測定装置を提供することにある。
Another object of the present invention is to provide a pressure measuring device in which the baking operation of the insulator is improved and production efficiency is improved.

このような目的は本発明によれば、 底部に貫通孔をそれぞれ有する有底円筒状の第1および
第2ハウジングと、一方の側面に突起部をそれぞれ有し
この突起部が前記第1および第2ハウジングの底部貫通
孔に結合され、外径が前記第1および第2のハウジング
の円筒部の内径よりも小さく形成された円柱状の第1お
よび第2絶縁体と、前記第1および第2ハウジングによ
り挾持され、かつ前記第1および第2ハウジングの周縁
部と溶接により結合されしかも高弾性を有し、熱処理に
より収縮する析出硬化形金属製の測定用ダイヤフラムと
を備え、前記測定用ダイヤフラムを前記第1および第2
ハウジングに結合した後に、熱処理を行なうことにより
達成される。
According to the present invention, such an object is achieved by providing first and second housings each having a bottomed cylindrical shape having a through hole at the bottom, and a protrusion on one side surface, which protrusion is connected to the first and second housings. cylindrical first and second insulators that are coupled to the bottom through holes of the two housings and have outer diameters smaller than inner diameters of the cylindrical portions of the first and second housings; a measuring diaphragm made of a precipitation-hardened metal that is held between the housing and connected to the peripheral edges of the first and second housings by welding, has high elasticity, and is contracted by heat treatment; Said first and second
This is accomplished by heat treatment after bonding to the housing.

なお、本発明においては、熱膨張が焼付温度近辺でほぼ
等しくなるように、第1および第2ハウジングと、第1
および第2絶縁体との材質を選定する。
In addition, in the present invention, the first and second housings and the first
and the material of the second insulator.

次に本発明の実施例を図面に基づき、詳細に説明する。Next, embodiments of the present invention will be described in detail based on the drawings.

第4図は本発明の一実施例の概略構成図を示し、Aは正
面断面図、BはAのX−X方向の断面図である。
FIG. 4 shows a schematic configuration diagram of an embodiment of the present invention, in which A is a front sectional view and B is a sectional view of A in the XX direction.

図において第1図、第3図と同一機能を有する部分は同
一の符号が付されている。
In the figure, parts having the same functions as those in FIGS. 1 and 3 are given the same reference numerals.

いま圧力測定装置21は、主として高弾性を有し、熱処
理することにより収縮する析出硬化形金属よりなる測定
用ダイヤフラム4と、第1および第2ハウジング22,
23と、これらのハウジング22 、23の空間部に結
合された第1および第2絶縁体24゜25とから構成さ
れている。
The pressure measuring device 21 includes a measuring diaphragm 4 mainly made of a precipitation-hardened metal that has high elasticity and shrinks when subjected to heat treatment, first and second housings 22,
23, and first and second insulators 24 and 25 connected to the spaces of these housings 22 and 23.

第1および第2ハウジング22.23は有底円筒体で、
底部32.33の中央に貫通孔34.35が設けられる
The first and second housings 22 and 23 are cylindrical bodies with bottoms,
A through hole 34.35 is provided in the center of the bottom 32.33.

また第1および第2絶縁体24,25は円柱体で、一方
の側面に突起部36.37を形成する。
Further, the first and second insulators 24 and 25 are cylindrical bodies, and protrusions 36 and 37 are formed on one side surface.

この突起部36.37は第1および第2ハウジング22
゜23の底部32,33の貫通孔34.35内面でのみ
結合される。
This protrusion 36,37 is connected to the first and second housing 22.
They are connected only at the inner surfaces of the through holes 34 and 35 in the bottom parts 32 and 33 of .

その結合は、絶縁体24,25が磁器よりなる場合には
ロー付けによって行なわれ、またガラスよりなる場合に
は焼付けによって行なわれる。
The bonding is performed by brazing when the insulators 24 and 25 are made of porcelain, and by baking when they are made of glass.

また、円柱部28.29の外径は第1および第2ハウジ
ング22.23の円筒部26゜27の内径より少さくし
て、円筒溝30.31を形成する。
Further, the outer diameter of the cylindrical portion 28.29 is smaller than the inner diameter of the cylindrical portion 26.27 of the first and second housings 22.23 to form a cylindrical groove 30.31.

なお、第1および第2絶縁体24,25の溝38.39
は第1および第2ハウジング22゜23の底部32,3
3との間に放射状に設けられ、溝30.31と連通ずる
Note that the grooves 38 and 39 of the first and second insulators 24 and 25
are the bottom parts 32, 3 of the first and second housings 22, 23.
3 and communicates with the grooves 30 and 31.

いま圧力測定装置1を時効処理する際、第■および第2
ハウジング22゜23盾、第1および第2絶縁体24.
25との間の材質の相異による熱膨張として、まず貫通
孔34.35と突起部36,37との間に発生する熱膨
張について考慮する。
Now, when aging the pressure measuring device 1,
Housing 22.23 Shield, first and second insulators 24.
First, consider the thermal expansion that occurs between the through holes 34 and 35 and the protrusions 36 and 37 as the thermal expansion due to the difference in materials between the through holes 34 and 25.

貫通孔34.35の内径および深さと突起部36.37
の外径および幅をそれぞれ小さく形成し、貫通孔と突起
部との接合面積を小さくし貫通孔34.35と突起部3
6゜31とにおいてのみ固定結合され、第1および第2
ハウジング22,23の円筒部26,27と、第1およ
び第2絶縁体24,25の円柱部28゜29との間に、
円筒溝30.31を形成して円筒部26.27と円柱部
28.29とにおいて固定結合されなくしたので、ハウ
ジング22.23と絶縁体24.25との熱膨張が異な
っていても、これらの熱膨張量の差は小さい。
Inner diameter and depth of through hole 34.35 and protrusion 36.37
The outer diameter and width of the through hole 34, 35 and the protrusion 3 are made small, and the joint area between the through hole and the protrusion 3 is made small.
6°31, and the first and second
Between the cylindrical parts 26 and 27 of the housings 22 and 23 and the cylindrical parts 28 and 29 of the first and second insulators 24 and 25,
Since the cylindrical groove 30.31 is formed to eliminate the fixed connection between the cylindrical part 26.27 and the cylindrical part 28.29, even if the thermal expansion of the housing 22.23 and the insulator 24.25 is different, The difference in the amount of thermal expansion is small.

本実施例においてはハウジング22.23の外径は約5
0M程度で、貫通孔34,35の内径は約8w1.程度
で、その深さは約3聰程度である。
In this embodiment, the outer diameter of the housing 22,23 is approximately 5
0M, and the inner diameter of the through holes 34 and 35 is approximately 8w1. The depth is approximately 3 cm.

さらに、円筒部26゜27および円柱部28,29近辺
は、円筒溝30゜31が介在するから、それぞれ単独に
熱膨張し、互に影響されないから、第3図のような熱変
形が発生しない。
Furthermore, since the cylindrical portions 26 and 27 and the cylindrical portions 28 and 29 have the intervening cylindrical grooves 30 and 31, they each thermally expand independently and are not affected by each other, so thermal deformation as shown in Fig. 3 does not occur. .

従って測定用ダイヤフラム4とのハウジング22.23
の接触面にねじれ変形が発生することなく、特性の安定
した測定用ダイヤフラム4が得られる。
Therefore housing 22.23 with measuring diaphragm 4
A measuring diaphragm 4 with stable characteristics can be obtained without causing torsional deformation on the contact surface.

またこの際、これらの絶縁体24.25の材質がハウジ
ング22.23の材質と、焼付温度で熱膨張がほぼ等し
くなるように選定すれば、内径の小さい貫通孔34.3
5と外径の小さい突起部36.37との間で、焼付作業
が行われるから、焼付不良による破損を防止することが
できる。
At this time, if the material of these insulators 24.25 is selected so that its thermal expansion is approximately equal to that of the material of the housing 22.23 at the baking temperature, the through hole 34.3 with a small inner diameter can be formed.
5 and the protrusions 36 and 37 having a small outer diameter, the baking operation is performed, so damage due to poor baking can be prevented.

以上に説明するように本発明によれば、有底円筒状のハ
ウジングの底部の貫通孔と、円柱状の絶縁体の突起部に
おいてのみ固定結合され、ハウジングに絶縁体が接合さ
れ、かつハウジングの円筒部と絶縁体の円柱部との間に
円筒状の溝が設けられたことにより圧力測定装置を熱処
理温度に加熱した際に従来、熱膨張により生じていたバ
イメタル効果のようにハウジングを彎曲する熱変形が生
じることなく、安定した均一な張力が測定用ダイヤフラ
ムに与えられ、さらに絶縁体をハウジングに接合する際
の接合不良が改善され、生産能率が向上するなどの効果
は極めて顕著である。
As described above, according to the present invention, the through hole at the bottom of the bottomed cylindrical housing is fixedly coupled only to the protrusion of the cylindrical insulator, and the insulator is joined to the housing. By providing a cylindrical groove between the cylindrical part and the cylindrical part of the insulator, when the pressure measuring device is heated to the heat treatment temperature, the housing bends like the bimetallic effect that conventionally occurs due to thermal expansion. The effects are extremely significant, such as a stable and uniform tension being applied to the measuring diaphragm without thermal deformation, and furthermore, poor bonding when bonding the insulator to the housing is improved, and production efficiency is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧力測定装置の一従来例の概略構成図、第2図
は金属と磁器との熱膨張線図、第3図は第1図における
圧力測定装置の熱膨張説明図、第4図は本発明の一実施
例の概略構成図、Aは正面断面図、BはAのX−X断面
図である。 21・・・・・・圧力測定装置、22,23・・・・・
・ハウジング、4・・・・・・測定用ダイヤフラム、2
4,25・・・・・・絶縁体、26,2T・・・・・・
円筒部、28 、29・・・・・・円柱部、30,31
・・・・・・溝、32,33・・・・・・底部、34,
35・・・・・・貫通孔、36,37・・・・・・突起
部、38 、39・・・・・・溝。
Fig. 1 is a schematic configuration diagram of a conventional example of a pressure measuring device, Fig. 2 is a thermal expansion diagram of metal and porcelain, Fig. 3 is an explanatory diagram of thermal expansion of the pressure measuring device in Fig. 1, and Fig. 4 1 is a schematic configuration diagram of an embodiment of the present invention, A is a front sectional view, and B is a XX sectional view of A. 21... Pressure measuring device, 22, 23...
・Housing, 4... Measuring diaphragm, 2
4,25...Insulator, 26,2T...
Cylindrical part, 28, 29... Cylindrical part, 30, 31
...Groove, 32, 33...Bottom, 34,
35...Through hole, 36, 37...Protrusion, 38, 39...Groove.

Claims (1)

【特許請求の範囲】[Claims] 1 底部に貫通孔をそれぞれ有する有底円筒状の第1お
よび第2ハウジングと、一方の側面に突起部をそれぞれ
有し、この突起部が前記第1および第2ハウジングの底
部貫通孔に結合され、外径が前記第1および第2のハウ
ジングの円筒部の内径よりも小さく形成され、前記第1
および第2ハウジングとの間に円筒溝を設けた円柱状の
第1および第2絶縁体と、前記第1および第2ノ)ウジ
ングにより挾持され、かつ前記第1および第2ノ)ウジ
ングの周縁部と溶接により結合され、前記第1絶縁体と
の間に空間部を形成し前記第1絶縁体に設けられた通路
を介して前記空間部へ導入される被測定圧と、前記第2
絶縁体との間に他の空間部を形成し、前記第2絶縁体に
設けられた通路を介して前記他の空間部へ導入される基
準圧力または他の被測定圧との差圧により生ずる変位を
電気的に測定し、しかも高弾性を有し、熱処理により収
縮する析出硬化形金属製の測定用ダイヤフラムとを備え
、前記測定用ダイヤフラムを前記第1および第2ハウジ
ングに結合した後に、熱処理を行なうことを特徴とする
圧力測定装置の製造方法。
1. First and second housings each having a bottomed cylindrical shape having a through hole at the bottom, and a protrusion on one side thereof, the protrusion being coupled to the bottom through hole of the first and second housings. , an outer diameter is formed smaller than an inner diameter of the cylindrical portion of the first and second housings, and the first
and a second housing, and a cylindrical first and second insulator having a cylindrical groove therebetween; and a periphery of the first and second housings, which are sandwiched between the first and second housings, and a peripheral edge of the first and second housings. a pressure to be measured that is connected to the first insulator by welding to form a space between the second insulator and the first insulator and introduced into the space through a passage provided in the first insulator;
Another space is formed between the second insulator and the second insulator, and the pressure is generated by a pressure difference between the reference pressure or another measured pressure introduced into the other space through a passage provided in the second insulator. a measuring diaphragm made of a precipitation-hardened metal that electrically measures displacement, has high elasticity, and shrinks upon heat treatment; and after the measuring diaphragm is coupled to the first and second housings, heat treatment is performed. A method of manufacturing a pressure measuring device, characterized by performing the following steps.
JP7335877A 1977-06-22 1977-06-22 Manufacturing method of pressure measuring device Expired JPS5831855B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7335877A JPS5831855B2 (en) 1977-06-22 1977-06-22 Manufacturing method of pressure measuring device
DE19782827725 DE2827725A1 (en) 1977-06-22 1978-06-22 Capacitive pressure meter with metal measurement membrane - has cylindrical isolators with metal foil capacitor plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7335877A JPS5831855B2 (en) 1977-06-22 1977-06-22 Manufacturing method of pressure measuring device

Publications (2)

Publication Number Publication Date
JPS548572A JPS548572A (en) 1979-01-22
JPS5831855B2 true JPS5831855B2 (en) 1983-07-08

Family

ID=13515857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7335877A Expired JPS5831855B2 (en) 1977-06-22 1977-06-22 Manufacturing method of pressure measuring device

Country Status (2)

Country Link
JP (1) JPS5831855B2 (en)
DE (1) DE2827725A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606638U (en) * 1983-06-24 1985-01-18 トヨタ車体株式会社 vehicle seat

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370890A (en) * 1980-10-06 1983-02-01 Rosemount Inc. Capacitive pressure transducer with isolated sensing diaphragm
US4358814A (en) * 1980-10-27 1982-11-09 Setra Systems, Inc. Capacitive pressure sensor
DE3523104A1 (en) * 1985-06-28 1987-01-22 Leybold Heraeus Gmbh & Co Kg Arrangement having a measuring electrode to which are assigned at fixed distances a first and a second field-generating electrode
US4875368A (en) * 1987-09-08 1989-10-24 Panex Corporation Pressure sensor system
DE4206675C2 (en) * 1992-02-28 1995-04-27 Siemens Ag Method for manufacturing pressure difference sensors
US5911162A (en) * 1997-06-20 1999-06-08 Mks Instruments, Inc. Capacitive pressure transducer with improved electrode support
CN102346084B (en) * 2010-07-29 2014-05-14 福建上润精密仪器有限公司 Suspension structure of differential capacitance membrane box
US11041773B2 (en) * 2019-03-28 2021-06-22 Rosemount Inc. Sensor body cell of a pressure sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606638U (en) * 1983-06-24 1985-01-18 トヨタ車体株式会社 vehicle seat

Also Published As

Publication number Publication date
JPS548572A (en) 1979-01-22
DE2827725A1 (en) 1979-01-11

Similar Documents

Publication Publication Date Title
JP5248112B2 (en) Method for forming a seal between a capacitive sensor housing and a diaphragm
KR940001481B1 (en) Capacitive differential pressure detector
AU653164B2 (en) Capacitive strain gauge
JP4334139B2 (en) Diaphragm for capacitive vacuum measuring cell
JPS6034687B2 (en) Pressure electronic conversion element
JPS58211617A (en) Pressure transducer
JPS5831855B2 (en) Manufacturing method of pressure measuring device
JPH0264430A (en) Semiconductor pressure converter
US4906965A (en) Platinum temperature sensor
JPH0138256B2 (en)
JPS6356934B2 (en)
JP2001242026A (en) Capacity type pressure measuring cell
US6460416B1 (en) Capacitor structure and fabrication process
JPS5831854B2 (en) Pressure measuring device and manufacturing method
US7367234B2 (en) Pressure sensor
JPH02124456A (en) Connecting structure of solid-state electrolyte element
JPH0338673Y2 (en)
JP2007093526A (en) Pressure sensor
JP2645153B2 (en) Thin film temperature sensor element
JPH05283280A (en) Chip-shaped laminated ceramic capacitor
JP3287287B2 (en) Distortion detecting element and method of manufacturing the same
JP2701565B2 (en) Thin film thermistor and method of manufacturing the same
JPS6055672A (en) Structure of pressure-electric converter
JPS5814967B2 (en) Manufacturing method of stress detector
JPS63240524A (en) Liquid crystal display element