JPS5814967B2 - Manufacturing method of stress detector - Google Patents

Manufacturing method of stress detector

Info

Publication number
JPS5814967B2
JPS5814967B2 JP6447877A JP6447877A JPS5814967B2 JP S5814967 B2 JPS5814967 B2 JP S5814967B2 JP 6447877 A JP6447877 A JP 6447877A JP 6447877 A JP6447877 A JP 6447877A JP S5814967 B2 JPS5814967 B2 JP S5814967B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
container
stress detector
stress
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6447877A
Other languages
Japanese (ja)
Other versions
JPS53149384A (en
Inventor
安藤哲男
伊藤一造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Works Ltd
Priority to JP6447877A priority Critical patent/JPS5814967B2/en
Priority to GB23218/78A priority patent/GB1601547A/en
Priority to BR7803466A priority patent/BR7803466A/en
Publication of JPS53149384A publication Critical patent/JPS53149384A/en
Priority to US06/053,214 priority patent/US4258565A/en
Publication of JPS5814967B2 publication Critical patent/JPS5814967B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は応力を検出する応力検出器に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stress detector for detecting stress.

更に詳述すれば、応力を検出して電気信号に変換する応
力検出器に関するものである。
More specifically, the present invention relates to a stress detector that detects stress and converts it into an electrical signal.

一般に応力は動的な応力と静的な応力とに分けられる。Generally, stress is divided into dynamic stress and static stress.

動的な応力を計るものとしては振動計、変動力計測計、
加速度計、波高計、変動圧力計、衝撃試験器、渦流量計
、ジャイロ等がある。
Vibration meters, fluctuating force meters,
There are accelerometers, wave height meters, variable pressure gauges, impact testers, vortex flowmeters, gyros, etc.

一方、静的な応力を計るものとしては圧力計、差圧計、
ロードセル(はかり)等がある。
On the other hand, pressure gauges, differential pressure gauges,
There are load cells (scales), etc.

本発明はこれらのセンサに用いて好適な応力検出器に関
するものである。
The present invention relates to a stress detector suitable for use in these sensors.

本発明の目的は堅牢で、高い温度範囲まで使用すること
ができ、応力検出感度のよい応力検出器を提供するにあ
る。
An object of the present invention is to provide a stress detector that is robust, can be used up to a high temperature range, and has good stress detection sensitivity.

以下本発明装置の応力検出器を圧力計のセンサに用いた
例について説明する。
An example in which the stress detector of the present invention is used as a pressure gauge sensor will be described below.

第1図は本発明の一実施例の構成説明図である。FIG. 1 is an explanatory diagram of the configuration of an embodiment of the present invention.

図において、1は円筒部11と底部12よりなり金属材
よりなる容器。
In the figure, reference numeral 1 denotes a container made of a metal material and consisting of a cylindrical portion 11 and a bottom portion 12.

2は円板状のセラミックよりなる絶縁体で、一面側が底
部12にロー材21を介して接している。
Reference numeral 2 denotes a disc-shaped insulator made of ceramic, one side of which is in contact with the bottom portion 12 via a brazing material 21.

3は絶縁体2の他面に接した円板状の圧電素子部で、圧
電素子本体31と導電性ペーストよりなる電極面32と
リード線33よりなる圧電素子本体31はこの場合はニ
オブ酸リチウム(LiNb03)が用いられている。
Reference numeral 3 denotes a disk-shaped piezoelectric element portion in contact with the other surface of the insulator 2, and the piezoelectric element body 31, which consists of a piezoelectric element body 31, an electrode surface 32 made of conductive paste, and a lead wire 33, is made of lithium niobate in this case. (LiNb03) is used.

4は円柱状のセラミックよりなる固定体であり、一面が
圧電素子部3に接し他面の円周縁部(前もってこの部分
はメタライズ処理がなされている)が容器1に溶着5さ
れている。
Reference numeral 4 denotes a fixed body made of cylindrical ceramic, one side of which is in contact with the piezoelectric element 3, and the other side's circumferential edge (this portion has been previously metallized) welded 5 to the container 1.

この場合はロー付けがなされている。In this case, soldering is done.

41はリード線33を通す穴である。以上の構成の応力
検出器は次の如くして組み立てられる。
41 is a hole through which the lead wire 33 is passed. The stress detector having the above configuration is assembled as follows.

絶縁体2の容器1の底部12との接合面にロー材が塗布
された後、絶縁体2が容器1内に底部12に接するまで
挿入される。
After the brazing material is applied to the joint surface of the insulator 2 with the bottom 12 of the container 1, the insulator 2 is inserted into the container 1 until it contacts the bottom 12.

次に絶縁体2上に圧電素子部3が両者の中心軸が一致す
るように置かれ続いて固定体4が挿入され、穴41を通
してリード線33が容器外に引きだされる。
Next, the piezoelectric element part 3 is placed on the insulator 2 so that their central axes coincide with each other, and then the fixed body 4 is inserted, and the lead wire 33 is drawn out of the container through the hole 41.

次に、容器1と固定体4の接する図の上端側の円周縁部
にロー材を塗布する。
Next, brazing material is applied to the circumferential edge on the upper end side in the figure where the container 1 and the fixed body 4 are in contact.

次に、応力検出器全体をロー付は温度まで加熱し、ロー
付けが完了すれば室温まで徐冷する。
Next, the entire stress detector is heated to the brazing temperature, and once the brazing is completed, it is gradually cooled to room temperature.

金属材よりなる容器1の熱膨張係数はセラミックよりな
る絶縁体2及び固定体4と圧電素子本体31の熱膨張係
数より、一般に犬であるので常温状態に達した時点では
、熱収縮量の差により容器1、絶縁体2、圧電素子部3
と固定体4は相互に圧縮力が働き密着される。
The thermal expansion coefficient of the container 1 made of metal material is generally the same as that of the insulator 2 and fixed body 4 made of ceramic, and the piezoelectric element body 31, so when the temperature reaches room temperature, there is a difference in the amount of thermal contraction. container 1, insulator 2, piezoelectric element part 3
and the fixed body 4 are brought into close contact with each other by a compressive force.

以上の構成において、たとえば底部12に加わる測定圧
Pの圧力は絶縁体2を介して圧電素子部3に図示の矢印
Pの方向に加わる。
In the above configuration, for example, the measurement pressure P applied to the bottom portion 12 is applied to the piezoelectric element portion 3 through the insulator 2 in the direction of the arrow P shown in the figure.

而して圧電素子部3には受圧圧力に対応した電荷が発生
する。
Thus, an electric charge corresponding to the received pressure is generated in the piezoelectric element portion 3.

この電荷量を高入力インピーダンスの測定器により測定
すれば、測定圧の圧力値が検出できることになる。
If this amount of charge is measured using a measuring device with high input impedance, the pressure value of the measured pressure can be detected.

この場合、容器1、絶縁体2、圧電素子部3と固定体4
は熱収縮量の差により相互に強い圧縮力が働き密着され
ているので、圧電素子部3への測定圧圧力の伝達の効率
が損なわれることがなく、溶着部5の溶着温度以下の温
度では各部の密着状態はゆるむことがないので、高温領
域でも使用でき、堅牢なものが得られる。
In this case, the container 1, the insulator 2, the piezoelectric element part 3 and the fixed body 4
Because a strong compressive force acts on each other due to the difference in the amount of thermal contraction, the efficiency of transmitting the measured pressure to the piezoelectric element part 3 is not impaired, and at a temperature below the welding temperature of the welded part 5. Since the adhesion of each part will not loosen, it can be used even in high temperature areas and is robust.

なお、高温領域まで使用できるものとしては、金属容器
内に圧電素子部をガラスで絶縁封着するものがあるが、
ガラスの封着温度が圧電素子の耐熱温度程度のものでも
変形点(ガラスが軟化する温度)が、300〜400℃
程度となり、300〜400℃で圧力の伝達効率が急激
に悪くなる。
In addition, there are products that can be used up to high temperature ranges, such as those in which the piezoelectric element is insulated and sealed with glass inside a metal container.
Even if the sealing temperature of the glass is similar to the heat resistance temperature of the piezoelectric element, the deformation point (temperature at which the glass softens) is 300 to 400℃.
The pressure transmission efficiency deteriorates rapidly at 300 to 400°C.

したがって、ガラス封着方式のものは、各封着ガラスの
有する特性により制約を受ける。
Therefore, glass sealing systems are limited by the characteristics of each sealing glass.

本発明のものにおいてはこのようなことはなく、圧電素
子の耐熱温度まで使用することができる。
This does not happen with the device of the present invention, and it can be used up to the allowable temperature limit of the piezoelectric element.

第2図は本発明の他の実施例の構成説明図である。FIG. 2 is an explanatory diagram of the configuration of another embodiment of the present invention.

本実施例においては、絶縁体2と固定体4に圧電素子部
3が嵌合する凹部22,42を設けたもので、圧電素子
部3を所要の位置に容易に配置できるようにしたもので
ある。
In this embodiment, the insulator 2 and the fixed body 4 are provided with recesses 22 and 42 into which the piezoelectric element 3 fits, so that the piezoelectric element 3 can be easily placed at a desired position. be.

第3図は本発明の別の実施例の構成説明図である。FIG. 3 is a configuration explanatory diagram of another embodiment of the present invention.

図において、6は固定体4に一面側がロー付けされ他端
円周縁部が容器1に溶着5された金属材よりなる蓋体、
7は蓋体6を貫通する穴に嵌合されたセラミックよりな
る管で、管内をリード線33が貫通する。
In the figure, reference numeral 6 denotes a lid body made of a metal material, one side of which is brazed to the fixed body 4 and the other end of the circumferential edge welded to the container 1;
A tube 7 is made of ceramic and fitted into a hole passing through the lid 6, and a lead wire 33 passes through the tube.

本実施例においては溶着5の部分が金属同志で構成され
るので、一方がセラミックで構成された第1図例の場合
の様に、セラミックの溶着部分を前取ってメタライズ処
理をする必要がない利点を有する。
In this example, since the welded portion 5 is made of metal, there is no need to pre-metallize the ceramic welded portion, unlike in the case of the example in Fig. 1 where one of the welded portions is made of ceramic. has advantages.

なお、前述の実施例においては、絶縁体2が用いられて
いるが、圧電素子部3を容器1から絶縁する必要がない
場合には絶縁体2はなくてもよい。
In the above embodiment, the insulator 2 is used, but if there is no need to insulate the piezoelectric element section 3 from the container 1, the insulator 2 may be omitted.

また、固定体4も絶縁が必要でない、たとえば、第2図
に示す如く圧電素子部4の電極面32と直接接触しない
ような場合には、絶縁材でな(てもよい。
Furthermore, if the fixed body 4 does not require insulation, for example, if it does not come into direct contact with the electrode surface 32 of the piezoelectric element portion 4 as shown in FIG. 2, it may not be made of an insulating material.

また、前述の実施例においては、圧電素子部3はニオブ
酸リチウムよりなると説明したが、ニオブ酸リチウムや
水晶等の圧電性結晶、或は、ジルコン・チタン酸鉛(P
ZT)やチタン酸鉛等のセラミック系圧電磁器でもよく
、要するに内部応力を検知できるものであればよい。
Furthermore, in the above-mentioned embodiment, it was explained that the piezoelectric element part 3 is made of lithium niobate, but piezoelectric crystal such as lithium niobate or crystal, or zircon lead titanate (P
Ceramic piezoelectric ceramics such as ZT) or lead titanate may be used, as long as internal stress can be detected.

以上説明したように本発明は容器内に圧電素子部を挿入
し、次に、容器内に固定体をその一面が圧電素子部に接
するように挿入し、全体を加熱してから、固定体の他面
側を容器に溶着し、室温状態まで徐冷して応力検出器を
製作するようにした。
As explained above, the present invention involves inserting a piezoelectric element into a container, then inserting a fixed body into the container so that one side of the fixed body is in contact with the piezoelectric element, and heating the entire body. The other side was welded to a container and slowly cooled to room temperature to fabricate a stress detector.

この結果、容器及び固定体と圧電素子部の熱膨張係数の
違いにより、室温状態においては、前記構成部品には相
互に圧縮力が働き、互に強く密着された応力検出器を得
ることができる。
As a result, due to the difference in thermal expansion coefficients between the container, the fixing body, and the piezoelectric element, compressive force acts on each of the components at room temperature, making it possible to obtain a stress detector that is tightly attached to each other. .

したがって、本発明によれば堅牢で、高い温度範囲まで
使用することができ、応力検出感度のよい応力検出器を
実現することができる。
Therefore, according to the present invention, it is possible to realize a stress detector that is robust, can be used up to a high temperature range, and has good stress detection sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成説明図、第2゜3図は
本発明の他の実施例の構成説明図である。 1・・・・・・容器、2・・・・・・絶縁体、3・・・
・・・圧電素子部、4・・・・・・固定体。
FIG. 1 is an explanatory diagram of the configuration of one embodiment of the present invention, and FIGS. 2-3 are explanatory diagrams of the configuration of another embodiment of the invention. 1... Container, 2... Insulator, 3...
. . . Piezoelectric element portion, 4 . . . Fixed body.

Claims (1)

【特許請求の範囲】[Claims] 1 底部を有する筒状の容器と、該容器内に一面が密着
して設けられた圧電素子部と、該圧電素子部の他面に一
面が接し対向面側が前記容器の開口部が溶着される固定
体とを具備し、応力検出器全体を熱した状態で前述溶着
処理を行い室温に復した状態での熱収縮量の差を利用し
て前記圧電素子部に前記容器と固定体を抑圧密着させる
ようにした応力検出器の製造方法。
1. A cylindrical container having a bottom, a piezoelectric element portion that is provided in close contact with one surface within the container, and one surface of which is in contact with the other surface of the piezoelectric element portion, and the opening of the container is welded to the opposite surface side. The above-mentioned welding process is performed while the entire stress detector is heated, and the container and the fixing body are compressed and tightly attached to the piezoelectric element part by utilizing the difference in the amount of thermal contraction when the stress detector returns to room temperature. A method for manufacturing a stress detector.
JP6447877A 1977-05-30 1977-06-01 Manufacturing method of stress detector Expired JPS5814967B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6447877A JPS5814967B2 (en) 1977-06-01 1977-06-01 Manufacturing method of stress detector
GB23218/78A GB1601547A (en) 1977-05-30 1978-05-26 Force detector
BR7803466A BR7803466A (en) 1977-05-30 1978-05-30 FORCES DETECTOR
US06/053,214 US4258565A (en) 1977-05-30 1979-06-29 Force detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6447877A JPS5814967B2 (en) 1977-06-01 1977-06-01 Manufacturing method of stress detector

Publications (2)

Publication Number Publication Date
JPS53149384A JPS53149384A (en) 1978-12-26
JPS5814967B2 true JPS5814967B2 (en) 1983-03-23

Family

ID=13259363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6447877A Expired JPS5814967B2 (en) 1977-05-30 1977-06-01 Manufacturing method of stress detector

Country Status (1)

Country Link
JP (1) JPS5814967B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346963U (en) * 1986-09-17 1988-03-30
JPH027652Y2 (en) * 1984-09-04 1990-02-23
JP2508408Y2 (en) * 1990-10-09 1996-08-21 株式会社丸山製作所 Power sprayer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027652Y2 (en) * 1984-09-04 1990-02-23
JPS6346963U (en) * 1986-09-17 1988-03-30
JP2508408Y2 (en) * 1990-10-09 1996-08-21 株式会社丸山製作所 Power sprayer

Also Published As

Publication number Publication date
JPS53149384A (en) 1978-12-26

Similar Documents

Publication Publication Date Title
US4930353A (en) Semiconductor pressure sensor
US5739626A (en) Piezoelectric sensor
EP0317163B1 (en) Cylinder pressure sensor for an internal combustion engine
JPH09504100A (en) Capacitive pressure sensor
US4916426A (en) Pressure sensor
JPS5814967B2 (en) Manufacturing method of stress detector
JP2792116B2 (en) Semiconductor pressure sensor
JP2580115B2 (en) Pressure detector
JPH0743285B2 (en) Electronic thermometer
EP0511762B1 (en) Piezoelectric sensor
US3913391A (en) Strain gage configurations employing high di-electric strength and efficient strain transmission
JP2000180286A (en) Cylinder inner pressure sensor for engine and measuring device for air quantity flowing in cylinder using it
US3638160A (en) Shock pressure transducer
JPS5847012B2 (en) stress detector
JPS584967B2 (en) Flow velocity flow measuring device
JP7345117B2 (en) Temperature sensor and temperature measuring device
JPH0622171Y2 (en) Vortex detector
JP7235378B2 (en) Surface acoustic wave sensor and measurement system using it
JP4342190B2 (en) Ultrasonic sensor and manufacturing method thereof
JPH0534230A (en) Piezoelectric sensor
JPS5829859B2 (en) force detector
JP2749158B2 (en) Adhesive capacitance strain gauge
JPS5910486B2 (en) temperature sensor
KR830000453Y1 (en) Flow rate flow measuring device
JP2822613B2 (en) Semiconductor pressure sensor