JPS5910486B2 - temperature sensor - Google Patents

temperature sensor

Info

Publication number
JPS5910486B2
JPS5910486B2 JP14673378A JP14673378A JPS5910486B2 JP S5910486 B2 JPS5910486 B2 JP S5910486B2 JP 14673378 A JP14673378 A JP 14673378A JP 14673378 A JP14673378 A JP 14673378A JP S5910486 B2 JPS5910486 B2 JP S5910486B2
Authority
JP
Japan
Prior art keywords
temperature
crystal resonator
temperature sensor
sensing member
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14673378A
Other languages
Japanese (ja)
Other versions
JPS5572834A (en
Inventor
光麿 小池
薫 古沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP14673378A priority Critical patent/JPS5910486B2/en
Publication of JPS5572834A publication Critical patent/JPS5572834A/en
Publication of JPS5910486B2 publication Critical patent/JPS5910486B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は圧電振動体、特に水晶振動子を用いた温度セン
サに関するものであり、具体的に言えば温度依存性が低
く、かつ応力依存性が高い蔵出角の水晶振動子に温度に
比例した力を作用させることにより温度に比例した水晶
振動子の振動周波数を検知し、もつて温度を測定するよ
うにした温度センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature sensor using a piezoelectric vibrator, particularly a crystal resonator. Specifically, the present invention relates to a temperature sensor using a piezoelectric vibrator, particularly a crystal resonator. The present invention relates to a temperature sensor that detects the vibration frequency of a crystal oscillator proportional to temperature by applying a force proportional to temperature to a child, and thereby measures temperature.

従来から知られている温度センサには金属抵抗線、サー
ミスタ等があるがいずれも消費電力、測定確度等に難点
があり、近年、水晶振動子の製造技術が進み、水晶振動
子が容易に得られるようになつたことから、水晶振動子
を用いた温度センサが種々提案されている。
Traditionally known temperature sensors include metal resistance wires and thermistors, but all of them have drawbacks such as power consumption and measurement accuracy.In recent years, however, as manufacturing technology for crystal resonators has advanced, crystal resonators have become easier to obtain. As a result, various temperature sensors using crystal oscillators have been proposed.

従来提案されている水晶振動子を用いた温度センサは、
いずれも水晶振動子がその蔵出角度によつて温度依存性
が高くなることに着目し、水晶振動子自体が被測定温度
になつたときの該水晶振動子の振動周波数によつて被測
定温度を把握するようにしたものであり、このような水
晶振動子には例えば、2軸回転形のLCカット板がある
Conventionally proposed temperature sensors using crystal oscillators are
In both cases, we focused on the fact that the temperature dependence of the crystal oscillator increases depending on its extraction angle, and the temperature to be measured is determined by the vibration frequency of the crystal oscillator when the crystal oscillator itself reaches the temperature to be measured. Such a crystal resonator includes, for example, a biaxially rotating LC cut plate.

この水晶振動子を用いた温度センサは金属抵抗線やサー
ミスタ等を用いた温度センサに比べて消費電力、測定確
度、電気信号の検出の容易性(直接ディジタル信号で検
出できること。)等からいつて極めて優れているが、水
晶振動子自体は熱伝導性が良好でなく、従つて水晶振動
子が被測定温度になるまでに長い時間を要するため応答
速度が遅いという欠点がある。また、水晶振動子自体が
温度に感応する上記従来例では温度センサの感度が水晶
振動子の裁出角度で画一的に決定されるので用途に応じ
た種々の感度の温度センサが得にくいという欠点がある
Temperature sensors using crystal oscillators are considered to be superior to temperature sensors using metal resistance wires, thermistors, etc. in terms of power consumption, measurement accuracy, and ease of detecting electrical signals (direct detection with digital signals). Although this method is very good, the crystal resonator itself does not have good thermal conductivity, and therefore it takes a long time for the crystal resonator to reach the temperature to be measured, resulting in a slow response speed. In addition, in the conventional example described above in which the crystal oscillator itself is sensitive to temperature, the sensitivity of the temperature sensor is uniformly determined by the cutting angle of the crystal oscillator, making it difficult to obtain temperature sensors with various sensitivities depending on the application. There are drawbacks.

更に、温度感応素子としての水晶振動子は一般にLCカ
ツト板を使用しなければならず、LCカツト板は2軸回
転形の水晶振動子であつて1軸回転形の水晶振動子、例
えばATカツト板(本発明ではこのATカツト板を使用
することができる。)のような水晶振動子に比べて量産
性に欠ける欠点がある。本発明は以上の従来の欠点を解
消し、応答速度が速く、かつ用途に応じて種々の感度の
ものが製作可能でかつ量産可能な水晶振動子を用いた温
度センサを提供することを目的とする。
Furthermore, a crystal resonator as a temperature sensitive element must generally use an LC cut plate, and the LC cut plate is a two-axis rotating type crystal resonator, and a single-axis rotating type crystal resonator, such as an AT cut plate, must be used. Compared to a crystal resonator such as a plate (this AT cut plate can be used in the present invention), it has a drawback that it is less mass-producible. It is an object of the present invention to overcome the above-mentioned conventional drawbacks, and to provide a temperature sensor using a crystal resonator that has a fast response speed, can be manufactured with various sensitivities depending on the application, and can be mass-produced. do.

この目的のために本発明では温度依存性が低く、かつ応
力依存性が高い裁出角で切り出した水晶振動子の周縁に
熱伝導率が当該水晶振動子より高く、かつその熱膨張率
が当該水晶振動子の熱膨張率とは異なる部材を剛性的に
固着するように構成し、温度を上記部材の熱膨張に変え
、これによつて水晶振動子の周縁に応力を作用させ、こ
の応力による水晶振動子の振動周波数の変化で被測定温
度を把握するようにした。
For this purpose, in the present invention, the periphery of a crystal resonator cut out at a cutting angle that has low temperature dependence and high stress dependence has a thermal conductivity higher than that of the crystal resonator and a coefficient of thermal expansion corresponding to that of the crystal resonator. A member having a coefficient of thermal expansion different from that of the crystal resonator is rigidly fixed, and the temperature is changed to the thermal expansion of the member, thereby applying stress to the periphery of the crystal resonator. The temperature to be measured is determined by changes in the vibration frequency of the crystal oscillator.

このように構成することによつて温度センサの感温部は
上記熱伝導性の高い部材に転化されるので被測定温度に
速く追従する温度センサが得られ、また上記部材の形状
を適宜変えたり、またその材質を適宜変えることによつ
て用途に応じた種々の感度の温度センサが得られる。
With this configuration, the temperature sensing part of the temperature sensor is converted to the above-mentioned highly thermally conductive member, so a temperature sensor that quickly follows the temperature to be measured can be obtained, and the shape of the above-mentioned member can be changed as appropriate. By appropriately changing the material, temperature sensors with various sensitivities can be obtained depending on the application.

以下図面によつて本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

図面はいずれも本発明の実施例を説明する図面であり、
第1図、第2図及び第3図は第1の実施例のそれぞれ平
面図、正面図及び第1図に於けるA−A断面図、第4図
及び第5図は第2の実施例のそれぞれ平面図及び第4図
に於けるB−B断面図、第6図及び第7図は本発明に係
る温度センサの支持構造及び電気信号の導出リード構造
の具体例を第1の実施例に即して示した分解斜視図であ
る。
All drawings are drawings explaining embodiments of the present invention,
1, 2, and 3 are a plan view, a front view, and a sectional view taken along line A-A in FIG. 1 of the first embodiment, and FIGS. 4 and 5 are the second embodiment. The plan view and BB cross-sectional view in FIG. 4, FIGS. 6 and 7 respectively show specific examples of the support structure and electrical signal derivation lead structure of the temperature sensor according to the present invention. It is an exploded perspective view shown according to.

まず第1図〜第3図により第1の実施例を説明する。First, a first embodiment will be explained with reference to FIGS. 1 to 3.

第1図〜第3図に於て、1は水晶振動子、111及び1
12は電極、113及び114は電気信号の導出路、2
1及び22は感温部材、211及び221は感温部、2
12及び222は接合部、213及び223は空気孔、
31及び32は電気信号の導出リードである。
In Figures 1 to 3, 1 is a crystal oscillator, 111 and 1
12 is an electrode, 113 and 114 are electrical signal output paths, 2
1 and 22 are temperature sensing members, 211 and 221 are temperature sensing parts, 2
12 and 222 are joint parts, 213 and 223 are air holes,
31 and 32 are electrical signal derivation leads.

水晶振動子1は雰囲気温度の変化によつてその振動周波
数が変化しないか、あるいは変化してもその変化が極め
て小さく、かつ作用する応力に対しては該応力に比例し
て振動周波数が変化するような特性、即ち振動周波数の
温度依存性が低く、かつ応力依存性が高い角度で裁出さ
れたものが使用される。
The oscillation frequency of the crystal oscillator 1 does not change due to changes in ambient temperature, or even if it changes, the change is extremely small, and the oscillation frequency changes in proportion to the applied stress. A material cut at an angle with such characteristics, that is, low temperature dependence of vibration frequency and high stress dependence, is used.

このような特性の水晶振動子には、具体的には1軸回転
形のATカツト板等があるが、この他にも種々の裁出角
のものが使用可能である。
Specific examples of crystal resonators with such characteristics include a uniaxially rotating AT cut plate, but other crystal resonators with various cutting angles can also be used.

水晶振動子1には円形のものが使用され、例えば金メツ
キによつてその両面に電極111,112及びその電極
111,112から電気信号を取り出すための導出路1
13,114が一般の水晶振動子(例えば発振素子と使
用される水晶振動子)と同様に設けられており、上記導
出路113,114には電気信号の導出リード31,3
2が接続されている。
A circular crystal resonator 1 is used, and electrodes 111 and 112 are formed on both sides of the crystal resonator 1 by, for example, gold plating, and lead-out paths 1 for extracting electrical signals from the electrodes 111 and 112 are used.
13 and 114 are provided in the same manner as a general crystal resonator (for example, a crystal resonator used as an oscillation element), and the lead-out paths 113 and 114 are provided with electrical signal lead-out leads 31 and 3.
2 are connected.

感温部材21,22は水晶振動子1よりも熱伝導率が高
く、かつ熱膨張率が高い部材、例えばアルミニウムや銀
等の金属で形成され、その構造は、温度変化に際して、
その外形が略相似を保つた状態で膨張あるいは収縮する
ような強度、即ち膨張に対しては例えば屈曲するような
ことのない強度、また収縮に対しては例えばき裂が生じ
ないような強度が確保できるように設定され、かつ、上
記膨張あるいは収縮による変化が水晶振動子1に最大限
に、かつその周縁に均等に伝わるように、その感温部2
11,221は曲面を有するドーム状に形成される。
The temperature-sensitive members 21 and 22 are made of a material having higher thermal conductivity and higher coefficient of thermal expansion than the crystal oscillator 1, such as metals such as aluminum and silver, and their structure is such that the temperature changes when the temperature changes.
The strength is such that it can expand or contract while its external shape remains approximately similar, i.e., the strength that will not cause it to bend when it expands, and the strength that will not cause cracks when it contracts. The temperature-sensing portion 2 is set such that the change due to the expansion or contraction described above is transmitted to the crystal resonator 1 to the maximum extent and evenly to its periphery.
11 and 221 are formed into a dome shape with a curved surface.

曲面は求められる温度センサの感度等を勘案して例えば
球曲率を有する曲面にする等適宜に設定される。このよ
うな構造の感温部材21,22が上記水晶振動子1の両
面に固着されて温度センサが構成される。
The curved surface is appropriately set, such as a curved surface having a spherical curvature, taking into consideration the required sensitivity of the temperature sensor and the like. Temperature sensing members 21 and 22 having such a structure are fixed to both surfaces of the crystal resonator 1 to constitute a temperature sensor.

即ち、上記水晶振動子1の周縁部分に上記感温部材21
,22の裾部分に形成された接合部212,222が接
着剤、半田付け、ガラス溶着等、適宜の手段により剛性
的に固着され、その結果、上記水晶振動子1の電極11
1,112部分と感温部材21,22の感温部211,
221との間には空間が形成される。水晶振動子1と感
温部材21,22との固着は、温度変化による感温部材
の外形の変化(膨張あるいは収縮)が正しく水晶振動子
1に伝達されるように固着部分で上記外形変化の際すベ
リが生じないように強固に固着される。電極111,1
12が形成されている部分は水晶振動子1の振動部であ
り、この振動部は上記空間によつて感温部材21,22
から離隔されており、水晶振動子1の振動が阻害される
ことはない。また感温部材21,22には空気孔213
,223が設けられており、上記水晶振動子1と感温部
材21,22の感温部211,221との間に形成され
ている空間に存する空気が温度変化や大気圧の変化等に
よつて膨張あるいは収縮した場合に、水晶振動子1の振
動周波数に与える影響を除去している。
That is, the temperature sensing member 21 is placed around the periphery of the crystal resonator 1.
, 22 are rigidly fixed by appropriate means such as adhesive, soldering, glass welding, etc., and as a result, the electrodes 11 of the crystal resonator 1
1,112 portion and the temperature sensing portion 211 of the temperature sensing members 21, 22,
A space is formed between 221 and 221. The fixation between the crystal resonator 1 and the temperature-sensitive members 21 and 22 is such that the change in the outer shape (expansion or contraction) of the temperature-sensitive member due to temperature change is properly transmitted to the crystal resonator 1 at the fixed portion. It is firmly fixed to prevent any burrs from forming. Electrode 111,1
The part where 12 is formed is the vibrating part of the crystal oscillator 1, and this vibrating part is connected to the temperature sensing members 21 and 22 by the above-mentioned space.
The vibration of the crystal resonator 1 is not inhibited. In addition, air holes 213 are provided in the temperature sensing members 21 and 22.
, 223 are provided, and the air existing in the space formed between the crystal resonator 1 and the temperature sensing parts 211, 221 of the temperature sensing members 21, 22 is This eliminates the influence on the vibration frequency of the crystal resonator 1 when the crystal resonator 1 expands or contracts.

上記空気孔213,223の設定位置は、感温部材21
,22の膨張あるいは収縮による応力が水晶振動子1の
周縁に均等に作用する妨げとならないように感温部21
1,221の中央にするのが望ましい。
The setting positions of the air holes 213 and 223 are as follows:
, 22 so that stress caused by expansion or contraction of the temperature sensing portion 21 does not prevent the stress from acting uniformly on the periphery of the crystal resonator 1.
It is desirable to set it at the center of 1,221.

被測定温度が上昇すると感温部材21,22は膨張し、
該感温部材21,22に固着された水晶振動子1の周縁
には第2図に矢印F1で示す方向の力、即ち伸張力が作
用し、被測定温度が下降すると感温部材21,22は収
縮して水晶振動子1の周縁には第2図に矢印F2で示す
方向の力、即ち圧縮力が作用する。
When the temperature to be measured rises, the temperature sensing members 21 and 22 expand,
A force in the direction indicated by arrow F1 in FIG. 2, that is, a stretching force acts on the periphery of the crystal resonator 1 fixed to the temperature sensing members 21, 22, and when the temperature to be measured falls, the temperature sensing members 21, 22 contracts, and a force in the direction indicated by arrow F2 in FIG. 2, that is, a compressive force, acts on the periphery of the crystal resonator 1.

そして水晶振動子1の振動周波数はこの伸張力又は圧縮
力によつて変化するので適宜の電気回路手段によつて上
記振動周波数を検知することによつて被測定温度を測定
することができる。本発明に係る温度センサの応答速度
は感温部材21,22の材質の熱伝導率、構造上の形状
や寸法等に左右され、また感度は感温部材21,22の
熱膨張率、構造上の形状や寸法等に左右される。
Since the vibration frequency of the crystal resonator 1 changes depending on this stretching or compression force, the temperature to be measured can be measured by detecting the vibration frequency using an appropriate electric circuit means. The response speed of the temperature sensor according to the present invention depends on the thermal conductivity of the material of the temperature sensing members 21, 22, the structural shape and dimensions, etc., and the sensitivity depends on the thermal expansion coefficient, the structural It depends on the shape and dimensions of.

第1の実施例の形状において、水晶振動子1に直径(感
温部材21,22の接合部212,222と接する周縁
部分を含めない直径)1211φのものを使用し、感温
部材21,22の内径の曲率半径を1511Rとした場
合、感温部材21,22の材質を板厚0.311のアル
ミニウムとすると約3秒の応答速度が得られ、又板厚0
.111の銀とすると約1秒の応答速度が得られる。又
感度については、水晶振動子1自体が極めて感度が高い
ため微細な寸法上の違いにより変化するが、上記した銀
板を使用した場合を例にとると概ね120HZ/℃の感
度が得られる。また、第1の実施例に示す温度センサに
於いて種々の感度のものを製作するには感温部材21,
22をその感温部211,221の球面曲率が異つたも
のとすればよい。
In the shape of the first embodiment, the crystal resonator 1 has a diameter of 1211φ (diameter not including the peripheral portions of the temperature-sensitive members 21, 22 in contact with the joints 212, 222), and the temperature-sensitive members 21, 22 When the radius of curvature of the inner diameter of
.. 111 silver, a response speed of about 1 second is obtained. Regarding the sensitivity, since the crystal resonator 1 itself has extremely high sensitivity, it changes due to minute dimensional differences, but if the above-mentioned silver plate is used as an example, a sensitivity of approximately 120 Hz/° C. can be obtained. In addition, in order to manufacture temperature sensors of various sensitivities in the first embodiment, the temperature sensing member 21,
22, the temperature sensing parts 211 and 221 may have different spherical curvatures.

即ち、球面曲率が大きいときは温度変化による接合部2
12,222の変化が大きく水晶振動子1に加わる応力
が大きくなるため感度が高い温度センサが得られ、又球
面曲率が小さいときは温度変化による接合部212,2
22の変化が小さく水晶振動子1に加わる応力が小さく
なるため感度が低い温度センサが得られる。第1の実施
例の温度センサの応答速度を更に速くしたものが第4図
及び第5図にその平面図と断面図を示す第2の実施例で
ある。
In other words, when the spherical curvature is large, the joint 2 due to temperature change
12, 222 is large and the stress applied to the crystal resonator 1 is large, so a temperature sensor with high sensitivity can be obtained. Also, when the spherical curvature is small, the joint parts 212, 2 due to temperature changes can be obtained.
Since the change in 22 is small and the stress applied to the crystal resonator 1 is small, a temperature sensor with low sensitivity can be obtained. A second embodiment, whose plan view and cross-sectional view are shown in FIGS. 4 and 5, has a faster response speed than the temperature sensor of the first embodiment.

以下、第2の実施例について説明する。第4図及び第5
図において、214,224は熱伝導片、他は第1の実
施例と同様である。
The second example will be described below. Figures 4 and 5
In the figure, 214 and 224 are heat conductive pieces, and the others are the same as in the first embodiment.

第2の実施例では、感温部材21,22の周囲に複数の
熱伝導片214,224が設けられており、これによつ
て感温部材21,22の表面面積が増大し、当該感温部
材21,22の雰囲気温度(被測定温度)に達する時間
が速められている。これによつて第1の実施例より更に
応答速度の速い温度センサが得られる。熱伝導片214
,224を設けることは、それだけ感温部材21,22
の熱容量が増して応答速度が遅くなる方向に作用するの
で、当該熱伝導片214,224を設けたことによる感
温部材21,22の表面面積の増大(応答速度を速める
要因)と、熱容量の増大(応答速度を遅くする要因)と
の関連に於いて、前者による効果がより大きくなるよう
に配慮しなければならない。
In the second embodiment, a plurality of heat-conducting pieces 214, 224 are provided around the temperature-sensitive members 21, 22, thereby increasing the surface area of the temperature-sensing members 21, 22. The time required for the members 21 and 22 to reach the ambient temperature (temperature to be measured) is accelerated. As a result, a temperature sensor having a faster response speed than the first embodiment can be obtained. Heat conductive piece 214
, 224, the temperature sensing members 21, 22
Since the thermal capacity of the temperature sensing members 21 and 22 increases due to the provision of the heat conductive pieces 214 and 224 (a factor that increases the response speed), the heat capacity decreases. In relation to the increase in response speed (a factor that slows down the response speed), consideration must be given to making the effect of the former even greater.

第4図及び第5図に示す第2の実施例では熱伝導片21
4,224が水晶振動子1の両面に於て同じ位置にある
ように感温部材21,22が水晶振動子1の両面にそれ
ぞれ固着されているが、当該熱伝導片214及び224
が交互に位置するように感温部材21,22の固着位置
を設定してもよい〜 また、第2の実施例に於て熱伝導片214,224を長
めに設定しておき、使用に際して上記熱伝導片214,
224を切断して適宜の長さに設定できるようにしてお
けば、製作後に用途に応じて応答速度が設定できる温度
センサが得られる。
In the second embodiment shown in FIGS. 4 and 5, the heat conductive piece 21
The temperature-sensitive members 21 and 22 are respectively fixed to both sides of the crystal resonator 1 so that the temperature-sensitive members 4 and 224 are at the same position on both sides of the crystal resonator 1.
The fixing positions of the temperature sensing members 21 and 22 may be set so that they are alternately located.In addition, in the second embodiment, the heat conductive pieces 214 and 224 are set to be longer, and when used, the above-mentioned heat conductive piece 214,
224 so that it can be set to an appropriate length, it is possible to obtain a temperature sensor whose response speed can be set according to the application after manufacturing.

第6図及び第7図は以上に説明した実施例に係る温度セ
ンサの支持構造及び電気信号の導出りードの具体的な構
造例を示したものである。尚、第6図及び第7図では感
温部材部分の形状は前記第1の実施例の形状に即して示
してあるが前記第2の実施例に於ても同様の構造が採用
できることは明らかである。第6図及び第7図に於て、
215,225は支持支柱、216,226は導電路、
217,227は接続端子、115は導電帯であり、他
の記号は前記第1の実施例と同様である。
FIGS. 6 and 7 show specific structural examples of the support structure of the temperature sensor and the electrical signal lead-out lead according to the embodiment described above. Although the shape of the temperature-sensitive member portion is shown in FIGS. 6 and 7 in accordance with the shape of the first embodiment, it is possible to adopt the same structure in the second embodiment. it is obvious. In Figures 6 and 7,
215, 225 are support columns, 216, 226 are conductive paths,
217 and 227 are connection terminals, 115 is a conductive band, and other symbols are the same as in the first embodiment.

第6図は感温部材21,22が非導電材、あるいは導電
材であつても電気抵抗が導出される電気信号に影響を与
える程大きな材質のもので構成された場合の構造例であ
る。
FIG. 6 shows an example of a structure in which the temperature sensing members 21 and 22 are made of a non-conductive material or a conductive material whose electrical resistance is large enough to affect the derived electrical signal.

支持支柱215,225は感温部材21,22の接合部
212,222から脚状に支柱が延出されて構成され、
その先端には支持支柱215,216の巾より狭い巾で
接続端子217,227が形成されている。
The support struts 215 and 225 are constructed by extending leg-like struts from the joints 212 and 222 of the temperature-sensitive members 21 and 22,
Connecting terminals 217 and 227 are formed at their tips with a width narrower than that of the support columns 215 and 216.

導電路216,226は感温部材21,22が水晶振動
子1に接合されたときその電気信号の導出路113,1
14が対接する接合部212,222の部分、支持支柱
215,225及び接続端子217,227にわたつて
例えば金等の良導電性金属が蒸着されてなり、水晶振動
子1と感温部材21,22とが一体化されたとき電極1
11、導出路113、導電路216及び電極112、導
出路114、導電路226がそれぞれ電気的に導通した
状態となる。
The conductive paths 216 and 226 are electrical signal derivation paths 113 and 1 when the temperature sensing members 21 and 22 are joined to the crystal resonator 1.
A highly conductive metal such as gold is vapor-deposited over the joint parts 212 and 222 where the crystal resonator 1 and the temperature-sensitive member 21, Electrode 1 when integrated with 22
11, the lead-out path 113, the conductive path 216, the electrode 112, the lead-out path 114, and the conductive path 226 are electrically connected to each other.

このようにして電極111,112部分で発生する電気
信号(電気的振動)を外部に取り出している。また、本
温度センサを機器に実装する場合には、例えば測定回路
を構成しているプリント配線基板の配線孔に接続端子2
17,227を挿入し導電パターンと接続端子217,
227とを半田付すれば温度センサは支持支柱215,
225でプリント配線基板上に支持され、また該支持支
柱215,225に形成された導電路216,226を
介して上記測定回路に水晶振動子1で生成された電気信
号が伝達される。
In this way, electrical signals (electrical vibrations) generated at the electrodes 111 and 112 are extracted to the outside. In addition, when mounting this temperature sensor on a device, for example, connect the connecting terminal 2 to the wiring hole of the printed wiring board that constitutes the measurement circuit.
17, 227 and connect the conductive pattern and connection terminal 217,
227, the temperature sensor becomes the support column 215,
The crystal resonator 1 is supported on a printed wiring board at 225, and the electrical signal generated by the crystal resonator 1 is transmitted to the measurement circuit via conductive paths 216, 226 formed on the support columns 215, 225.

第7図は感温部材21,22が良導電材で構成された場
合の構造例であり、この例では感温部材21,22が電
気信号の導出部材をも兼ねている。
FIG. 7 shows an example of a structure in which the temperature sensing members 21 and 22 are made of a highly conductive material, and in this example, the temperature sensing members 21 and 22 also serve as members for deriving electrical signals.

支持支柱215,225及びその先端の接続端子217
,227は第6図に示す構造例と同様に構成されるが、
第7図に示す例では支持支柱215,225そのものが
電気信号の導電路を形成しており、第6図に示すような
導電路216,226は支持支柱215,225に形成
されていない。水晶振動子1の周縁には電極111、導
出路113と一体に(電気的に接続された状態で)導電
帯115が形成されている。
Support struts 215, 225 and connection terminals 217 at their tips
, 227 are constructed similarly to the structural example shown in FIG.
In the example shown in FIG. 7, the support columns 215, 225 themselves form a conductive path for electrical signals, and the conductive paths 216, 226 as shown in FIG. 6 are not formed on the support columns 215, 225. A conductive band 115 is formed around the periphery of the crystal resonator 1, integrally with the electrode 111 and the lead-out path 113 (in a state where they are electrically connected).

この導電帯115は電極111、導出路113とともに
例えば金を蒸着して形成されている。尚、第7図に示す
水晶振動子1の裏面側(感温部材22と対接する側)に
も同様に電極、導出路及び導電帯が形成されている。感
温部材21,22は上記のように導電帯115が形成さ
れた水晶振動子1の両面に密着して固着される。
The conductive band 115 is formed, together with the electrode 111 and the lead-out path 113, by depositing gold, for example. Note that electrodes, lead-out paths, and conductive bands are similarly formed on the back side of the crystal resonator 1 shown in FIG. 7 (the side facing the temperature-sensitive member 22). The temperature sensing members 21 and 22 are closely fixed to both surfaces of the crystal resonator 1 on which the conductive bands 115 are formed as described above.

これによつて感温部材21,22の接合部212,22
2は導電帯115と接触し、感温部材21,22と電極
111,112とが電気的に接続された状態となり、水
晶振動子1の振動部で発生する電気信号が支持支柱21
5,225を通して導出される。この第7図に示す構造
によれば水晶振動子1の周縁に金属の蒸着膜による導電
帯115が形成されていることにより水晶振動子1と感
温部材21,22との接合は半田付等により容易に行う
ことができる。
As a result, the joint portions 212, 22 of the temperature sensing members 21, 22
2 comes into contact with the conductive band 115, the temperature sensing members 21, 22 and the electrodes 111, 112 are electrically connected, and the electric signal generated in the vibrating part of the crystal oscillator 1 is transmitted to the support column 21.
5,225. According to the structure shown in FIG. 7, since a conductive band 115 made of a vapor-deposited metal film is formed around the periphery of the crystal resonator 1, the crystal resonator 1 and the temperature-sensitive members 21 and 22 can be joined by soldering or the like. This can be easily done by

また第7図に示す構造では支持支柱215,225が開
脚状に形成されているが、これは水晶振動子1が一般に
極めて薄く形成されるので温度センサのプリント配線板
等への実装を考慮して採られた構成である。
In addition, in the structure shown in FIG. 7, the support columns 215 and 225 are formed in the shape of open legs, but this is because the crystal resonator 1 is generally formed extremely thin, so consideration is given to mounting the temperature sensor on a printed wiring board, etc. This is the configuration adopted.

尚、前記第2の実施例の構成においては熱伝導片214
,224の一対を温度センサの支持支柱及び電気信号の
導電路として使用することができる。
Note that in the configuration of the second embodiment, the heat conductive piece 214
, 224 can be used as a support column for the temperature sensor and a conductive path for electrical signals.

本発明に係る温度センサは水晶振動子の直径ににして約
51!lφ〜1211φのものが実現可能である。
The temperature sensor according to the present invention has a crystal resonator with a diameter of about 51! It is possible to realize a diameter of lφ to 1211φ.

また、本発明に係る温度センサは小形、軽量に出来るこ
と、応答速度が速いこと、又温度センサ自体の熱容量が
小さくできること等の特性によつてラジオゾンデ等の飛
揚体に搭載して高層の大気温度を時々刻々測定するよう
な気象観測に最適の温度センサであるが、この他にも種
々の温度測定、特に気体の温度測定に使用できる。
In addition, the temperature sensor according to the present invention can be mounted on a flying vehicle such as a radiosonde in the upper atmosphere due to its characteristics such as being small and lightweight, having a fast response speed, and having a small heat capacity of the temperature sensor itself. Although this temperature sensor is most suitable for meteorological observation that measures temperature from time to time, it can also be used for various other temperature measurements, especially for measuring the temperature of gases.

以上、詳細に説明したように本発明に係る温度センサは
囚 感温部材の温度による変化を、測定精度の高い水晶
振動子の振動数の変化に変換して検出する機構を採つて
いるので、信頼性の極めて高い温度センサが得られる。
As explained above in detail, the temperature sensor according to the present invention employs a mechanism that converts changes due to the temperature of the temperature sensing member into changes in the frequency of the crystal oscillator with high measurement accuracy. An extremely reliable temperature sensor can be obtained.

(8)感温部材をドーム形状としていることにより当該
感温部材の変化によつて生ずる応力が水晶振動子の周縁
に均等に加わるので、検出信号のリニアリテイ一がよい
温度センサが得られる。
(8) By forming the temperature sensing member into a dome shape, stress caused by changes in the temperature sensing member is applied evenly to the periphery of the crystal resonator, so a temperature sensor with good linearity of the detection signal can be obtained.

(C)水晶振動板にATカツト板等、結晶からの裁出が
容易で、かつ歩留りのよい1軸回転形の水晶振動板が使
用できるので低コストで量産性に豊んだ温度センサが得
られる。(自)感温部材の材質、形状等の選択により種
々の用途に応じた感度のものが容易に得られる。
(C) A uniaxial rotating type crystal diaphragm, such as an AT cut plate, which is easy to cut from the crystal and has a high yield, can be used as the crystal diaphragm, so a temperature sensor with low cost and high productivity can be obtained. It will be done. By selecting the material, shape, etc. of the temperature-sensitive member, it is possible to easily obtain a temperature-sensitive member with sensitivity suitable for various uses.

(D感温部に熱伝導率が高くかつ熱容量の小さい部材を
使用しているので応答速度が速いものとすることができ
る。(ト)実施態様によつては水晶振動子に固着する部
材(感温部材)を利用して電気信号の導出路及び支持手
段が構成できるので構成の単純なものとすることができ
る。
(Since a member with high thermal conductivity and small heat capacity is used in the temperature sensing part D, the response speed can be fast. (G) Depending on the embodiment, a member fixed to the crystal resonator ( Since the electrical signal lead-out path and the support means can be constructed using the temperature-sensitive member, the construction can be made simple.

(G)被測定温度を振動周波数で把握できるので複雑な
電気回路、例えばA−D変換回路等を必要とすることな
くデイジタル信号で測定値を検出できるのでデータのコ
ンピユータ処理等に非常に有益である。
(G) Since the temperature to be measured can be determined by the vibration frequency, the measured value can be detected as a digital signal without the need for a complicated electric circuit, such as an A-D converter circuit, which is extremely useful for computer processing of data. be.

等種々の長所を有するものであり、本発明は極めて顕著
なる効果を奏するものである。
The present invention has various advantages such as, and the present invention has extremely significant effects.

尚、用捺によつては感温部材を水晶振動子の片面に固着
した構造であつても本発明を実施することができる。
Note that depending on the type of printing used, the present invention may be practiced even if the temperature-sensitive member is fixed to one side of the crystal resonator.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の実施例を示す図面であり、第1
図、第2図及び第3図は第1の実施例のそれぞれ平面図
、正面図及び第1図に於けるA一A断面図、第4図及び
第5図は第2の実施例のそれぞれ平面及び第4図に於け
るB−B断面図、第6図及び第7図は温度センサの支持
構造及び電気信号の導出リード構造の例を第1の実施例
に即して示した分解斜視図である。 〔主な記号〕、1・・・・・・水晶振動子、111,1
12・・・・・・電極、115・・・・・・導電帯、2
1,22・・・・・・感温部材、211,221・・・
・・・感温部、212,222・・・・・・接合部、2
13,223・・・・・・空気孔、214,224・・
・・熱伝導片、215,225・・・・・支持支柱、2
16,226・・・・・・導電路。
The drawings are all drawings showing embodiments of the present invention, and the first
Figures 2 and 3 are respectively a plan view and a front view of the first embodiment, and a sectional view taken along A-A in Figure 1, and Figures 4 and 5 are respectively of the second embodiment. The plan view and BB sectional view in FIG. 4, and FIGS. 6 and 7 are exploded perspective views showing examples of a temperature sensor support structure and an electric signal derivation lead structure according to the first embodiment. It is a diagram. [Main symbols], 1...Crystal resonator, 111, 1
12... Electrode, 115... Conductive band, 2
1, 22... Temperature-sensitive member, 211, 221...
...Temperature sensing part, 212, 222...Joint part, 2
13,223...Air hole, 214,224...
...Heat conduction piece, 215, 225...Support strut, 2
16,226... Conductive path.

Claims (1)

【特許請求の範囲】 1 振動周波数の温度依存性が低く、かつ応力依存性が
高い裁出角の水晶振動子と、上記水晶振動子より熱伝導
率が高く、かつ上記水晶振動子と熱膨張率を異にする部
材をドーム状に形成した感温部材でなり、上記水晶振動
子の周縁に上記感温部材をその裾部分で固着したことを
特徴とする温度センサ。 2 水晶振動子を、ATカット板とした特許請求の範囲
第1項に記載の温度センサ。 3 感温部材を、水晶振動子を挾んでその両面に固着し
た特許請求の範囲第1項に記載の温度センサ。 4 感温部材が球曲面を有する特許請求の範囲第1項又
は第3項に記載の温度センサ。 5 感温部材の裾部分周縁に熱伝導片を有する特許請求
の範囲第1項、第3項又は第4項に記載の温度センサ。 6 感温部材と一体に支持支柱を形成した特許請求の範
囲第1項、第3項〜第5項のいずれかに記載の温度セン
サ。 7 支持支柱を電気信号の導出部とした特許請求の範囲
第6項に記載の温度センサ。
[Scope of Claims] 1. A crystal resonator whose vibration frequency has a cutting angle that has low temperature dependence and high stress dependence, and a crystal resonator that has higher thermal conductivity than the above crystal resonator and that has a thermal expansion coefficient similar to that of the above crystal resonator. What is claimed is: 1. A temperature sensor comprising a temperature-sensing member formed in a dome shape with members having different ratios, the temperature-sensing member being fixed to the periphery of the crystal resonator at its hem. 2. The temperature sensor according to claim 1, wherein the crystal resonator is an AT cut plate. 3. The temperature sensor according to claim 1, wherein the temperature sensing member is fixed to both sides of a crystal resonator, sandwiching the temperature sensing member therebetween. 4. The temperature sensor according to claim 1 or 3, wherein the temperature sensing member has a spherical curved surface. 5. The temperature sensor according to claim 1, 3, or 4, which has a heat conductive piece on the periphery of the bottom portion of the temperature sensing member. 6. The temperature sensor according to any one of claims 1 and 3 to 5, wherein a support strut is integrally formed with the temperature sensing member. 7. The temperature sensor according to claim 6, wherein the support strut is an electrical signal derivation section.
JP14673378A 1978-11-28 1978-11-28 temperature sensor Expired JPS5910486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14673378A JPS5910486B2 (en) 1978-11-28 1978-11-28 temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14673378A JPS5910486B2 (en) 1978-11-28 1978-11-28 temperature sensor

Publications (2)

Publication Number Publication Date
JPS5572834A JPS5572834A (en) 1980-06-02
JPS5910486B2 true JPS5910486B2 (en) 1984-03-09

Family

ID=15414346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14673378A Expired JPS5910486B2 (en) 1978-11-28 1978-11-28 temperature sensor

Country Status (1)

Country Link
JP (1) JPS5910486B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232782Y2 (en) * 1984-03-21 1990-09-05
JPH041154B2 (en) * 1982-07-30 1992-01-10 Isamu Hosoi

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448546A (en) * 1980-11-28 1984-05-15 Novex, Inc. Digital temperature sensor
US11022509B2 (en) 2016-11-30 2021-06-01 Kistler Holding Ag Measurement transducer for measuring a force

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041154B2 (en) * 1982-07-30 1992-01-10 Isamu Hosoi
JPH0232782Y2 (en) * 1984-03-21 1990-09-05

Also Published As

Publication number Publication date
JPS5572834A (en) 1980-06-02

Similar Documents

Publication Publication Date Title
JPS6034687B2 (en) Pressure electronic conversion element
CN1035892A (en) Thermoelectric (al) type infrared detecting set and manufacture method thereof
JPS5910486B2 (en) temperature sensor
US4367408A (en) Pyroelectric type infrared radiation detecting device
JPH0743625Y2 (en) Capacitive load sensor
US4541731A (en) Temperature sensitive transducer with a resonant bimetal disk
US4472655A (en) Tuning fork flexural quartz resonator
JPH0515975B2 (en)
JPS5856419B2 (en) temperature sensor
JPH08237067A (en) Resonator for low-consumption-power temperature-regulator- oscillator capable of quick heating
JPS6032583Y2 (en) vibration detector
JPS5967437A (en) Quartz vibrator pressure sensor
JPS5811015B2 (en) pressure sensor
JP7235378B2 (en) Surface acoustic wave sensor and measurement system using it
JPH0232222A (en) Temperature sensor
JPS6242334Y2 (en)
JPS6342725Y2 (en)
JPS5814031A (en) Sensor for amount of steam
JPS631109A (en) Electronic parts and their production
JP2008017261A (en) Tuning fork type piezoelectric vibrating chip, and sensor oscillation circuit and manufacturing method thereof
SU636493A2 (en) Pressure sensor
JPS61160030A (en) Temperature sensor
JPH0979920A (en) Force detecting device
JPS6122249Y2 (en)
JPS5814967B2 (en) Manufacturing method of stress detector