JPS5831378B2 - Manufacturing method of aluminum-based sintered alloy sound absorbing material - Google Patents
Manufacturing method of aluminum-based sintered alloy sound absorbing materialInfo
- Publication number
- JPS5831378B2 JPS5831378B2 JP51117699A JP11769976A JPS5831378B2 JP S5831378 B2 JPS5831378 B2 JP S5831378B2 JP 51117699 A JP51117699 A JP 51117699A JP 11769976 A JP11769976 A JP 11769976A JP S5831378 B2 JPS5831378 B2 JP S5831378B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- main component
- mesh
- alloy powder
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Filtering Materials (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】
本発明はアルミニウム系焼結合金吸音材の製造法、とく
に、騒音、雑音等の高周波数の音の吸音特性に優れ、機
械的特性ならびに耐候性に優れ、更に軽量でしかも経済
性にとんだ吸音材の製造法に関する。[Detailed Description of the Invention] The present invention provides a method for producing an aluminum-based sintered alloy sound absorbing material, in particular, it has excellent sound absorbing properties for high frequency sounds such as noise, noise, etc., has excellent mechanical properties and weather resistance, and is lightweight. Moreover, the present invention relates to a method for producing sound absorbing materials that is highly economical.
現在、自動車、車輌その測高速回転機器、プレス等の金
段造機械、その他振動機器からの騒音、雑音、振動音等
は騒音公害として大きな問題になり、我々の日常生活の
上からもその除去が望まれている。Currently, noise, noise, vibration noise, etc. from automobiles, high-speed rotating equipment, presses and other metal forming machines, and other vibrating equipment has become a major problem as noise pollution, and it is important to eliminate it from our daily lives. is desired.
このため、現在、法的ならびに行政的にも規制ならびに
指導が行なわれているが、これらで解決するものでなく
、根本的にはその防止技術の開発がさげばれている。For this reason, legal and administrative regulations and guidance are currently in place, but these do not solve the problem, and the fundamental focus is on the development of prevention technology.
例えば、現在、騒音防止技術の一つとして開発されてい
るのが、防音材で、これらは建物中に組込まれて所謂防
音壁として使用され所要の効果をおさめている。For example, soundproof materials are currently being developed as one of the noise prevention technologies, and these materials are incorporated into buildings and used as so-called soundproof walls to achieve the desired effect.
しかし、防音材はあくまで音をしゃ断するもので、音を
吸収する効果はなく、更に、機械的強度もあまり大きく
ないため、自動車、車輌等に直接取付けて音を吸収する
ことはできない。However, soundproofing materials only block sound and do not have the effect of absorbing sound, and furthermore, their mechanical strength is not very high, so they cannot be directly attached to automobiles, vehicles, etc. to absorb sound.
このため、現今では、防音材に代って吸音材の開発が行
なわれている。For this reason, sound absorbing materials are currently being developed in place of sound insulating materials.
そこで、現在、吸音材として開発されているものを大別
すると、ガラス繊維等を主体にするもの、孔隙を有する
金属板等から成るもの、更に、これらを組合わせたもの
等に分けられる。Therefore, the sound absorbing materials currently being developed can be roughly divided into those that are mainly made of glass fiber, etc., those that are made of metal plates with pores, and those that are a combination of these materials.
この中で、ガラス繊維を主体にしたものは、比較的に吸
音特性に優れるか、機械的強度ならびに耐候性に乏しく
、とくに、走行若しくは振動する自動車や車輌等に直接
取付けて発生する騒音等を吸収することが困難であり、
吸音材自体が衝撃等の外力をうけて破損し易い。Among these, those mainly made of glass fiber have relatively good sound absorption properties, but have poor mechanical strength and weather resistance, and are especially effective at reducing noise generated when directly attached to moving or vibrating automobiles and vehicles. difficult to absorb;
The sound absorbing material itself is easily damaged by external forces such as impact.
また、金属板等から成るものは機械的強度は大きいが吸
音性を高めることが困難で、ガラス繊維等を組合せても
機械的強度や耐候性が劣化し、高周波数の音波では吸収
できない欠点がある。In addition, although materials made of metal plates have high mechanical strength, it is difficult to increase sound absorption, and even when combined with glass fiber, the mechanical strength and weather resistance deteriorate, and high-frequency sound waves cannot be absorbed. be.
このようなところから、最近では、粉末冶金法で構成さ
れる多孔質の銅合金焼結体は機械的強度ならびに耐候性
に優れ、吸音特性も良好であるところから、銅合金の焼
結体から戒る吸音材が提案されている。For this reason, porous copper alloy sintered bodies constructed using powder metallurgy have excellent mechanical strength and weather resistance, as well as good sound absorption properties, so copper alloy sintered bodies have recently been used. Sound absorbing materials have been proposed.
この吸音材では機械的強度が大きくジグザグの連通孔を
有することもあって、騒音等の波動エネルギが連通孔中
を通過する間に熱エネルギに変換し、騒音等は完全に近
く吸音される。This sound absorbing material has high mechanical strength and has zigzag communication holes, so wave energy such as noise is converted into thermal energy while passing through the communication holes, and noise etc. is almost completely absorbed.
換言すると、電車、汽車、自動車等のエンジン室をこの
吸音材で包囲すると、エンジン室から発生する騒音等は
連通孔中に入り、騒音はジグザグの壁面に衝突して波動
エネルギは熱エネルギに変化して完全に消音されるので
ある。In other words, when the engine compartment of a train, train, automobile, etc. is surrounded by this sound-absorbing material, the noise generated from the engine compartment enters the communication hole, the noise collides with the zigzag wall, and the wave energy changes into thermal energy. The sound is completely muted.
しかしながら、この構造の吸音材は単に通常の多孔質焼
結体の如く構成されているのでなく、騒音等、とくに高
周波の音波を完全に近く吸収するには、孔隙が連通し、
この連通孔が太き(しかもジグザグに形成されているこ
とが必要で、この条件を満足するには銅合金系の焼結体
のみが好適で、他の組成の金属若しくは合金ではほとん
ど不可能であると云われている。However, the sound absorbing material with this structure is not simply constructed like a normal porous sintered body, but in order to almost completely absorb noise, especially high-frequency sound waves, the pores must be connected.
This communication hole must be thick (and formed in a zigzag pattern), and to satisfy this condition, only a copper alloy sintered body is suitable, and it is almost impossible to use metals or alloys of other compositions. It is said that there is.
このため、銅合金系の吸音材は価格が高く、しかも重く
、このために、使用面がいちぢるしく制限されるのが欠
点である。Therefore, copper alloy-based sound absorbing materials are expensive and heavy, which severely limits their use.
本発明は上記欠点の解決を目的とし、とくにA7若しく
はその合金粉を原料として吸音特性、機械的特性ならび
に耐候性において銅合金系のものと同等若しくはそれ以
上であり、更に、軽量でかつ経済性に優れる吸音材の製
造法を提案する。The present invention aims to solve the above-mentioned drawbacks, and in particular uses A7 or its alloy powder as a raw material, which has sound absorption properties, mechanical properties, and weather resistance that are equal to or better than those of copper alloy-based products, and is lightweight and economical. We propose a manufacturing method for sound-absorbing materials with excellent performance.
すなわち、本発明法は重量百分率でCu3%若しくはそ
れ以下を含み粒度が20〜80メツシのA[合金粉また
は粒度20〜80メツシのAl粉100部に対して、C
u25〜45俤を含み粒度がioo〜325メツシのA
1合金粉10〜30部を、白灯油等の炭化水素系分散剤
を加えて混合し、その後、この混合物を実質的に無加圧
状態で所要形状に成形してから、成形体を550〜60
0℃で焼結することを特徴とする。That is, the method of the present invention uses A containing 3% or less of Cu in terms of weight percentage and a grain size of 20 to 80 mesh per 100 parts of alloy powder or Al powder having a grain size of 20 to 80 mesh.
A with a particle size of ioo to 325 mesh, including u25 to 45 grains
10 to 30 parts of No. 1 alloy powder are mixed with a hydrocarbon-based dispersant such as white kerosene, and then this mixture is molded into a desired shape under substantially no pressure. 60
It is characterized by being sintered at 0°C.
なお、本発明法においては、混合物に0.7×10”
kg/−若しくはそれ以下の圧力を加えて所要形状に成
形することができ、この場合は焼結性が向上して好まし
い。In addition, in the method of the present invention, 0.7×10"
It can be molded into a desired shape by applying a pressure of 1 kg/- or less, and in this case, sinterability is improved, which is preferable.
以下、本発明法につき詳しく説明する。The method of the present invention will be explained in detail below.
まず、Al粉若しくは最大でCu3%程度含み、しかも
粒度20〜80メツシA[合金粉を主成分とし、これら
原料粉中に例えば白灯油等の炭化水素系分散剤を滴下し
攪拌する。First, a hydrocarbon-based dispersant such as white kerosene is added dropwise into the raw material powder, and is stirred into the raw material powder.
次に、この状態において、原料のところにCu25〜4
5係を含み粒度100〜325メツシA1合金粉を添加
し混合する。Next, in this state, Cu25~4 is added to the raw material.
Add and mix A1 alloy powder containing 100 to 325 particles of mesh size.
このように混合すると、主成分のA[若しくはA1合金
粉と添加成分のA1合金粉とは粒度が相違しても均一に
混合し、とくに主成分のA7若しくはA1合金粉の粒子
(以下主成分粒子という)の周囲には添加成分のAJI
?合金粉が均一に耐着し、その周囲を完全におおうと共
に、後記の如く、後記の如き焼結時に分散剤によって主
成分粒子の表面酸化皮膜が還元されて良好に焼結が行な
われる。When mixed in this way, the main component A [or A1 alloy powder and the additive component A1 alloy powder are mixed uniformly even if the particle sizes are different, and in particular, the particles of the main component A7 or A1 alloy powder (hereinafter the main component The additive component AJI is placed around the particles (referred to as particles).
? The alloy powder adheres uniformly and completely covers the periphery, and the surface oxide film of the main component particles is reduced by the dispersant during sintering as described later, so that sintering is performed satisfactorily.
すなわち、本発明法においては、吸音材としての特性か
ら、孔隙が連通しその連通孔の径が太き(、孔隙率が高
められ、更に、焼結体の機械的強度をいちぢるしく高め
ることが必要である。That is, in the method of the present invention, due to its properties as a sound absorbing material, the pores are connected and the diameter of the communicating pores is large (the porosity is increased, and the mechanical strength of the sintered body is significantly increased). It is necessary.
一般に、Al若しくはA1合金粉(以下、単にA[粉等
という。Generally, Al or A1 alloy powder (hereinafter simply referred to as A powder, etc.) is commonly used.
)は他の金属に比べてきわめて表面が酸化され易く、表
面は硬い酸化物皮膜でおおわれ、焼結性を高めるには、
焼結前に予めAl粉等を圧縮して硬い酸化物皮膜を破壊
し除去することが必要である。) has a surface that is much more easily oxidized than other metals, and the surface is covered with a hard oxide film.
Before sintering, it is necessary to compress the Al powder or the like in advance to destroy and remove the hard oxide film.
しかし、圧縮すると、焼結体の孔隙率を上げることはで
きず、孔隙率30〜40饅程度まで上げることは不可能
に近い。However, when compressed, it is not possible to increase the porosity of the sintered body, and it is almost impossible to increase the porosity to about 30 to 40.
この点から、従来では、粉等の焼結体として密実の軸受
や、特公昭45−24206号公報に記載される如き孔
隙率最大で2O4程度の含浸軸受が提案されているに過
ぎない。From this point of view, only solid bearings made of sintered materials such as powder or impregnated bearings with a maximum porosity of about 2O4 as described in Japanese Patent Publication No. 45-24206 have been proposed in the past.
すなわち、この公報に記載される方法はAl粉等にAl
−Cuの共晶合金粉を混合し、所要形状に圧縮成形し、
共晶点附近で焼結する方法である。That is, the method described in this publication uses Al powder etc.
-Cu eutectic alloy powder is mixed and compression molded into the desired shape,
This is a method of sintering near the eutectic point.
この方法であると、圧縮時に表面酸化物は破壊され、焼
結時には共晶合金粉の溶融物が破壊部分を介して、粉等
の間に拡散し、ある程度多孔質になる。With this method, the surface oxide is destroyed during compression, and during sintering, the melt of the eutectic alloy powder diffuses between the powders etc. through the destroyed portion, resulting in some degree of porosity.
しかし、この方法では、酸化物の皮膜を機械的に破壊す
るために圧力は少なくとも1.OX103kg、/cr
A程度は必要で、その孔隙率はせいぜい20係程度止り
である。However, in this method, the pressure is at least 1.5 mm in order to mechanically destroy the oxide film. OX103kg,/cr
A porosity of about A is required, and the porosity is limited to about 20 porosity at most.
この点、本発明法においては、孔隙率が太きくしかも連
通ずる孔隙をジグザグに形成するため、主成分粉子表面
の酸化皮膜が熱膨張率の差によって瞬間的に破壊し、こ
の部分を介してAl−Cu合金粉を拡散させるのであっ
て、この拡散を行なうために、主成分粉子の周囲をAA
−Cu合金粉で均一に包囲することが有効であるところ
に着目したのである。In this regard, in the method of the present invention, since pores with large porosity and communicating with each other are formed in a zigzag pattern, the oxide film on the surface of the main component powder is instantly destroyed due to the difference in coefficient of thermal expansion, and the pores pass through this part. To diffuse the Al-Cu alloy powder, the main component powder is surrounded by AA.
They focused on the fact that it is effective to uniformly surround the -Cu alloy powder.
従って、連通孔の形成には、主成分粒子の表面にAl−
Cuが均一に包囲されていることが必要で、この意味で
粒子を小さくし、主成分粉末の粒子を大きくする必要が
ある。Therefore, in order to form communicating pores, Al-
It is necessary that Cu be surrounded uniformly, and in this sense it is necessary to make the particles small and to make the particles of the main component powder large.
なお、特公昭45−24206号公報に記載される方法
は、共晶合金粉が液相として拡散されこの部分が孔隙と
して残って多孔質になるため、共晶合金粉の粒子が大き
いほど、孔隙の寸法が大きくなり、孔隙率が上昇する。In addition, in the method described in Japanese Patent Publication No. 45-24206, the eutectic alloy powder is diffused as a liquid phase and this portion remains as pores, making it porous. The dimensions of the pores increase and the porosity increases.
これに対し、本発明法では後記の如く実質的な無加圧成
形であるから、主成分粒子間には予め孔隙が形成されて
おり、表面のAl−Cu合金粉はこの状態の主成分粒子
を結合するバインダであって、孔隙の寸法や孔隙率は主
成分粒子の寸法等によって決まる。On the other hand, in the method of the present invention, as described later, pores are formed in advance between the main component particles, and the Al-Cu alloy powder on the surface is formed by the main component particles in this state. The pore size and porosity are determined by the size of the main component particles, etc.
まそ、大きい主成分粒子合金粉と小さいAl−Cu合金
粉とを混合するには、この粒子径の相違、比重差等によ
って偏析し、このために、主成分粒子中に例えば白灯油
等の炭化水素系の分散剤を滴下して、主成分粉子の表面
を分散剤でぬらしてから、A7Cu合金粉を添加する。In fact, when mixing large main component particle alloy powder and small Al-Cu alloy powder, segregation occurs due to differences in particle size, specific gravity, etc., and for this reason, carbonization of white kerosene etc. in the main component particles occurs. A hydrogen-based dispersant is dropped to wet the surface of the main component powder with the dispersant, and then the A7Cu alloy powder is added.
また、主成分粒子は20〜80メツシにするのは孔隙の
寸法は吸音材としてなるべく大きいことが好ましいが、
20メツシ以上になると焼結性が損なわれ、80メツシ
より小さくなると、吸音材としての性能が劣化する。In addition, it is preferable that the main component particles be 20 to 80 mesh, and that the pore size be as large as possible for a sound absorbing material.
When the thickness is 20 mesh or more, sinterability is impaired, and when it is smaller than 80 mesh, the performance as a sound absorbing material is deteriorated.
Al−Cu合金粉の粒径は100〜325メツンとする
のは主成分粒子の粒径と関連させて分散性を考慮するか
らである。The particle size of the Al-Cu alloy powder is set to 100 to 325 mm because dispersibility is considered in relation to the particle size of the main component particles.
また、主成分粒子でAA金合金Alを添加するのは機械
的強度を付与するためであるが、3φ以上になると、耐
食性が劣化する。Furthermore, the reason why AA gold alloy Al is added to the main component particles is to impart mechanical strength, but if the particle size exceeds 3φ, corrosion resistance deteriorates.
また、Al−Cu合金粉のCuを25〜45%とするの
は、主成分粒子の融点より低い融点とするためで、この
意味で共晶組成のものが含まれる。Moreover, the reason why the Cu content of the Al-Cu alloy powder is 25 to 45% is to make the melting point lower than the melting point of the main component particles, and in this sense, those having a eutectic composition are included.
また、主成分粒子100部に対し、Al−Cu合金粉1
0〜30部とするのは、10部以下では主成分粒子間の
結合が不十分となり、30部以上では結合性が向上して
も孔隙率が低下し、耐食性も劣化するからである。In addition, 1 part of Al-Cu alloy powder was added to 100 parts of main component particles.
The reason why the amount is 0 to 30 parts is because if it is less than 10 parts, the bonding between the main component particles will be insufficient, and if it is more than 30 parts, even if the bonding property is improved, the porosity will decrease and the corrosion resistance will also deteriorate.
次に、主成分粒子にA7−Cu合金粉を混合し、この混
合粉を実質的な無加圧状態で所要形状に成形する。Next, A7-Cu alloy powder is mixed with the main component particles, and the mixed powder is molded into a desired shape under substantially no pressure.
この場合、実質的に無加圧状態で成形しても、混合粉中
には白灯油等の分散剤が存在し、このために、所要形状
に容易に成形できる。In this case, even if the powder is molded in a substantially non-pressurized state, a dispersant such as white kerosene is present in the mixed powder, so that it can be easily molded into the desired shape.
また、成形時に何んらかの容器を用いても良く、この場
合は容器とともに後記の如く焼結すれば良い。Further, some kind of container may be used during molding, and in this case, the material may be sintered together with the container as described below.
また、上記の如く無加圧状態で成形する代りに、0、7
X 10” kg/cr?を程度の圧力を加えて差し
つかえがなく、この程度加圧しても孔隙率は30〜40
%程度に保持でき、加圧によって主成分粒子の周囲の酸
化皮膜の一部が破壊されてその破壊部分を介して焼結が
進行し、機械的強度が向上する。Also, instead of molding in a non-pressure state as described above, 0,7
It is safe to apply a pressure of about
%, and by pressurizing a part of the oxide film around the main component particles is destroyed, sintering progresses through the destroyed part, and the mechanical strength is improved.
最後に、上記通りに成形した成形体を非酸化性雰囲気、
例えば還元性雰囲気、不活性雰囲気中で温度条件550
〜b
で加熱し焼結する。Finally, the molded body formed as described above is placed in a non-oxidizing atmosphere.
For example, in a reducing atmosphere or an inert atmosphere, the temperature condition is 550℃.
Heat and sinter at ~b.
このように焼結すると、主成分粒子の周囲には小径のA
l−Cu合金粉が溶融状態で包囲かつ流動し、これが例
えばバインダ的効果を発揮して主成分の粒子相互間が結
合する。When sintered in this way, small diameter A is formed around the main component particles.
The l-Cu alloy powder surrounds and flows in a molten state, and this exerts a binder effect, for example, to bond the particles of the main component to each other.
また、この際、混合粉中に介在する分散剤は炭化水素系
から成るため、分散剤は焼結時に熱分解し、この際、主
成分粒子周囲の酸化物皮膜の少なくとも一部は還元され
、この部分を介して溶融された共晶合金が拡散し、素地
の強化も併せて達成できる。In addition, at this time, since the dispersant present in the mixed powder is made of hydrocarbon, the dispersant is thermally decomposed during sintering, and at this time, at least a part of the oxide film around the main component particles is reduced. The melted eutectic alloy diffuses through this portion, and the base material can also be strengthened.
また、更に、無加圧状態の代りに加圧状態で成形する場
合は、主成分粒子周囲の酸化皮膜の一部が破壊され、こ
の割れ目を介して拡散ならびに焼結性が向上するため、
機械的強度に優れる吸音材が得られる。Furthermore, when molding is performed under pressure instead of under no pressure, a portion of the oxide film around the main component particles is destroyed, and diffusion and sinterability are improved through these cracks.
A sound absorbing material with excellent mechanical strength can be obtained.
また、上記の通りの焼結時の雰囲気において、雰囲気は
とくに高純度のものが好ましい。Further, in the atmosphere during sintering as described above, it is particularly preferable that the atmosphere be of high purity.
この高純度非酸化性雰囲気とは、雰囲気中に酸素、水素
その他の酸化媒体がほとんど介在しないことであって、
例えば完全に近い真空状態、露点−50〜−70℃の雰
囲気が好ましい。This high-purity non-oxidizing atmosphere means that oxygen, hydrogen, and other oxidizing media are hardly present in the atmosphere, and
For example, a near-complete vacuum state and an atmosphere with a dew point of -50 to -70°C are preferred.
この理由は、主成分粒子の周囲において溶融する共晶合
金が僅かの酸化媒体によっても酸化し、この酸化介在物
が溶融部分に存在して、上記の通りに強固に結合しない
からである。The reason for this is that the eutectic alloy that melts around the main component particles is oxidized by even a small amount of oxidizing medium, and these oxidized inclusions are present in the melted portion, preventing the solid bonding as described above.
以上詳しく説明した通り、本発明法は主成分粒子をなる
べく大きくしてこの大粒子の周囲にAlCu合金粉を介
在させて焼結し、主成分粒子で包囲される間隙として連
通孔を構成するものである。As explained in detail above, the method of the present invention is to make the main component particles as large as possible and sinter them with AlCu alloy powder interposed around the large particles, thereby forming communicating pores as gaps surrounded by the main component particles. It is.
したがって、吸音特性を左右する連通孔の形状は主成分
粒子の形状に左右される。Therefore, the shape of the communicating pores, which influences the sound absorption characteristics, depends on the shape of the main component particles.
この点において、本発明法であると、主成分粒子の形状
が球状でなく不規則なものであっても、焼結後の主成分
粒子の周囲にはAl−Cu合金が耐着するため、主成分
粒子の形状はほぼ球状に近くなり、連通孔の形状は均一
化し、この上からも吸音特性に優れるものが得られる。In this respect, with the method of the present invention, even if the shape of the main component particles is not spherical but irregular, the Al-Cu alloy will adhere around the main component particles after sintering. The shape of the main component particles becomes almost spherical, the shape of the communicating pores becomes uniform, and from this as well, a product with excellent sound absorption properties can be obtained.
次に実施例について説明する。Next, an example will be described.
実施例 1
まず、粒度20〜40メツシのAn粉100重量部中に
分散剤としての白灯油を前記A[粉が全体として僅かに
湿った状態になるまで配合した。Example 1 First, white kerosene as a dispersant was mixed into 100 parts by weight of An powder having a particle size of 20 to 40 mesh until the powder became slightly moist as a whole.
次に、この状態のAl粉に対して粒度−100メツシの
Al−Cuの共晶合金粉20部を添加して混合した。Next, 20 parts of Al-Cu eutectic alloy powder having a particle size of -100 mesh was added to the Al powder in this state and mixed.
また、上記のところと同様に、粒度20〜40メツシの
AAAl00重量部に対して白灯油を加えるとともに、
同様に粒度20〜40のAlCuの共晶合金粉を添加混
合させて比較例とした。In addition, in the same way as above, white kerosene was added to 00 parts by weight of AAA1 having a particle size of 20 to 40 mesh,
Similarly, a comparative example was prepared by adding and mixing AlCu eutectic alloy powder with a particle size of 20 to 40.
以上の通りに本発明法で配合したものと、比較例とにつ
きその顕び鏡組織をしらべたところ、前者は第1図、後
者は第2図の通りであった。When the microstructures of the compound blended according to the method of the present invention and the comparative example were examined as described above, the former was as shown in Figure 1, and the latter was as shown in Figure 2.
すなわち、本発明法による場合は、第1図に示す通り、
大径のA7粉1の周囲は完全かつ均一にAl−Cu系の
共晶合金粉2によって被覆されている。That is, in the case of the method of the present invention, as shown in FIG.
The periphery of the large-diameter A7 powder 1 is completely and uniformly covered with Al-Cu based eutectic alloy powder 2.
これに対し、比較例の場合は、第2図に示す如く、Al
粉3とA、g−Cu系共晶合金粉40粒子がほとんど同
じであることから、混合時には比重差の偏析もないが、
両粒子が仲々均一に分散することが困難であった。On the other hand, in the case of the comparative example, as shown in FIG.
Since powder 3 and A, g-Cu-based eutectic alloy powder 40 particles are almost the same, there is no segregation in specific gravity difference during mixing;
It was difficult to uniformly disperse both particles.
実施例 2
実施例10通りに混合した2種の混合粉を10×20×
5cr/Lの寸法のセラミック製容器の中に充填して、
ともに全く無加圧状態に成形し、これを水素気流雰囲気
中において焼結し、この条件は次の通りであった。Example 2 Two types of mixed powder mixed as in Example 10 were mixed at 10×20×
Filled in a ceramic container with a size of 5 cr/L,
Both were molded under no pressure and sintered in a hydrogen atmosphere under the following conditions.
(1)雰囲気 水素気流(露点−50℃)(2)焼
結温度 580℃
(3)焼結時間 60分
(4)昇温速度 10℃7/分
この結果、本発明に係るものは第1図におけるAl−C
u系の共晶合金粉のみが完全に溶融し、この溶融合金の
ところが結合して所要の機械的強度(引張り強さ4kg
/m17t)を具えるものであり、更に孔隙は全て連通
しており、孔隙率は45係前後であった。(1) Atmosphere Hydrogen flow (dew point -50°C) (2) Sintering temperature 580°C (3) Sintering time 60 minutes (4) Temperature increase rate 10°C 7/min As a result, the first method according to the present invention Al-C in the figure
Only the U-based eutectic alloy powder is completely melted, and this molten alloy is bonded to achieve the required mechanical strength (tensile strength of 4 kg).
/m17t), all pores were in communication, and the porosity was around 45.
これに対して、比較例は第2図における合金粉粒子4の
ところが溶融するのみで容器から引き出すとばらばらに
なり、板状のともとして成形できなかった。On the other hand, in the comparative example, the alloy powder particles 4 in FIG. 2 were only melted and fell apart when pulled out from the container, and could not be formed into a plate shape.
実施例 3
実施例10通りに混合した2種の混合粉について、成形
時に圧力を加えて、この圧力を0.2.0.3.0.4
.0.5.0.6.0.7.0.8.0.9、ならびに
1.OX 103kg/−に変化させて、実施例2と同
じ条件で焼結してその孔隙率を求めた。Example 3 For the two types of mixed powder mixed as in Example 10, pressure was applied during molding, and this pressure was adjusted to 0.2.0.3.0.4.
.. 0.5.0.6.0.7.0.8.0.9, and 1. It was sintered under the same conditions as in Example 2, with the OX being changed to 103 kg/-, and its porosity was determined.
この結果、第3図の通りの結果が得られた。As a result, the results shown in FIG. 3 were obtained.
第3図から明らかな通り、比較例の場合は成形圧力が0
.5 X 103ky/cr/!L以下ではAlj−C
u系の共晶合金のA1合金に対してほとんど拡散しない
こともあって、共晶合金の液相が焼結中に滴下し、焼結
体として構成できなかった。As is clear from Figure 3, in the case of the comparative example, the molding pressure was 0.
.. 5 X 103ky/cr/! Below L, Alj-C
Because the u-based eutectic alloy hardly diffused into the A1 alloy, the liquid phase of the eutectic alloy dripped during sintering, making it impossible to form a sintered body.
これに反し、本発明法による場合は何れの場合でも完全
に焼結体として構成できた。On the contrary, in the case of the method of the present invention, a completely sintered body could be constructed in all cases.
また、孔隙率をみると、本発明法によると、0.7ky
/cwi以下では34〜41%程度のものが容易に得ら
れるのに反し、比較例では25〜31係程度であった。Also, looking at the porosity, according to the method of the present invention, 0.7ky
/cwi or less, a ratio of about 34 to 41% is easily obtained, whereas in the comparative example it was about 25 to 31%.
更に、これら2種2系統のものにつき、常法によって通
水試験をしたところ、本発明法によるものは全て通水性
が良好であり、孔隙が連結していることがわかったが比
較例は通水性がほとんどなく孔隙がほとんど連通してい
なかった。Furthermore, when we conducted a water permeability test using the conventional method for these two types and two systems, we found that all of the products made by the method of the present invention had good water permeability and that the pores were connected, but the comparative example showed that the water permeability was good. There was almost no water content, and the pores were hardly connected.
また、更に、本発明法によるものと、比較例のものとに
つき、実際の音の周波数を変えて、吸音率と周波数との
関係を求めた。Furthermore, the relationship between sound absorption coefficient and frequency was determined by changing the actual sound frequency for the method of the present invention and the comparative example.
この結果、本発明法によるものは、500H2以上、と
くに1000〜1500H2の周波数の音の吸音率が少
なくとも80係であったが、比較例のものは、このよう
な高周波数の音はほとんど吸収できず、500H2以下
程度の音が吸収できるに過ぎなかった。As a result, the method according to the present invention had a sound absorption coefficient of at least 80 for sounds with frequencies of 500H2 or higher, especially from 1000 to 1500H2, whereas the comparative example could hardly absorb such high-frequency sounds. However, it was only able to absorb sounds of about 500H2 or less.
なお、上記の高周波数の音とは現在の東海山場新幹線か
ら発する振動音に相当する。The high-frequency sound mentioned above corresponds to the vibration sound emitted from the current Tokai Sanba Shinkansen.
第1図は本発明法によって混合した混合粉の各粉末粒子
の分布図、第2図は第1図と同様な関係の比較例の分布
図、第3図は本発明法と比較例とにおける成形圧力と孔
隙率との関係を示すグラフである。
1・・・・・・主成分の太径Al粉粒子、2・・・・・
・添加される小径AA−Cu系合金粒子、3・・・・・
・AI粉粒子、4・・・・・・Al−Cu系共晶合金粒
子。Figure 1 is a distribution diagram of each powder particle of the mixed powder mixed by the method of the present invention, Figure 2 is a distribution diagram of a comparative example with the same relationship as Figure 1, and Figure 3 is a distribution diagram of the comparison example between the method of the present invention and the comparative example. It is a graph showing the relationship between molding pressure and porosity. 1... Large-diameter Al powder particles as main component, 2...
・Added small diameter AA-Cu alloy particles, 3...
- AI powder particles, 4...Al-Cu-based eutectic alloy particles.
Claims (1)
ツシのA1合金粉または粉度20〜80メツシのAl粉
100部に対して、Cu25〜45係を含み粒度が10
0〜325メツシのA1合金粉10〜30部を、白灯油
等の炭化水素系分散剤を加えて混合し、この混合物を実
質的に無加圧状態で所要形状に成形してから、成形体を
550〜600°Cで非酸化雰囲気中で焼結することを
特徴とするアルミニウム系焼結合金吸音材の製造法。 2 重量百分率でCu3%若しくはそれ以下を含み粉度
20〜80メツシのA1合金粉または粉度20〜80メ
ツシのAl粉100部に対して、Cu25〜45%を含
み粉度が100〜325メツシのAA合金粉10〜30
部を、白灯油等の炭化水素系の分散剤を加えて混合し、
この混合物を0、7 X 10” kg、/’crA若
しくはそれ以下の圧力のもとで所要形状に成形してから
、成形体を550〜600℃非酸化性雰囲気中で焼結す
ることを特徴とするアルミニウム系焼結合金吸音材の製
造法。[Claims] 1. For 100 parts of A1 alloy powder containing 3% or less of Cu and a particle size of 20 to 80 mesh or Al powder having a particle size of 20 to 80 mesh, a powder containing Cu of 25 to 45 and a particle size of 10
10 to 30 parts of A1 alloy powder of 0 to 325 mesh is mixed with a hydrocarbon dispersant such as white kerosene, and this mixture is molded into a desired shape under substantially no pressure, and then a molded body is formed. A method for producing an aluminum-based sintered alloy sound absorbing material, which comprises sintering the above at 550 to 600°C in a non-oxidizing atmosphere. 2. For 100 parts of A1 alloy powder containing 3% or less Cu and a fineness of 20 to 80 mesh or Al powder having a fineness of 20 to 80 mesh, a powder containing 25 to 45% Cu and a fineness of 100 to 325 mesh AA alloy powder 10-30
1. Add and mix a hydrocarbon-based dispersant such as white kerosene,
The mixture is molded into a desired shape under a pressure of 0.7 x 10'' kg, /'crA or lower, and then the molded body is sintered at 550-600°C in a non-oxidizing atmosphere. A method for manufacturing an aluminum-based sintered alloy sound absorbing material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51117699A JPS5831378B2 (en) | 1976-09-30 | 1976-09-30 | Manufacturing method of aluminum-based sintered alloy sound absorbing material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51117699A JPS5831378B2 (en) | 1976-09-30 | 1976-09-30 | Manufacturing method of aluminum-based sintered alloy sound absorbing material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5342801A JPS5342801A (en) | 1978-04-18 |
JPS5831378B2 true JPS5831378B2 (en) | 1983-07-05 |
Family
ID=14718104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51117699A Expired JPS5831378B2 (en) | 1976-09-30 | 1976-09-30 | Manufacturing method of aluminum-based sintered alloy sound absorbing material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5831378B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6080284U (en) * | 1983-11-10 | 1985-06-04 | ワイケイケイ株式会社 | window |
-
1976
- 1976-09-30 JP JP51117699A patent/JPS5831378B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6080284U (en) * | 1983-11-10 | 1985-06-04 | ワイケイケイ株式会社 | window |
Also Published As
Publication number | Publication date |
---|---|
JPS5342801A (en) | 1978-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1115560A (en) | Porous body of aluminum or its alloy and a manufacturing method thereof | |
Davies et al. | Metallic foams: their production, properties and applications | |
US4702885A (en) | Aluminum alloy and method for producing the same | |
JPH08232029A (en) | Nickel-base grain dispersed type sintered copper alloy and its production | |
CA2650605A1 (en) | Method for production of composite bodies and composite bodies produced thereby | |
CN104994975A (en) | Aluminum material for sintering, method for producing aluminum material for sintering, and method for producing porous aluminum sintered compact | |
JP5170390B2 (en) | Iron-based mixed powder for powder metallurgy | |
JP2000510905A (en) | Friction element made of sintered material, its manufacturing method and application to railway and other brake systems | |
JPH06144948A (en) | Production of ceramic porous body | |
JPS6148566B2 (en) | ||
JPS5831378B2 (en) | Manufacturing method of aluminum-based sintered alloy sound absorbing material | |
JPH08325661A (en) | Porous aluminum sintered material | |
US5279786A (en) | Aluminum powder prepared from scrap aluminum and multi-layer, porous sound absorbing material prepared therefrom with a shell configuration of a conch for effectively absorbing noise | |
EP1193319B1 (en) | Porous metal based composite material | |
JPS6047322B2 (en) | Manufacturing method of porous sintered body | |
JPS6184351A (en) | Porous material | |
JP3326072B2 (en) | Iron-based mixture for powder metallurgy and method for producing the same | |
JPH08325660A (en) | Porous aluminum sintered material | |
US5193605A (en) | Techniques for preparation of ingot metallurgical discontinuous composites | |
JP2004035910A (en) | Method for manufacturing aluminum composite | |
JPH09287004A (en) | Metal porous body and its production | |
CN115612947B (en) | Powder metallurgy friction block and preparation method thereof | |
JP2000504376A (en) | High temperature aluminum material, especially aluminum material for piston | |
JPS6150121B2 (en) | ||
JPH101704A (en) | Sliding material and its production |